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Abstract

Though there have been extensive works on the existence of maximizers for sharp first order
Trudinger—Moser inequalities, much less is known for that of the maximizers for higher
order Adams’ inequalities. In this paper, we mainly study the existence of extremals for
sharp weighted Trudinger—-Moser—Adams type inequalities with the Dirichlet and Sobolev
norms (also known as the critical and subcritical Trudinger—-Moser—Adams inequalities),
see Theorems 1.1, 1.2, 1.3, 1.5, 1.7, 1.9 and 1.11. First, we employ the method based
on level-sets of functions under consideration and Fourier transform to establish stronger
weighted Trudinger—-Moser—Adams type inequalities with the Dirichlet norm in W2 3 (R™)
and W"2(R?™) respectively. While the first order sharp weighted Trudinger—Moser inequal-
ity and its existence of extremal functions was established by Dong and the second author
using a quasi-conformal type transform (Dong and Lu in Calc Var Partial Differ Equ 55:55—
88, 2016), such a transform does not work for the Adams inequality involving higher order
derivatives. Since the absence of the Polyd—Szeg6 inequality and the failure of change of
variable method for higher order derivatives for weighted inequalities, we will need several
compact embedding results (Lemmas 2.1, 3.1 and 5.2). Through the compact embedding
and scaling invariance of the subcritical Adams inequality, we investigate the attainabil-
ity of best constants. Second, we employ the method developed by Lam et al. (Adv Math
352:1253-1298, 2019) which uses the relationship between the supremums of the critical
and subcritical inequalities (see also Lam in Proc Amer Math Soc 145:4885—4892, 2017)
to establish the existence of extremals for weighted Adams’ inequalities with the Sobolev
norm. Third, using the Fourier rearrangement inequality established by Lenzmann and Sok
(A sharp rearrangement principle in Fourier space and symmetry results for PDEs with arbi-
trary order, arXiv:1805.06294v1), we can reduce our problem to the radial case and then
establish the existence of the extremal functions for the non-weighted Adams inequalities.
As an application, we derive new results on high-order critical Caffarelli-Kohn—Nirenberg
interpolation inequalities whose parameters extend those proved by Lin (Commun Partial
Differ Equ 11:1515-1538, 1986) (see Theorems 1.13 and 1.14). Furthermore, we also estab-
lish the relationship between the best constants of the weighted Trudinger—-Moser—Adams
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type inequalities and the Caffarelli-Kohn—Nirenberg inequalities in the asymptotic sense (see
Theorems 1.13 and 1.14).

Mathematics Subject Classification 35J60 - 35B33 - 46E30 - 26D10 - 42B35 - 46E30

1 Introduction

In this paper, we establish the weighted Adams inequality in higher order Sobolev spaces

w23 (R™) and W™ 2(R2") and prove the existence of a maximizer associated with the singu-

lar (weighted) Adams inequality. As is well known, classical Sobolev embedding theorems

on bounded domain assert that Wol’p(Q) C L1(Q) for1 < g < p* and p < n, where
* np

Pr=5= is called the Sobolev exponent. In the limiting case p = n, the Sobolev exponent

becomes infinite and W, " () C L4(R) for 1 < ¢ < oo, but W, " () € L™(2). To fill this
gap, Trudinger [59] discovered a borderline embedding result (see also Juovic [19], Pohozaev
[55]) which was subsequently sharpened by Moser [54]. This result has been known as the
Trudinger—Moser inequality since then and we state it as follows.

Theorem A [54,59] Let Q2 be a bounded domain in R", n > 2. Then there exist a positive
1

constant Cy, and a sharp constant o, = na),’:?'1 such that

1 / n_
— exp(a|u|"-T)dx < C,,
12l Jo !

oranya < a, andu € C3°(Q2) with [, |Vu|"dx < 1, where w,—1 is the area of the surface
0 Q
of the unit ball.

Using a symmetrization argument, Carleson and Chang [6] reduced the existence issue to
a one-dimensional problem to establish for the first time the existence of extremal functions
of Trudinger—Moser inequality when €2 is a ball in R”. Later, results of Carleson and Chang
were extended by Flucher [14] to arbitrary bounded domains in R2 and by Lin [41] in R” for
the case n > 2. Malchiodi and Martinazzi [49] further investigated the blow-up of a sequence
of critical points of the Trudinger—Moser functionals on the planar disk.

There are many extensions of Theorem A. One is to extend the Trudinger—Moser inequality
to the entire space, see Cao [5], do o [10] and Adachi and Tanaka [1], etc. We state a sharp
version from [1] as follows.

TheoremB [1] Forn > 2 and 0 < o < ay, there exists a positive constant Cy, o such that

sup _ / W (o|u(x)|7T)dx < Cpg. (1.1)
uEWL”(R”),fRn|Vu|"dx§l ””H n n

o i . . .
where W (t) :=e' — 7:02 % Moreover, the constant a,, is sharp in the sense that if o > oy,
the supremum will become infinite.

When it comes to the singular Trudinger—Moser inequality in R", there are several works
devoted to it. Ishiwata, Nakamura and Wadade [18] investigated the scaling invariant form
of the singular Trudinger—-Moser inequality for radially symmetric functions and proved the
existence of a maximizer. In fact, they proved
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1

n—1I

Theorem C [18] Assumen > 2, —oco <s <t <nand0 < a < o = w”T’l, then there
exists a positive constant C = C(n, s, t, a) such that the inequality
Wl — Llu(x)|mT n =
/ (o (1 = D)l )dx <c / |u(x)| dx ’ (12)
n |x|t n |x|“S

holds for all radially symmetric functionsu € L™ (R"; |x| “Sdx)NW LR with | Vull, < 1,

where W1(R™) denotes the class of functions u which are locally integrable and ||Vu||,
are in L™ (R"). Moreover, the constant oy ; is sharp for the inequality.

They also showed that when s = 0, the constant C has an infimum and could be attained
by some function u € W' (R"). However, when s # 0, they only verified inequality (1.2)
and the existence of extremals on the class of radial functions. A natural problem is whether
we can remove the radially symmetric condition for functions u in inequality (1.2). Dong
and Lu [13] gave an affirmative answer. Indeed, they proved

Theorem D [13] Assumen > 2, —00o < s <t <nand 0 < a < «,, then there exists a
positive constant C = C(n, s, t, a) such that the inequality

t =) N =
/ Wi = )lu)] ])dx <c (/ lu(x)| dx) ’
n |X|t n |X|S

holds for all functions u € L™ (R"; |x|"*dx) N WL (R with | Vull, < 1. Moreover, the
constant o, is sharp in the sense that if « > o, then the above inequality cannot hold with
a uniform C independent of u.

By applying a new method of change of variables of quasi-conformal type in [13], Dong
and the second author kept the gradient norm less than 1 and eliminated the weights of
integral at the same time. Furthermore, they also established the existence of the maximizers
associated with the Trudinger—Moser inequality (1.2). We also note that this method of change
of variables is surprisingly simple and efficient in dealing with some weighted inequalities
involving the first order derivatives. For example, this change of variable method has also
been used by Lam and Lu [30] and Dong et al. [12] to obtain the existence for a wide range
of parameters of the first order Caffarelli-Kohn-Nirenberg inequalities (see [9]).

