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Abstract
Though there have been extensive works on the existence of maximizers for sharp first order
Trudinger–Moser inequalities, much less is known for that of the maximizers for higher
order Adams’ inequalities. In this paper, we mainly study the existence of extremals for
sharp weighted Trudinger–Moser–Adams type inequalities with the Dirichlet and Sobolev
norms (also known as the critical and subcritical Trudinger–Moser–Adams inequalities),
see Theorems 1.1, 1.2, 1.3, 1.5, 1.7, 1.9 and 1.11. First, we employ the method based
on level-sets of functions under consideration and Fourier transform to establish stronger
weighted Trudinger–Moser–Adams type inequalities with the Dirichlet norm in W 2, n2 (Rn)

andWm,2(R2m) respectively.While the first order sharp weighted Trudinger–Moser inequal-
ity and its existence of extremal functions was established by Dong and the second author
using a quasi-conformal type transform (Dong and Lu in Calc Var Partial Differ Equ 55:55–
88, 2016), such a transform does not work for the Adams inequality involving higher order
derivatives. Since the absence of the Polyá–Szegö inequality and the failure of change of
variable method for higher order derivatives for weighted inequalities, we will need several
compact embedding results (Lemmas 2.1, 3.1 and 5.2). Through the compact embedding
and scaling invariance of the subcritical Adams inequality, we investigate the attainabil-
ity of best constants. Second, we employ the method developed by Lam et al. (Adv Math
352:1253–1298, 2019) which uses the relationship between the supremums of the critical
and subcritical inequalities (see also Lam in Proc Amer Math Soc 145:4885–4892, 2017)
to establish the existence of extremals for weighted Adams’ inequalities with the Sobolev
norm. Third, using the Fourier rearrangement inequality established by Lenzmann and Sok
(A sharp rearrangement principle in Fourier space and symmetry results for PDEs with arbi-
trary order, arXiv:1805.06294v1), we can reduce our problem to the radial case and then
establish the existence of the extremal functions for the non-weighted Adams inequalities.
As an application, we derive new results on high-order critical Caffarelli–Kohn–Nirenberg
interpolation inequalities whose parameters extend those proved by Lin (Commun Partial
Differ Equ 11:1515–1538, 1986) (see Theorems 1.13 and 1.14). Furthermore, we also estab-
lish the relationship between the best constants of the weighted Trudinger–Moser–Adams
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type inequalities and the Caffarelli–Kohn–Nirenberg inequalities in the asymptotic sense (see
Theorems 1.13 and 1.14).

Mathematics Subject Classification 35J60 · 35B33 · 46E30 · 26D10 · 42B35 · 46E30

1 Introduction

In this paper, we establish the weighted Adams inequality in higher order Sobolev spaces
W 2, n2 (Rn) andWm,2(R2m) and prove the existence of a maximizer associated with the singu-
lar (weighted) Adams inequality. As is well known, classical Sobolev embedding theorems
on bounded domain assert that W 1,p

0 (�) ⊂ Lq(�) for 1 ≤ q ≤ p∗ and p < n, where
p∗ = np

n−p is called the Sobolev exponent. In the limiting case p = n, the Sobolev exponent

becomes infinite andW 1,n
0 (�) ⊂ Lq(�) for 1 ≤ q < ∞, butW 1,n

0 (�) � L∞(�). To fill this
gap, Trudinger [59] discovered a borderline embedding result (see also Juovic̆ [19], Pohozaev
[55]) which was subsequently sharpened by Moser [54]. This result has been known as the
Trudinger–Moser inequality since then and we state it as follows.

Theorem A [54,59] Let � be a bounded domain in R
n, n ≥ 2. Then there exist a positive

constant Cn and a sharp constant αn = nω
1

n−1
n−1 such that

1

|�|
∫

�

exp(α|u| n
n−1 )dx ≤ Cn,

for any α ≤ αn and u ∈ C∞
0 (�) with

∫
�

|∇u|ndx ≤ 1, where ωn−1 is the area of the surface
of the unit ball.