Note that the Trudinger—Moser inequality (1.1) doesn’t hold in the critical case ¢ = «,,.
To obtain the Trudinger—Moser inequality in the critical case, Ruf [56] (in the dimension
n = 2) and Li and Ruf [39] (in the dimension n > 3) used the standard Sobolev norm to
replace the Dirichlet norm, i.e.

|, =/ Vul" + ul"dx,
Wo ' @) " Jn

and obtained the inequality with sharp constant ¢, . Furthermore, they establish the existence
of a maximizer when o = «,, by carrying out the blow-up procedure. As for the case n = 2
and @ = ap = 4, the existence of a maximizer was considered in Ruf [56] and Ishiwata
[17]. Moreover in n = 2 and « is very small, the non-existence of the maximizer was also
established in Ishiwata [17]. Dong and Lu [13], Lam [21-23], Dong et al. [12], Lam et al.
[33] further established more existence and nonexistence result of extremal functions for
more general weighted Trudinger—Moser inequalities on the whole space R" and proved the
radial symmetry of the extremal functions. For more related results about Trudinger—-Moser
inequalities and the existence of extremal functions for the Trudinger—Moser inequalities,
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one can also refer to [3,4,8,38,48-50] and many references therein. We note that both the
proofs of the critical Trudinger—-Moser inequality in [39,56] and the subcritical inequality in
[1,10] use the Polyd—Szego inequality and a symmetrization argument. A symmetrization-
free argument was developed by Lam and the second author [29] (see also [28]) which gives
an alternative proof of the critical Trudinger—-Moser inequality (see the proof given on page
318 of [29]). A symmetrization-free argument for the subcritical Trudinger—-Moser inequality
of using the level sets of functions under consideration was also given by Lam, the second
author and Tang [24] (see also [37,63] for use of such an argument in the concentration-
compactness principle, in the proofs of Trudinger—Moser inequalities under different norms
[31,34,43,58] and for Trudinger—-Moser inequalities under the Lorentz—Sobolev norm).

Trudinger and Moser’s results for the first order derivatives were extended to higher order
derivatives by Adams [2]. To state his result, we use the symbol V" u to denote

m . .
o !A 2, if m is even,
u =

VA", ifmis odd.

Then, Adams’ results can be stated as follows:

Theorem E [2] Let Q2 be an open and bounded set in R". If m is a positive integer less than

n, then there exists a constant Co = C(n,m) > 0 such that for any u € W(;n'm(fl) and
m
v u||L%(Q) <1, then
1

7/ exp(Blu(x)| ™7 )dx < Co, (13)
122 Jo

forall B < B(n, m) where

n _—
T2mp m+1 n—m .
. 1 [m_im(ﬂz)) . wherem is odd.
o [E=rEn)
Bln,m) = ress |
a | m2omrem)
Wp—1 F(%)

n—m
] , where m is even.

Furthermore, the constant B(n, m) is best possible in the sense that for any B > f(n, m),
the integral can be made as large as possible.

Much improved Hardy—Trudinger—Moser inequalities on (hyperbolic) balls and convex
domains have been established by Wang and Ye [60], Lu and Yang [46], Wang [61], and the
so-called Hardy—Adams inequalities have been recently established using Fourier analysis
on hyperbolic spaces by the second author and Yang [36,45] (see also [62]). We also mention
that the existence of extremal functions for the Adams inequality (1.3) on bounded domain
in the case n = 2m = 4 was established by Lu and Yang [47]. The Adams inequality (1.3) on
bounded domains was also extended to entire space case. Kozono [20] established the Adams
type inequality in the entire space except for the critical case which was established by Ruf
and Sani [57] for even integer m and Lam and Lu [26,27] for odd integer m. Indeed, Lam and
Lu [29] used a symmetrization-free approach to establish the singular Adams inequality of
any fractional order y on the Sobolev space WV’% (R™) (see [29]). In particular, when y = m
we have the following

Theorem F [29] Let m be a positive integer less than n, Tt > 0 and 0 < o < n. Then there
holds

sup dx < 00,

m
weW™ i (R, [[(t1—A) 2 uf n <1
m

n_
/ q)n,m (ﬂa,n,m|u|"7m )
Rn

|x|*
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where
jn—2

n g i
jn» = min {j el:j=> —}and D, (1) = exp(t) — Z —,
m m = i!

n [2mzar (%) o a
Bnm = o1 r (n_zm) and Boy.n.m = Bn.m (1 - ;) .

When m = 2, they gave another form.

Theorem G [29] There exists a positive constant C,, such that

/ @2 (B (1 — L)lu| ™

|xl!

2 n n
)dx <Cy, YueCX R with / [Aul? + |u|2dx <1,
R’l
(1.4)
43 =2

where ju =min{j € Z: j > 5Yand By o = ﬁ[m

In [32], Lam et al. established the following sharp second-order Adams inequality with
the Dirichlet norm.

TheoremH [32] For0 < B < Bu2 and 0 <t < n, then there exists a positive constant
C(n, t) such that for all functions u € W23 (R") N L3 (R") with lAully =1, the following
inequality holds.

Dyl =
/ @, 2(B(1 — L)lul z)dxic(”’t)</ |u|%dx> , (1.5)
n Rn

x|’

where Wz’%(]R”) ={uel R")|Aucec L%(R")}. Moreover, the constant By, 3 is sharp

loc
in the sense that the inequality fails if the constant B is replaced by any B > B, 2.

A natural question is whether there exist extremal functions for the above inequality. To
our knowledge, much less is known for that of the maximizers for Adams’ inequalities.
The first goal of this paper is extending Dong and Lu’s work [13] to second-order Sobolev
space w2 (R™). Since the absence of the Polyd—Szeg6 inequality and the failure of change of
variable method for higher order derivatives, we use the method combining the scaling invari-
ance of the Adams inequality and the new compact imbedding W23 RN LIR") >

n

L1(R"; |x| "dx), for all ¢ > 5 and 0 < 7 < n to obtain the weighted Adams inequality

with Dirichlet norm in W2 % (R™). This idea in spirit is similar to that in the works of Dong
and Lu [13], Ishiwata, Nakamura and Wadade [18] for the first order weighted subcritical
Trudinger—Moser inequality, and related works for Trudinger—Moser and Adams inequalities
with exact growth by Ibrahim et al. [16], Masmoudi and Sani [51-53], Lu and Tang [42] and
Lu et al. [44]. Now we start to state our first result.

Theorem 1.1 For 0 <t < n, n > 3, the best constant C(n, t) is achieved.

Replacing @, 2(B(1—5)[u|72) withexp(B(1— L) u[#2)[u| % and exp(B(1—L)|u] 72 )[u]
respectively, we establish the following stronger Adams inequality and existence of their
extremals.

Theorem 1.2 Forn > 3,0 < B8 < B,2and 0 <t < n, then there exists a positive constant

C(n, t) such that
e I_L nZZ % n 1_5
/ xp(B( = el ™l (/ Mm) , (1.6)
@Springer
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holds for all functions u € W22 ®RHN L3 (R™) with || Aul| 1= 1. The constant By, » is sharp
in the sense that the inequality fails if the constant 8 is replaced by any > B, 2. Moreover,
in the case 0 <t < n, the best constant C(n, t) is achieved.

Theorem 1.3 Forn > 3,0 < B < Bu2, 0 <t <nand q > %, then there exists a positive

constant C (n, t) such that
) ul =i
dx <C(n,t) (/ |u|qu) , 1.7)
]R}’l

/ exp(B(1 — 5)|ul7
n x|

holds for all functions u € W23 R™YNLI(R™) with || Aul| 2= 1. The constant B, » is sharp
in the sense that the inequality fails if the constant B is replaced by any 8 > B, 2. Moreover,
in the case 0 < t < n, the best constant C(n, t) is achieved.

Remark 1.4 In our proof of inequalities (1.6) and (1.7), the rearrangement-free argument by
considering the level sets of the functions and the weighted Trudinger—Moser inequality in

Wi,’j (£2) play a key role.

In 2015, Lam et al. [32] gave a precise asymptotic estimate for the Adams inequality with
the Dirichlet norm. More precisely, they proved

| P2 (B (1 £) lul™2)
ATA(B,t) := sup

Aully <1 ||u||§(]_ﬁ) R x|
2

dx

1

(‘ - (ﬂfz)}T)]_;

with0 < B < By.2 and 0 <t < n. Furthermore, they also established some relation of the
weighted Adams inequalities with Dirichlet norms and Sobolev norms. Indeed, for any a,
b>0,0<t<nand0 < B < B,2, define

~

®,2(B(1 — Dlu|72)
Aapi(By= sup / " i .
lAug +lulh <1 /R |x]
2 2
They proved that
-\ T
Aabi(B) = sup AT A(s, 1).

5€(0.8) (%)"%217

Thanks to this equivalence, we employ the method developed by Lam et al. [33] (see also
[21]) to obtain the existence of maximizers for the weighted Adams inequality with the
Sobolev norm.

Theorem 1.5 For0 <t <n,a,b > 0and0 < B < B2, then there exist extremal functions
for Ag b1 (B) in the case of (B < Pu2.b > 0)or (B = Pu2.b<3).

Remark 1.6 To the best knowledge of ours, our results seem to be the first result for the
existence of weighted Adams inequality with the Sobolev norm on the whole space. Most
proofs for the existence of maximizers of first order Trudinger—Moser inequalities with the
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Sobolev norm use the rearrangement argument and the blow-up analysis. Since the absence of
the Polyd—Szeg6 inequality for higher order derivatives, we use the subcritical way introduced
by Lametal.! [33] and by Lam in [21]. Roughly speaking, through combining the equivalence
of subcritical and critical weighted Adams inequalities in w23 (R™), and the existence of
extremal functions for subcritical Adams inequalities, we can construct the maximizers of
the critical weighted Adams inequalities.

Another natural thought is to establish the Adams inequality with the Dirichlet norm in
W’”*Z(Rzm) for any m > 2. Since the idea of level-sets is not efficient to deal with the
weighted Adams inequality in W2(R>") for m > 3, we use the methods based on Fourier
transform to establish the following results.

Theorem 1.7 For 0 < B < Bomm and 0 < t < 2m, then there exists a positive constant
C(m, t) such that

~ oy wul? =5
f qDZm,m(ﬂ(l 2m)|u| )dx < C(m, t) (/ |u|2dx) ) 5 (18)
R2m R2m

x|’

holds for all functions u € W™2(R2™) N L2(R?™) with |V"u|ly = 1, where W™2(R¥") =
{u € L}UC(RZ’”) | |IV"u| € L2 (R*™)}. The constant B m is sharp in the sense that the
inequality fails if the constant B is replaced by any B > Bom.m. Moreover, in the case
0 <t < 2m, the best constant C(m, t) is achieved.

Remark 1.8 In the case r = 0, the validity and the sharpness of inequality (1.8) were estab-
lished by Lam and Lu [25]. See also Fontana and Morpurgo [15], Masmoudi and Sani [53]
for more general subcritical and critical Adams inequality in W (R for general m > 1
and n > m.

In the setting of W”2(R?>™), we will further prove the following
Theorem 1.9 For 0 < B < Bomm and 0 <t < 2m, there exists a positive constant C (m, t)

such that
ex 1— ot 2 2 lfﬁ
/ PEC = gl (/ |u|2dx> , (1.9)
R2m R2m

x|’

holds for all functions u € W™2(R>") N L2(R>™) with |[V"u|y = 1. The constant Bop.m
is sharp in the sense that the inequality fails if the constant B is replaced by any B > Bom.m-
Moreover, in the case 0 < t < 2m, the best constant C(m, t) is achieved.

Remark 1.10 In the proof of getting the attainability of C,, ,, W">2(R¥") N L4 (R?") s>
L™ (R>™, l‘)%) for any r > ¢ and ¢ > 0 plays an important role. It is also well-known to us
that the above compact imbedding fails in the case t = 0. However, if u is a radial function,
we are in a position to show that WmZ(R2my N L4(R*™) can be compactly imbedded into
L"(R?™) for any r > q. A natural question arise: Do Theorem 1.7 and 1.9 still remain true
in the case + = 0? Using the Fourier rearrangement inequality established by Lenzmann
and Sok [35], we can reduce our problem on inequality (1.8) and (1.9) to the radial case.
Combining these facts, by modifying the proof of Theorems 1.7 and 1.9, we can obtain the
following results.

1 We note that the main results of [33] were described in [13].
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Theorem 1.11 In the case t = 0, the best constant C (m, 0) in inequalities (1.8) and (1.9) is
achieved.

Finally, as an application of the above theorems, we obtain the higher order Caffarelli—
Kohn—Nirenberg (CKN) inequalities in the critical case which was not included in Lin’s
work [40] and investigate the asymptotic behavior of the best constants of Caffarelli-Kohn—
Nirenberg inequalities. We note that the existence of extremal functions for higher order CKN
inequalities have been established by Dong [11]. Indeed, we obtain the following results.

Theorem 1.12 Suppose n > 2 and 0 <t < n, there exists a constant c¢(n, t, q) such that for
any u € W22 (R") N Lz (R"), there holds

n—t nft

loellza @esjep-raxy < €@t @) llully i Au || (1.10)

Furthermore, if we assume o > (B, 2(1 — L)en ), then there exists a sharp constant
qgi1(n, t,a) > % such that for u € W23 (RN L 3 (R™) and q > q\1, there holds

n

el Lo s jx)-1ax) <@g’ ||u|| IIA IIn : (1.11)

t

Theorem 1.13 Suppose m > 2 and 0 <t < 2m, there exists a constant c(m, t, q) such that
foranyu € WmZ(RZ"Y N L2(R?™), there holds

2m—t _ 2m—t
lull Lo gom: e -raxy < clm, t, @ lull,™ IV"ully . (1.12)

Furthermore, if we assume o > (Bou,m(l — ﬁ)2e)_%, there exists a sharp constant
q1(m, t, B) > 2 such that for any u € W™2(R>*") N L2 (R*") and q > q\, there holds

2m—t _ 2m—t

i m m
lell g 2 -1y < g Null,™ V™ ully ™ (1.13)

For the convenience of the statement, we give some notations. We define the sharp constant
Iy ko ko, (RA1F2) by

kikay .
Pkiky kot p(RF2) = sup Fiyky k., (1),
ueWkekt ®h1%2), | VR2ully =1

where
Ky
q)klkz.kz(ﬁlu‘ k-t )d
Jruaka X

|x*

Fiky ko, p (W) 2= Kiko—t
ky
lull,,

This paper is organized as follows. In Sects. 2 and 3, we establish a new compactimbedding
theorem. By applying the rearrangement free argument in the spirit of the work [29] and

the weighted Adams’ inequalities in W/V 2(Q), we establish inequalities (1.6) and (1.7).
We also employ the scaling invariant form of the weighted Adams inequality and a new
compact imbedding to establish the existence of extremals for inequalities (1.6) and (1.7).
With the help of the equivalence results of the weighted Adams’ inequalities with Dirichlet
norms (subcritical case) and Sobolev norms (critical case) in [32], we derive the first result
for the existence of the Adams inequality with the Sobolev norm in Sect. 4. Section 5 is
devoted to obtaining the Adams inequalities with the Dirichlet norm and the existence of
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their extremals in Sobolev space W2(R>™). As an application of Theorems 1.1 and 1.7,
in Sect. 6, we establish the critical higher order Caffarelli-Kohn—Nirenberg inequalities and
investigate some relationship between the best constants of the weighted Adams inequality
and the Caffarelli-Kohn—Nirenberg inequality in the asymptotic sense.