Using a symmetrization argument, Carleson and Chang [6] reduced the existence issue to
a one-dimensional problem to establish for the first time the existence of extremal functions
of Trudinger–Moser inequality when � is a ball in R

n . Later, results of Carleson and Chang
were extended by Flucher [14] to arbitrary bounded domains in R

2 and by Lin [41] in R
n for

the case n > 2.Malchiodi andMartinazzi [49] further investigated the blow-up of a sequence
of critical points of the Trudinger–Moser functionals on the planar disk.

There aremany extensions of TheoremA. One is to extend theTrudinger–Moser inequality
to the entire space, see Cao [5], do Ó [10] and Adachi and Tanaka [1], etc. We state a sharp
version from [1] as follows.

Theorem B [1] For n ≥ 2 and 0 < α < αn, there exists a positive constant Cn,α such that

sup
u∈W 1,n(Rn),

∫
Rn |∇u|ndx≤1

1

‖u‖nLn

∫
Rn

�(α|u(x)| n
n−1 )dx ≤ Cn,α. (1.1)

where �(t) := et −∑n−2
i=0

t i
i ! . Moreover, the constant αn is sharp in the sense that if α ≥ αn,

the supremum will become infinite.

When it comes to the singular Trudinger–Moser inequality in R
n , there are several works

devoted to it. Ishiwata, Nakamura and Wadade [18] investigated the scaling invariant form
of the singular Trudinger–Moser inequality for radially symmetric functions and proved the
existence of a maximizer. In fact, they proved
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Theorem C [18] Assume n ≥ 2, −∞ < s ≤ t < n and 0 < α < αn := ω

1
n−1
n−1
n , then there

exists a positive constant C = C(n, s, t, α) such that the inequality

∫
Rn

�(α(1 − t
n )|u(x)| n

n−1 )

|x |t dx ≤ C

(∫
Rn

|u(x)|n
|x |s dx

) n−t
n−s

, (1.2)

holds for all radially symmetric functions u ∈ Ln(Rn; |x |−sdx)∩Ẇ 1,n(Rn) with‖∇u‖n ≤ 1,
where Ẇ 1,n(Rn) denotes the class of functions u which are locally integrable and ‖∇u‖n
are in Ln(Rn). Moreover, the constant αn,t is sharp for the inequality.

They also showed that when s = 0, the constant C has an infimum and could be attained
by some function u ∈ W 1,n(Rn). However, when s �= 0, they only verified inequality (1.2)
and the existence of extremals on the class of radial functions. A natural problem is whether
we can remove the radially symmetric condition for functions u in inequality (1.2). Dong
and Lu [13] gave an affirmative answer. Indeed, they proved

Theorem D [13] Assume n ≥ 2, −∞ < s ≤ t < n and 0 < α < αn, then there exists a
positive constant C = C(n, s, t, α) such that the inequality

∫
Rn

�(α(1 − t
n )|u(x)| n

n−1 )

|x |t dx ≤ C

(∫
Rn

|u(x)|n
|x |s dx

) n−t
n−s

,

holds for all functions u ∈ Ln(Rn; |x |−sdx) ∩ Ẇ 1,n(Rn) with ‖∇u‖n ≤ 1. Moreover, the
constant αn is sharp in the sense that if α ≥ αn then the above inequality cannot hold with
a uniform C independent of u.

By applying a new method of change of variables of quasi-conformal type in [13], Dong
and the second author kept the gradient norm less than 1 and eliminated the weights of
integral at the same time. Furthermore, they also established the existence of the maximizers
associatedwith theTrudinger–Moser inequality (1.2).We also note that thismethod of change
of variables is surprisingly simple and efficient in dealing with some weighted inequalities
involving the first order derivatives. For example, this change of variable method has also
been used by Lam and Lu [30] and Dong et al. [12] to obtain the existence for a wide range
of parameters of the first order Caffarelli–Kohn–Nirenberg inequalities (see [9]).

Note that the Trudinger–Moser inequality (1.1) doesn’t hold in the critical case α = αn .
To obtain the Trudinger–Moser inequality in the critical case, Ruf [56] (in the dimension
n = 2) and Li and Ruf [39] (in the dimension n ≥ 3) used the standard Sobolev norm to
replace the Dirichlet norm, i.e.