2 The proof of Theorem 1.1

In this section, we give the attainability of sharp constant C(n, t) for Adams inequality
(1.5) which equipped with the Dirichlet norm. For this purpose, we need the following
compact imbedding lemma which also plays a crucial role in obtaining extremal functions
for inequalities (1.6) and (1.7).

Lemma2.1 Letn > 3and0 < t < n, then W23 (R™) NL% (R™) can be compactly embedded
into LP(R", |x|~"dx) for p = 5.

Proof To begin with, we show that W23 RN L3 (R™) can be continuously imbedded into
LP(R", |x|~"dx). For p > n’%z(j% — 1), the continuous embedding is a direct result of
inequality (1.5). For p = 5, one can employ the following inequality

5 N q b 1 1-5
/ lul dx < / lu|2dx + ([ ﬂd)c) ' (/ —dx) ! 2.1
R |x|f n B |xI’ B |xI

to obtain the desired continuous imbedding. For 5 < p < %5 ( Jjz — 1), it follows from the
general interpolation inequality. Next it suffices to verify that the above continuous embedding
is compact, i.e. for any sequence (u; ) bounded in w23 (R™), there exists a subsequence which
we still denote as (ug) such that |ug — ullpp®e;|x|~1ax) = 0 as k — 0o. We conclude it
through two steps.

Step 1 We show that there exists a subsequence still denoted by (ux) such that uy — u
for almost x € R". Through Sobolev interpolation inequalities with weights (see Lin’s work
[41]) and the L? (R") boundedness of Riesz transform, we have

1 1 1 1
, 1o 1ol
IVulls < [ID%ullyllullz < IAulillulli,
2 2 2 2

which implies that

/ IVul? + |ul?dx < C(Q).
Q

Due to the classical Sobolev compact embedding wli (Q) > L"(Q) forl <r < nand
the diagonal trick, one can obtain that there exists a subsequence (we still denote by (uy))
such that

ug(x) — u(x), stronglyin Lj, (R"),

ur(x) — u(x), for almost everywhere x € R”.

Step 2 We claim that for any p > %, ur — u in LP(R"; |x|"'dx). For any R > 0, by
applying the Egoroff theorem, one can find that for any Bg(0) and § > 0,

3 Es C Br(0) satisfying m(Es) < 6,
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such that

uy uniformlyconvergesto u in Bg(0) \ Es.

Thus, we split the integral into three parts.

P
lim lim Bm / lug = ul?

R—+4008—0k—+00 [x]?
. . . lug — ul? . . . lug —ul?
= lim lim lim ———dx+ lim lim lim ——dx
R—+008—>0k—+00 J g, |x]! R—>+008—0k—+00 J B (0)\ Ey x|t
lug — ul?

+ lim lim lim
R—+008—>0k—>+00 R\ Bg(0) |x|’

=L+ DL+ L.
(2.2)
For I, the Holder inequality and the classical Sobolev continuous embedding lead to
1 , Ex
b — y|ps s
I < lim lim (/ 1dx> / g =™
8§—0k—+o00 Es Es |x|ts

(2.3)

1
<1 Es))s
S lim (m(Es))
:0’

where s > 1 and ts’ < n. As for I, it follows from the uniform convergence of uy in
Br(0)\Es that

. . . lug — ul?
Ihb = lim lim lim _
R—+008—0k—>+00 J g, (0)\ Es x|t
. . lug — ul? 2.4
= lim lim ——dx (24)
R——+005—0 Br(0)\Es k——+00 |X|t
=0.

For I3, using continuous imbedding w23 (R™) < LP(R") for p > £, we obtain that

1
I3 < lim lim lim — lur — u|Pdx
R—+008—0k—+00 R! R\ Bg (0)
1
< lim — 2.5)
R—+o00 R!
=0.

Combining (2.3), (2.4) and (2.5), we get a result which states that

—ulP
lim / lue =ul” _ (2.6)
k— 400 n |x|t
Thus we finish the proof of Lemma 2.1. O
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Lemma22 For0 <t <nand0 < B < Buo2, let (uy) € Wz’%(R”) N L%(R”) satisfying
Up—u in W23 R" N L: (R™) as k — +o00. Then, we have the following convergence.

[ (5 (1 ) - O 500 )

jr—1)! x|’

. 1 — I jn—1 w (in
- @, </3 (1_£> |u|”‘2)‘w|u|"-z(’z D KA
R" n ! |x

2.7
Ja-lo
Proof For simplicity, we define Wy, 2(7) := exp(t)— > T:—,’ fort > 0,n > 2,k € NU{0},
j=0
where n’ = an and 0 < B < By2. Then we can rewrite (2.7) as

t n d t n d
im [ W (B (1= L) —"=f Wao (B (1= L)) 2 2s)
k—o0 Rn ’ n |)C|I n ! n |X|t

Hence, it follows from the mean value theorem and the convexity of the function ¥, » that

‘wn,z (ﬂ (1 - %) mﬁ) — W2 (ﬂ (1 - %) |u|n"fz>‘
< a2 (9/3 (1 - 5) U7+ (1 - 6) B (1 - 5) |u|ﬁ) (10177 + e 77 s —
n n

where 6 € [0, 1].
This together with the singular Adams inequality (1.4) leads to

Lonlp (- o) o)
R" n n x|
n n d

S / Ikl + u) 72 (‘I’n,z (ﬂ <1 - £> |Mk\m> + Wn2 <[5 <1 - L) |u|m>> | — ulfx,
R" n n |x|

2

-2
S kel + a5,
Ln=2 (R*;|x|""dx)

t _n_ t _n_
X (| Wy 2 (/3 (1 - ;) |’4k‘”’2> + W (ﬂ (1 - ;) |M|”*2> 2o e x—raxy Ntk — tell Lens x| -1 ax)

S Nk = ull e px-rav)

(2.10)
where the constants n%za > % b > 1 sufficiently close to 1 and % + % + % = 1. Moreover,
thanks to the compact result of Lemma 2.1, we obtain (2.7). O

Keeping the previous result in mind, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Let (u;) be a bounded function sequence in W22 (R") such that
||Auk||% = land F,2; (i) — mn2,:p([R") as k — oo. Denote a new sequence (vg)

1
by vg(x) := ug(|lug || 2 x) for x € R". Then it is easy to check that
2

lAvlly =1, Juelly =1
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and

Fuo0.8(00) = Fuoppur) = a2 p(R") ask — oo.

Thus we obtain a new maximizing sequence for 1, 7 ;, s(R") satisfying that (v;) is bounded

in W22 R"HN L3 (R™). As a consequence, there exists a subsequence (still denoted by (vx))

such that
v—vin W23 (®R") N L3 (R").
By the weak semi-continuity of the norm in W23 R™ N L3 (R™), we derive that
lavly <1, vlly < 1.
Up to a sequence, we can apply Lemmas 2.1 and 2.2 to obtain that

2,08 (R") = kll)ﬂgo Fu..8(vk)

. t o\ dx
= lim Wl Bl1—— ) |v|m2 | —
k—oo Jrn n [x |t

| .

which implies that
Un2.0.8R") < Fp2,80).

On the other hand, through the definition of 1,2/ s(R") and (2.11), we can write

v
tn2,:,8(R") = Fu24p (”AU””)
2

I 1

IIAvll ||v||

[
Z n t(R" |x|~tdx)
l' A%
2

N\‘ i

ol

Jjn
2

B

1

> Fuopp(v) + W = 1| Fu2,,8(0),

Iavi,

@2.11)

2.12)

(2.13)

which implies that ||v||% = ||Av||% = land p,2,4,8(R") = F; 2,1, (v). Then we accomplish

the proof of Theorem 1.1.