‖u‖n
W 1,n

0 (Rn)
=
∫
Rn

|∇u|n + |u|ndx,

and obtained the inequality with sharp constant αn . Furthermore, they establish the existence
of a maximizer when α = αn by carrying out the blow-up procedure. As for the case n = 2
and α = α2 = 4π , the existence of a maximizer was considered in Ruf [56] and Ishiwata
[17]. Moreover in n = 2 and α is very small, the non-existence of the maximizer was also
established in Ishiwata [17]. Dong and Lu [13], Lam [21–23], Dong et al. [12], Lam et al.
[33] further established more existence and nonexistence result of extremal functions for
more general weighted Trudinger–Moser inequalities on the whole space R

n and proved the
radial symmetry of the extremal functions. For more related results about Trudinger–Moser
inequalities and the existence of extremal functions for the Trudinger–Moser inequalities,
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one can also refer to [3,4,8,38,48–50] and many references therein. We note that both the
proofs of the critical Trudinger–Moser inequality in [39,56] and the subcritical inequality in
[1,10] use the Polyá–Szegö inequality and a symmetrization argument. A symmetrization-
free argument was developed by Lam and the second author [29] (see also [28]) which gives
an alternative proof of the critical Trudinger–Moser inequality (see the proof given on page
318 of [29]). A symmetrization-free argument for the subcritical Trudinger–Moser inequality
of using the level sets of functions under consideration was also given by Lam, the second
author and Tang [24] (see also [37,63] for use of such an argument in the concentration-
compactness principle, in the proofs of Trudinger–Moser inequalities under different norms
[31,34,43,58] and for Trudinger–Moser inequalities under the Lorentz–Sobolev norm).

Trudinger and Moser’s results for the first order derivatives were extended to higher order
derivatives by Adams [2]. To state his result, we use the symbol ∇mu to denote

∇mu =
{

�
m
2 , if m is even,

∇�
m−1
2 , if m is odd.

Then, Adams’ results can be stated as follows:

Theorem E [2] Let � be an open and bounded set in R
n. If m is a positive integer less than

n, then there exists a constant C0 = C(n,m) > 0 such that for any u ∈ W
m, n

m
0 (�) and

‖∇mu‖
L

n
m (�)

≤ 1, then
1

|�|
∫

�

exp(β|u(x)| n
n−m )dx ≤ C0, (1.3)

for all β ≤ β(n,m) where

β(n,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
ωn−1

[
π

n
2 2m	(m+1

2 )

	( n−m+1
2 )

] n
n−m

, where m is odd.

n
ωn−1

[
π

n
2 2m	(m2 )

	( n−m
2 )

] n
n−m

, where m is even.

Furthermore, the constant β(n,m) is best possible in the sense that for any β > β(n,m),
the integral can be made as large as possible.

Much improved Hardy–Trudinger–Moser inequalities on (hyperbolic) balls and convex
domains have been established by Wang and Ye [60], Lu and Yang [46], Wang [61], and the
so-called Hardy–Adams inequalities have been recently established using Fourier analysis
on hyperbolic spaces by the second author and Yang [36,45] (see also [62]). We also mention
that the existence of extremal functions for the Adams inequality (1.3) on bounded domain
in the case n = 2m = 4 was established by Lu and Yang [47]. The Adams inequality (1.3) on
bounded domains was also extended to entire space case. Kozono [20] established the Adams
type inequality in the entire space except for the critical case which was established by Ruf
and Sani [57] for even integerm and Lam and Lu [26,27] for odd integerm. Indeed, Lam and
Lu [29] used a symmetrization-free approach to establish the singular Adams inequality of

any fractional order γ on the Sobolev spaceW γ, n
γ (Rn) (see [29]). In particular, when γ = m

we have the following

Theorem F [29] Let m be a positive integer less than n, τ > 0 and 0 ≤ α < n. Then there
holds

sup
u∈Wm, nm (Rn),‖(τ I−�)

m
2 u‖ n

m
≤1

∫
Rn

�n,m(βα,n,m |u| n
n−m )

|x |α dx < ∞,
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where

j n
m

= min
{
j ∈ Z : j ≥ n

m

}
and �n,m(t) = exp(t) −

j n
m

−2∑
i=0

t i

i ! ,

βn,m = n

ωn−1

[
2mπ

n
2 	
(m
2

)
	
( n−m

2

)
] n

n−m

and βα,n,m = βn,m

(
1 − α

n

)
.

When m = 2, they gave another form.

Theorem G [29] There exists a positive constant Cn such that
∫
Rn

�n,2(βn,2(1 − t
n )|u| n

n−2 )

|x |t dx ≤ Cn, ∀ u ∈ C∞
c (Rn) wi th

∫
Rn

|�u| n2 + |u| n2 dx ≤ 1,

(1.4)

where j n
2

= min{ j ∈ Z : j ≥ n
2 } and βn,2 = n

ωn−1
[ 4π

n
2

	( n2 −1) ]
n

n−2 .

In [32], Lam et al. established the following sharp second-order Adams inequality with
the Dirichlet norm.

Theorem H [32] For 0 < β < βn,2 and 0 ≤ t < n, then there exists a positive constant
C(n, t) such that for all functions u ∈ Ẇ 2, n2 (Rn) ∩ L

n
2 (Rn) with ‖�u‖ n

2
= 1, the following

inequality holds.
∫
Rn

�n,2(β(1 − t
n )|u| n

n−2 )

|x |t dx ≤ C(n, t)

(∫
Rn

|u| n2 dx
)1− t

n

, (1.5)

where Ẇ 2, n2 (Rn) = {u ∈ L1
loc(R

n) | �u ∈ L
n
2 (Rn)}. Moreover, the constant βn,2 is sharp

in the sense that the inequality fails if the constant β is replaced by any β ≥ βn,2.

A natural question is whether there exist extremal functions for the above inequality. To
our knowledge, much less is known for that of the maximizers for Adams’ inequalities.
The first goal of this paper is extending Dong and Lu’s work [13] to second-order Sobolev
spaceW 2, n2 (Rn). Since the absence of the Polyá–Szegö inequality and the failure of change of
variable method for higher order derivatives, we use themethod combining the scaling invari-
ance of the Adams inequality and the new compact imbedding Ẇ 2, n2 (Rn) ∩ Lq(Rn) ↪→↪→
Lq(Rn; |x |−t dx), for all q ≥ n

2 and 0 < t < n to obtain the weighted Adams inequality

with Dirichlet norm in W 2, n2 (Rn). This idea in spirit is similar to that in the works of Dong
and Lu [13], Ishiwata, Nakamura and Wadade [18] for the first order weighted subcritical
Trudinger–Moser inequality, and related works for Trudinger–Moser and Adams inequalities
with exact growth by Ibrahim et al. [16], Masmoudi and Sani [51–53], Lu and Tang [42] and
Lu et al. [44]. Now we start to state our first result.

Theorem 1.1 For 0 < t < n, n ≥ 3, the best constant C(n, t) is achieved.

Replacing�n,2(β(1− t
n )|u| n

n−2 )with exp(β(1− t
n )|u| n

n−2 )|u| n2 and exp(β(1− t
n )|u| n

n−2 )|u|q
respectively, we establish the following stronger Adams inequality and existence of their
extremals.

Theorem 1.2 For n ≥ 3, 0 < β < βn,2 and 0 ≤ t < n, then there exists a positive constant
C(n, t) such that

∫
Rn

exp(β(1 − t
n )|u| n

n−2 )|u| n2
|x |t dx ≤ C(n, t)

(∫
Rn

|u| n2 dx
)1− t

n

, (1.6)
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holds for all functions u ∈ Ẇ 2, n2 (Rn)∩L
n
2 (Rn)with ‖�u‖ n

2
= 1. The constant βn,2 is sharp

in the sense that the inequality fails if the constant β is replaced by any β ≥ βn,2. Moreover,
in the case 0 < t < n, the best constant C(n, t) is achieved.