Corollary 2.3 For g > %, there exists a constant C(q, n, t) such that

— 2!
q RN
/ ﬂdx < / lu|2dx
re |x]f R

holds for all functions u € W3 (R") N LT (R") with lAu)s =1,
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Proof For q > -5

We only need to verify that inequality (2.14) holds for ¢ = 5. We can split the integral in
inequality (2.14) into two parts.

5 5 5
I S P S
R x| Qcw) Xl Q) Xl (2.15)

=L+,

( j% — 1), inequality (2.14) is a direct consequence of Theorem 1.1.

where Q(u#) = {x|u(x) > 1}. For I1, by dividing the integral into two parts, one can obtain
that n
lulz

dx +/ 1 P dx
QC(um{\xbnuu } x|

n
Joa] 2

I 2/ | -
Q”(u)ﬂ{lx\sl\u\l } x|

2 2
n n
2 2

1 lu|?
§ LI LIS (2.16)
{msnuuﬁ} |x] QW u|2
2 2
N
< </ |u|5dx> .

Asfor I, by setting |u| = v+1, it follows from the singular Adams inequality in Wf,' 2(Q(u))
that

-
LSIQw'r S </ |u|%dx> ) (2.17)
Rn
Then the proof of Corollary 2.3 is completed. O

3 Proofs of Theorems 1.2 and 1.3

In this section, we utilize the arrangement-free argument introduced in [28,29] together with
the singular Adams inequality with the Navier boundary condition to establish inequalities
(1.6) and (1.7). By exploring the scaling invariant form of singular Adams’ inequalities (1.6)
and (1.7), we also establish the existence of their extremals.

We start the proof of Theorem 1.2. We first show that inequality (1.6) holds. By splitting
the integral in inequality (1.6) into two parts, we have

/ exp(B(1 — L) |ul72)|u|?
dx
’ x|
/ Do (B — L) Ju72)ul? +’77 (ﬁ(l—g))ﬂuv’f"uuﬁdx (G.D

x|’

t
i=0 x|

=11+ Db.
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For I, choose p > 1 sufficiently close to 1 such that pB < B, 2, then it follows from the
Holder inequality, Theorem 1.1 and Corollary 2.3 that

1 1
_ |yl iz P v
I < / @, 2(pBA = 3)lul z)dx / [u 2 ix !
n x| n x|
(3.2)

< </ |u<x>|%>7.

For I, note the fact that I consists of ji» — 1 terms and the power of every term is larger
than 5. Thus we can apply Corollary 2.3 to employ that

jn—2

J5 i "l% n
i 1-1
(o) (o™
n R~
n 1_%
< (/ |u(x)|fdx> .
Rll

This together with (3.1) and (3.2) yields inequality (1.6).
In order to obtain the sharpness of inequality (1.6), we use the test sequence (uy ) introduced
in [32]. Its definition is given by

A
i

2 2
(ﬁn%zlnk)l*% _ nﬁ,gz (llfk\j% "B (mkl)%’ if0 < |x| < (%)%,
Uup = 2 2 1 ‘ [
nBy, (nk)~nInpy, if () < lx <1,
Ck» if |x] > 1,

where ¢ is a smooth function satisfying supp(sx) C {|x| < 2},
dgk 2y 2 2 2
Sklx=1 =0, %HX\:I =np), ()" r, g = 0ng)r), Agr = O((Ing)n).

Directly computations yield that

n 1
1 <||Augllz2 <14+0(|—).
< ukll7 <1+ <lnk>

~ .
Let vy = TAud s AukH% , we derive that

1 n—2 1

IATlls = Land [Tl3 < | Augll; < A(nk)~" + B(ink) > —.

[SERNT]
NEINE!

bl
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Then we manage the calculation as follows:

o~ ~ 8
ey oo (B =) )
PR — dx
2 R |x]
 pan exp (B (1— £) 5kl ) 312
> (el * " 1 - dx
2 xl=(4)" x|
1 ety eXP(ﬂ(l—ﬁ) |,17k|$)
> ( 1nk> A PR o : dx
n2 2 xI=(4) x| (3.4)
n t ~
0 o N 2 (B (1 1) [5k77)
z( 1nk> IRl 2 , ! dx
Bn,2 2 \x|5(%)" |x]
_r
1 -1 1 ’
> ( lnk>
lsn,2 1-— ﬂﬁ
n,2

—ooas B — Buo2,

which completes the proof of the sharpness of inequality (1.6).

The proof of the attainability of the best constant C (n, t) for inequality (1.6) is similar to
that of Theorem 1.1. In fact, by the scaling invariant form of the weighted Trudinger—-Moser
inequality, we can choose a maximizing sequence (vy) for C(n,t) satisfying that (v) is
bounded in W22 RMN L3 (R™). Following the same procedure as that of Lemma 2.2 and
Theorem 1.1, we can obtain

. (exp(B(1 — D)o 72) — Dfwg|? (exp(B(1 — D)[u]72) — 1)[v|?
lim dx dx
k=00 Jn |x|’ Rn x|

and ||Av||% =|lv ||% = 1, which implies the attainability of the best constant C (n, t).
We now start to prove Theorem 1.3. We first apply the arrangement-free argument intro-
n

duced in [29] and the weighted Adams inequality in ng (£2) to obtain inequality (1.7). Indeed,
by dividing the integral into two parts, we have

x|’ x|’

/ exp(B(1 — Ly|u|72)|uld / exp(B(1 — L) |u|72)[uld
dx = dx
" Jul<1

x|

ex 1 — Lyu|m2)|ul (3.5
+/ p(B(L — Dlul"=2)|ul dx
|u|>1
=11+ Db.
For I, setting |u| = v + 1 and using an elementary inequality
[uli=2 < (14 e)vi? + Ce, Ve > 0,
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one can obtain

L < / exp(B(1 — £)(1 + e)vi2) exp(B(1 — £)Co)|ul? ix
lu|>1 x|
1 1
1 — Yypal = » ar’ \ 7V
< /' exp(B(1 — H)p(l + &) )dx / v+1) dx
lu|>1 x| =1 1xl
1
n—t ap’ 1 p/
< Wul > 1)) / [v] + —dx 3.6)
=1 X1t x|

~

n—t n=t n—t 1
S Hlul > 13 {lul > 1" 4 [{Ju] > 1}] </ ﬁdX)
lu|>1 1]

1—L
< (/ |u|qu> .

For I, direct computations show that

/ exp(B(1 — L)|u|72)[uld
dx
[ul<1

x|
q q
<[ A | W, e
{|u|sl1n[|x\snuu;] |x| {|u|sl1n[|x\>||uu;} |x|
=: I + Ls.
We can estimate /1 as follows
/ M= [ x| dx = ully
—dx < x| dx = |ull, " .
{|u|s1}n{|x\snuu4%} x| {|x|s||uuq%} ! (3-8)
Similarly, we also derive that
/ |u|qd _qt ay q(n—1)
——dx < |lullg " / lulfdx = llully " .
{Iu\sl}ﬂllx\zuullq%} |xl! Sy ! (3.9)

Combining inequalities (3.5), (3.6), (3.8) with (3.9), we obtain the required inequality (1.7).
Next, we show the sharpness of inequality (1.7). Using the same test function sequence
(uk )k as that of Theorem 1.2, one can easily calculate that

(In k)= L otn k)~

154 < A(nk)"#9 + B
7= k k
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Then, it follows that

ey oo (B 5) )
15l

x
x|
(1t exp (B (1 — £) 10177 ) [l
> ”,Ek”qq(l n) . ( ( n)t k ) k dx
l=(4)” Il
-2 B(1—* [V |72 (3.10)
2( 1 lnk)q( )” k”nq( 5 ) exP( (1—7) [k >dx
1,2 |x|§(%)” x|
1-2 exp(B(1—1%)|y =
Z( ! lnk)q( )”Uk”n (=) 1 ( ( ,tl) * >dx
n,2 \xlf(%)n x|

—ooas B — Buo.

Then, we show the attainability of the sharp constant C(n, t) for inequality (1.7). We need
the following compact imbedding.

Lemma3.1 Forn > 3, r > qand 0 <t < n, Wz’%(R”) N LY(R™) can be embedded
compactly into L" (R"; |x|'dx).

For the continuity of the proof, we postpone the proof of Lemma 3.1. With the help of
Lemma 3.1, applying the same method in Lemma 2.2, we can derive the following required
convergence.

. (exp(B(1 — D)lug|72) — Dug|d (exp(B(1 — L)lu|™2) — 1)[ul?
lim dx = dx
k=00 JRgn x|’ Rn x|

(3.11)
Then, we can use the same procedure as Theorem 1.1 to obtain the attainability of the best
constant. At last, we focus on the proof of Lemma 3.1.
The continuity of the embedding is a direct result of inequality (1.7) and the Holder
inequality. Then it is sufficient to show that for any bounded sequence (uy) in W25 R N
L9 (R"), there exists a subsequence which we still denote as (ux) such that

hm lux — ullpr@®e;|x|-rax) = 0 as k — oo forr > q.

Similar to the proof of Lemma 2.1, we carry out the process of proof by two steps.

Step 1 We first show that there exists a subsequence still denoted by (ux) such that uy — u
for almost x € R". In fact, through Sobolev interpolation inequalities with weights (see Lin’s
work [41]), we can obtain

1o
Vullag < IIAulléllullé-

Then it follows from the Holder inequality that
/ Vil + |u|2dx < C(<Q).
Q
According to the classical Sobolev compact embedding wli (Q) > L' (Q)forl <r <

n and the diagonal trick, one can obtain that there exists a subsequence (we still denote by
(ug)) such that
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ug(x) — u(x), stronglyin Lj, (R"),

up(x) = u(x), foralmost everywhere x € R”".

Step 2 We claim that for any » > ¢, uy — u inL"(R"; |x|~"dx). Since the process of the
proof is similar to that of Lemma 2.1, we omit the details.

4 Proof of Theorem 1.5

Throughout this section, we will employ the method of using the relationship between the
supremums of the subcritical and critical inequalities developed by Lam et al. [33] to establish
the existence of maximizers for the singular Adams inequality with the Sobolev norm. We
need the following lemmas whose proofs can be found in Lam [21], Lam et al. [33].

Lemma4.1 ForO <t <n, a,b > 0, then AT A(-, t) is continuous on (0, B, 2).

Lemma4.2 Ift > 0,a,b > 0, then

O A
lim [ —25— |  ATAG,0) =0.
s—0 (g)Tb

B

Lemma4.3 Fora > 0,if (B < Bn2,b > 0)or (B =pn2,0 <b < %), then

n—t
2b

- ()
—_— ATA(s,t) =0.

hn‘k n72b
5= S
)

Proof of Theorem 1.5 With the help of Theorem 1.1, Lemmas 4.1, 4.2 and 4.3, we are in a
position to establish the existence of extremals for the singular Adams inequality with the
Sobolev norm. We only need to prove that there exists an extremal function for A, () in
the case of (8 < B,2,b > 0)or (B =B2,b < %). It is easy to check that

m—t

n—2 b
(1=
lim (—L— | ATABS) < Awni(B)
' (3) "
and
1= &
s11—r>1(1x (S)sz ATA(B,s) < Aa,b,t(/g)-
B n

On the other hand, we also have
=2\ %
- ()%

Aupi(B) = sup AT A(s, 1).

5€(0,8) ) 122b
This together with Lemma 4.2 and Lemma 4.3 yields that there exists s € (0, 8) such that

n—t
2b

- (5"
__ AT A(s, t) = Au b, (B).

n=2
A
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Assume that u € Wz’%(R”) with ||Au||% <1= ||u||% is the maximizer for AT A(s, t).

Define

then it follows that

v(x) = ( > u(Ax),

which implies that || Av||% + ||v||’£ < 1. Hence,
2 2

Au,b,t(ﬂ)

This implies that v is actually a maximizer for A, 5 (B).

J.

A= n—2 ’
S
&
%a ”;za
1AV = <5> lAuld < (5) ,
>\ B = \B
s ";2]7 1 R ;1;2a
llly = (= —llulll =1-
2 ﬂ A 2 /3
n—t
2b n
(% d>n,2 (S (1 - 7) |u|m)
/ dx
(Y) n |x|
B
n;Za % .
- (3) @ua (s (1= ) WO0IF2)
A
52 / . ]’ )
(g) “4.1)
n—t
n=2 2b
() (b1 )0r)
- }»”7’/ - dx
s n b R» |X|
6)
2 (B (1= £)10177)
dx.
x|
O

5 Proofs of Theorems 1.7, 1.9 and 1.11

In this section, we establish weighted Adams’ inequalities (1.8) and (1.9) which equipped
with the Dirichlet norm and the existence of their extremal functions. It is well known that the
arrangement-free argument introduced in [29] is a useful tool in dealing with the Trudinger—
Moser inequality and the second-order Adams inequality. However, this method may fail
when we come to consider the higher order inequalities. Therefore, we use the method based
on Fourier transform to establish inequalities (1.8) and (1.9). We need the following lemma.
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Lemma 5.1 Forany B € (0, Bom,m), there exists a positive constant Cg such that

/ Do (B(L = 55)lul?)
R2m

x|’

dx < Cg, (5.1)

where u € W™ZR™), |[V"ull» < 1 and |ul» = 1.

Proof We first claim that for any fixed 8 € (0, B2m.m), there exists sufficient small T > 0
such that for all u € W™2(R2") N LZ(R?") with ||V™ull> < 1 and |u||» = 1, there holds
:82m,m

(I — A)Zul3 < 5 (5.2)

Indeed, by Fourier transform, we have
Il = )5 ul; =) Caut" V7 ul3.
j=0

Thanks to the Sobolev interpolation inequalities, one can derive that for every ¢ > 0, there
exists a positive constant C, > 0 such that

Il = M) Tul3 < (1 + &) V"ull3 + Cerllull3,

which implies inequality (5.2). With the help of Theorem D in [29], we derive that

2
P2, m (/3(1 — I = ) T ull} | ——y— )
2 g 2m 2 Y
/ Do, m (B — 55)ul )dx :/ I(@I=8)2 ul i
R2m x| R2m x|
2
@ -4y | ——
2m,m (ﬂ2m,m( Zm) Il—A) 3l )
< dx
R2m |X‘l
< Cg,
5.3)
which finishes the proof. O

With the help of Lemma 5.1, we start the proof of inequality (1.8). In fact, for any u €
1
W2 (R2™M) satisfying ||V"ul> < 1, we define u; (x) = u(Ax) with A = |Ju||}". Through
direct calculations, we derive that
sl = 27" ul3 = 1,
IV usll2 = [IV"ull2 = 1,

/‘ Do m (Bl — ﬁ)luxlz)dx _ A’_2m/ Do m (Bl — ﬁ)lulz)dx
R x|’ - R2m x| '

Then it follows from inequality (5.1) that

/ Pomn(BA = )l | W,,/ Pomn(BA = g)lual?)
R2m x| B R2m x|’
2m— 5.4
S A m tCﬁ ( )
2(1-55)
= Cplul, ™.
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Next, we show the sharpness of inequality (1.8).
We will modify the idea of constructing test functions for the Adams inequality on domains
of finite measure in Euclidean spaces [2]. Let ¢ € Cgo([O, 1]) such that

p0) =¢'0)=---=¢""10)=0, ¢p()=¢'(1) =1,
¢//(1) —- .= ¢mfl(1) —=0.
For0 <¢ < %,set
ep(L), if0 <t <e,
t, ife <t <1-—¢,
H(t) .=

L—ep(ih), ifl—-e<t<1,
L, ift > 1.

For any fixed r > 0 sufficiently small, we define

log ﬁ
Yr(Ix|) = He ) T ]
log

7

where ¢(r) = 10; Obviously, ¥, € W(;" ’2(Bl) and

T
Y, =1 on B,.

It was proved in Adams [2] that

1 —1
IV 9115 < @m) ™" Bomm (“’g ?) Ar

1
A, =140 .
' <logi)

Moreover, direct computations show

where

1
Wl S —-
log

Define
¥y
-
(2m)=! Bom m(log 1)=1A,)?

By direct calculations, one can obtain that

Uy =

IV™urlla <1

and

lwel3 1

(log1)~14, ~ log}’

r

2
llurllz ~
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Let r — 0, it follows that
fRZm CI>2m,m (ﬂZm,m (1 - ﬁ) |ur|2) |x|7tdx

lim
—0 2 l—%
' i ||2( %)
" ! 2\ (1t
Z im | log - exp | Bomm | 1 — 5— ) lurl |x| ™ dx
—0 r r 2m
1"z 1,
= lim (log 7) / exp <(2m —t)log—A; ) lx|"dx
O T B 4 (5.5)
1—-L
1 am 2m—t 1 -1
2> lim | log — r exp | @2m — 1) log — A,
r—0 r r
> Jim (1og * T Qm — 1)1 ! (A7 —1)
> 1_% og exp m og — (4;

1\~
>hm(log ) — 00,

which completes the proof of sharpness.
At last, we show the attainability of 112 m ¢, g. Just as what we did in Theorem 1.1, we
need the following compactness lemma.

Lemma52 Form > 2, p > 2and 0 < t < 2m, then Wm2Z(R2™) N L2(R?™) can be
compactly embedded into LP (R¥™ , |x|~'dx).

Proof The proof is similar to that of Lemma 2.1 once we prove the equivalence between the
space Wm2(R2") N L2(R%™) and the standard Sobolev space W™m-2(R?™), Indeed, it suffices
to show that

l0%ul3 < 3+ 1V ull3, Y lal < m. (5.6)

We first prove the
IV ull3 S lull + IV ull3, Y1 <k <m keN. (5.7

In fact, by the Fourier transform, we have
f IVFul?dx = / HRHGIRE
RZM RZm
< [ 4Pl P

=/ |ﬁ<s>|2ds+/ £ 1) de
RZm ]RZ'"

:/ |u|2dx+/ V" u|?dx.
RZm ]RZm

Combining this result, in order to obtain the equivalence result, we only need to show that
80{ 2 < vla‘ 2 5 8
l8%ul3 < V'3, (5.8)

One can derive it by induction. For |a| > 2, @ = (a1, @2, - - - , &), there exist or; + g > 2
2 . . .
suchthat 9% = Bxaiaxk 9f . Hence, it follows from the Fourier transform and the Riesz transform
J
that
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9? "
ull3 = / P
10%ull3 o (axjaxk ul (&)

_ f (42 50Pu(E) PdE
RZm

:/R< él)( IE;I>

_ /R (R Re AP (&) Pt

2

dg§

d%‘

Then, with the help of the induction and the definition of V™, one can get
/R R R A@ )" ©)PdE < 0P (Awl3 < IV Aull3 = V™3,
which proves the required equivalence. O

_ Now we show that the best constant 2, m,p could be attained by a function in
Wm2(R2™) N L2(R?™). Assume that () C W™ 2(R?") N L2(R?") satisfying

IV uglla = 1and P s p(ux) = ommr,p(R™™) as k — oo,

Constructing a new function sequence (vy) defined by vy (x) := wuy (|luk ||} " x) for x € R¥",
one can easily verify that

V™l =1, llwll2 =1,
and
Fommt g0 = Fammr i) = Womms,p(R*™) ask — oo.

Hence, (vx) is also a maximizing sequence for (o, m,r, g (Rz’”). Note that (vg) is bounded in
WmZ(R¥m) N L2(R2™), thus up to a sequence, we may assume that

vk—v in W™2(R>™) N L2(R>™).
It follows from weak semicontinuity of the norm in WmZ(R2my N L2(R?™) that
VPl < 1, vl < 1. (5.9

Then, implementing same procedures as we did in Lemma 2.2, we have

lim ® p(1— V) =g (1= ) 2 ) &5
ko0 Jgam \ 2 2m ) "k 2m ) K )

(5.10)
t t dx
= ) T—— ) =B(1— — | u?) —.
/R< s (ﬂ( 2m)|u|) ﬂ( 2m>|u| ) -
Combining (5.10) with Lemma 5.2, we derive that up to a sequence,
ammap @ = [ 2B = )W To(l)
e (5.11)

:/ ®2mm(ﬂ(l_7)| 12 )ft
R2m x|
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which implies v # 0. Then we can deduce from (5.9) and (5.11) that
Jrzn ®omm (B = )0l &

2L
vl ™

M2m,m,t,ﬁ(R2m) =< = FZm,m,l,ﬂ(U)- (5.12)

Therefore, it remains to show that |[V™v|[, = 1. By the definition of 2 m ﬂ(]Rzm) and
(5.9), we see that

2m v
Mom,m,e . p(RT™) = Fom .z, p (m)

— B L2 22 5.13
D DT Ll T ] e N P (5-13)
i=1

> FZm,m,t,ﬂ(U) + (”VMU”;E - 1)F2m,m,t,ﬁ(v)~

This together with (5.9) and (5.12) implies that ||V v]||> = 1. Then we complete the proof
of Theorem 1.7.

The Proof of Theorem 1.9 We first establish inequality (1.9). Just as what we did in Theo-
rem 1.2, we divide the integral in inequality (1.9) into two parts.

ex 1 — ) ul?)|ul?
f p(B(L — 5. ul7)|ul Iy
R2m |X|t
2 2
=/ Do m (BA — ) ul*)|ul dx—l—/ ﬂdx (5.14)
R2m |X|t R2m |x|’
=L+ D.

By applying the Holder inequality and inequality (1.8), one can estimate /; as follows

€
’

l ’
/ Dom,m (ﬁp(l—ﬁ)lulz)dx ! / |u| > dx !
R2m |x|l R2m |X|t
La-20 =5
()" (o)
R2m R2m
(=5
:(/ Iulzdx) )
R2m

where p > 1 and Bp < Bom,m. As for I, it is an immediate result of inequality (1.8).
One can deduce the sharpness of inequality (1.9) from the sharpness of inequality (1.13).
In fact, one only needs to observe the following fact

2 2 2
/ exp(B(1 — ) ul?) ul dx > / Do m (B — ) |ul )dx.
R2m R2m

x|’

IA

I

x|’

For the attainability of the best constant C (m, t) of inequality (1.9), one can manage the same
steps as what we do in Theorem 1.7 to obtain the required results. O

The Proof of Theorem 1.11 We first employ the Fourier rearrangement tools to prove there
exists radially maximizing sequence for 42, .0, ﬁ(Rzm). In fact, assume that (zy) is a max-
imizing sequence for (om m,0,8 (RZ™), that is

I8 3wl = 1. lim Faum0,p(ai) = somm0.p R™™).
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Define u,j( by u,% = F~Y(F(uy))*}, where F denotes the Fourier transform on R?” (with its
inverse F ') and f* stands for the Schwarz symmetrization of f. Using the property of the
Fourier rearrangement from [35], one can derive that

m o4 m i i
[(=2)Zuplls < I(=A) 2upll2, lugllz = llukll2, Nugllq = Nukllq-

Hence, lim Fp ,0,8(ux) < lim Fzm.m,o,ﬁ(ui), which implies that (ui) is also the max-
k—o00 ' k— 00 '
imizing sequence for (12,0, (R2m), Constructing a new function sequence (vx) defined
1

by vi(x) := ug(J|uk ||é7x) for x € R?" one can easily verify that (vg) is also a maximizing
sequence for ,uzm,m,o,ﬂ(Rzm) with [V™ui|l2 = 1 and |Jug|l2 = 1. Note (vg) is bounded in
W™-2(R>™), up to a sequence, we may assume that

ve—v in W2(R>™) N L*(R*™),

thus v satisfies that ||v], < 1 and ||va||% < 1. Since W™2(R?*") can be compactly

imbedded into L” (RZ") for any r > 2 (please refer to [7], Lemma 5.3), implementing same
procedures as what we did in Lemma 2.2, one can deduce that

lim / (<1>2m,m(ﬁ|uk|2)—ﬂ|uk|2)=be" (Domm(Blul®) — Blul?) . (5.16)

k—o00 JR

Then it follows that
12mm.0.8 R¥™) = Fay mo.p(wi) + o(1)

= / q>2m,m (ﬁlvk|2)dx + 0(1)
R2m
(5.17)
-t /Rzm ®omm (Bluel?) = Bluidx + o(1)
=5+ [, amm(BIP) ~ ploPdr.
R2m

Next, we show v # 0. Indeed, one can pick ug in W"2(R?") N L2(R>") satisfying
[IV™ugll2 = 1 arbitrarily. Then, we have

Jg2m @om.m (Bluol?)dx
lluoll3

J 2j
521 B luoll]

amm. 0.6 (RZ™) > Fay 0.5 (o) =

2
lueo I3
00 J 2j
Y52 B lluol3]
2
lueo 3

=p+

Hence,
Jgom Pomm (BlV|?) — Blv|*dx

Ivi3
 Jren Po2mm (BlvP)dx
- i3

fomm0.6(R¥™) < B+

= F2m,m,0,,5(v)~
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Therefore, it remains to show ||V’"v||% = 1. Recall that ||va||% < 1, it suffices to show that
V™ ||% > 1. Through the definition of {42,m,0,8 (Rz’”), one can obtain that

v
R2m > F -
Mom,m,0, R™") = 2m,m,0,/3(”va”2)
© gi vl)5] gy 22
=Z—, V™ vl
=t i3
B 2, o B Ivll3
> p+ S IVl + Y (5.18)
lvli3 = 7 vl
B vl _
= Fanm0p®) + —-—2([V"0[;> = 1)
2 vl3
2m 182 “ ||4 m, 1—2
> Uom,m,0,8(R™") + — 2 ol > IVP ], ” = 1)
2

which implies that || V" v ||% > 1. Thus, v is amaximizer for (42,,,m,0, 8 (R%™) which completes
the proof of Theorem 1.11. O

6 Proofs of Theorems 1.12and 1.13

In this section, we give some applications of Theorem 1.1 and Theorem 1.7. We first estab-
lish the higher order critical Caffarelli-Kohn—Nirenberg inequalities which are not included
in Lin’s work [40]. Moreover, we also investigate the relationship between the best con-
stants of the singular Adams inequality and the Caffarelli-Kohn—Nirenberg inequality in the
asymptotic sense.

Proof of Theorem 1.12 We first give the proof of inequality (1.10). Denoting

fo = sup[,e;/ Qur(plul ),

x|t
1—L
< Cn,1t) (f |u(x)|%dx> . Yu € W23 (R") with lAu]s < 1},
Rl’l

then for any 8 < By, there exists a constant C(n, t) > 0 such that for u € w23 (R™) and
k> j% — 1, there holds

e \ 2 @2 (B(a) )
C(n,1) = > / 2 dx
IAully ) = S el

(6.1)
k- ( llu] "k
o B (Mg et
Tk IAully ’
which implies that foru € W>2(R") and k > j» — 1,
et ot e o1ty < (C(” g ,sk> ||u||2"’k 1Au || 6.2)
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For any g > n/(j% — 1), there exists k > j» — 1 satisfying n'k < q < n'(k + 1) such that

llll Lo rns e |-tax) < ||M||L,,k(Rn - ,dx)|| ”L”/(HU(R" |-ty (6.3)

Combining (6.2) with (6.3) and the fact é = n% + %, one can conclude that

nt

el Lo s ixi-raxy < Cn, DB ((k+ 1)) loell s & | Au || . 6.4)

Since > k, we have
1

1 1

((k+ 117 = (NG +2)". (6.5)
Combining inequalities (6 4) and (6. 5) one can derive inequality (1.10) with estimating
c(n,q,t) ~ C(n, r) B (T +2))

1
Next, we claim that there exists « > 0 such that ¢(n, ¢, t) behaves like c(n, ¢, t) >~ ag "’
as ¢ — 400 which is equivalent to say

n—t

3q1 = ju, Vg =qu, lullLa@ejx-rax) < g ||u||n" | Au ”n R

By recalling Stirling’s asymptotic formula, we see that as ¢ — oo,

(rcd +2))‘1l =

Therefore, we derive that

q L5 -7
bl zaeitar-ran) < (1o lull " 1Aully ™ (6:6)

which accomplishes the claim.
At last, we show the relationship between By and «;, ;, where

n—t t 1 n—t
ap, = inf {Ol >0:3q1 = jy. Yq = qu, lullLaqer; x—dx) <Olq" ||M||nq | Au ||n = }

According to the definition of «, ;, combining inequality (6.6), one can derive that o, ; <
1
(ﬁ) . Then it follows from the definition of By that

s < (ﬁl ) . 6.7)
oen

1
1 n
Op,r = ; .
Boen

Pick any o > oy, through the definition of «,, ;, there exists go > j% such that for any
q = 4o,

=)

Then it suffices to show that

nft

llull Lo e x|-rax) < @q v ||M||nq ||AM|| n (6.8)
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Then for u € W7 (R") and | Aully <1,

/ <1>,,,2(ﬂ|u|n"f2)dx
, x|

Bk o | dx Bk ) dx (6.9)
/Rn > ol W*/Rn > eor | S

Jjn <n’k<qo n'k>qo

=:J1+ ).
Since Ji consists of finite weighted norms and 5 < n’k < go, one can get
”u“L"”‘(R”;\xI_‘dx) < lu ”L’Z’(R” x| ~dx )” ”qu(Rn |x]~dx) (6.10)

through using the Holder inequality. Taking (6.8) and (6.10) into consideration, we get that
forall 5 < n'k < qo,

el i o ety = C||u||2‘" 0 6.11)

where we used the fact that || Au ||% < 1. Then it follows from (6.11) that
B\ s
n=c| o )l (6.12)

For J>, inequality (6.8) leads to

k* 1 n'~\k =t
o= Y B Ll (6.13)
n'k>qo
Then it follows from the Stirling’s asymptotic formula that the power in (6.13) converges
if Bn’a™ < -, which implies that 8 € (0, ) Hence, the definition of By leads to
Bo > W Moreover through the definition of an ¢» we get that
fo= —
0> ——
en'all,
which is equivalent to
1
1 n
O = . (6.14)
' en’ﬂo
Combining (6.7) and (6.14), we complete the proof. O

Remark 6.1 The proof of Theorem 1.13 is similar to that of Theorem 1.12, we omit the details.
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