Theorem 1.3 For n ≥ 3, 0 < β < βn,2, 0 ≤ t < n and q ≥ n
2 , then there exists a positive

constant C(n, t) such that

∫
Rn

exp(β(1 − t
n )|u| n

n−2 )|u|q
|x |t dx ≤ C(n, t)

(∫
Rn

|u|qdx
)1− t

n

, (1.7)

holds for all functions u ∈ Ẇ 2, n2 (Rn)∩ Lq(Rn) with ‖�u‖ n
2

= 1. The constant βn,2 is sharp
in the sense that the inequality fails if the constant β is replaced by any β ≥ βn,2. Moreover,
in the case 0 < t < n, the best constant C(n, t) is achieved.

Remark 1.4 In our proof of inequalities (1.6) and (1.7), the rearrangement-free argument by
considering the level sets of the functions and the weighted Trudinger–Moser inequality in

W
2, n2
N (�) play a key role.

In 2015, Lam et al. [32] gave a precise asymptotic estimate for the Adams inequality with
the Dirichlet norm. More precisely, they proved

AT A(β, t) := sup
‖�u‖ n

2
≤1

1

‖u‖
n
2 (1− t

n )
n
2

∫
Rn

�n,2

(
β
(
1 − t

n

) |u| n
n−2

)

|x |t dx

≈ 1
(
1 −

(
β

βn,2

) n−2
2
)1− t

n

with 0 < β < βn,2 and 0 ≤ t < n. Furthermore, they also established some relation of the
weighted Adams inequalities with Dirichlet norms and Sobolev norms. Indeed, for any a,
b > 0, 0 ≤ t < n and 0 < β ≤ βn,2, define

Aa,b,t (β) = sup
‖�u‖an

2
+‖u‖bn

2
≤1

∫
Rn

�n,2(β(1 − t
n )|u| n

n−2 )

|x |t dx .

They proved that

Aa,b,t (β) = sup
s∈(0,β)

⎛
⎝1 − ( s

β
)
n−2
n a

( s
β
)
n−2
n b

⎞
⎠

n−t
2b

AT A(s, t).

Thanks to this equivalence, we employ the method developed by Lam et al. [33] (see also
[21]) to obtain the existence of maximizers for the weighted Adams inequality with the
Sobolev norm.

Theorem 1.5 For 0 < t < n, a, b > 0 and 0 < β ≤ βn,2, then there exist extremal functions
for Aa,b,t (β) in the case of (β < βn,2, b > 0) or (β = βn,2, b < n

2 ).

Remark 1.6 To the best knowledge of ours, our results seem to be the first result for the
existence of weighted Adams inequality with the Sobolev norm on the whole space. Most
proofs for the existence of maximizers of first order Trudinger–Moser inequalities with the
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Sobolev norm use the rearrangement argument and the blow-up analysis. Since the absence of
the Polyá–Szegö inequality for higher order derivatives, we use the subcriticalway introduced
byLamet al.1 [33] and byLam in [21]. Roughly speaking, through combining the equivalence
of subcritical and critical weighted Adams inequalities in W 2, n2 (Rn), and the existence of
extremal functions for subcritical Adams inequalities, we can construct the maximizers of
the critical weighted Adams inequalities.

Another natural thought is to establish the Adams inequality with the Dirichlet norm in
Wm,2(R2m) for any m ≥ 2. Since the idea of level-sets is not efficient to deal with the
weighted Adams inequality in Wm,2(R2m) for m ≥ 3, we use the methods based on Fourier
transform to establish the following results.

Theorem 1.7 For 0 < β < β2m,m and 0 ≤ t < 2m, then there exists a positive constant
C(m, t) such that

∫
R2m

�2m,m(β(1 − t
2m )|u|2)

|x |t dx ≤ C(m, t)

(∫
R2m

|u|2dx
)1− t

2m

, (1.8)

holds for all functions u ∈ Ẇm,2(R2m) ∩ L2(R2m) with ‖∇mu‖2 = 1, where Ẇm,2(R2m) =
{u ∈ L1

loc(R
2m) | |∇mu| ∈ L2(R2m)}. The constant β2m,m is sharp in the sense that the

inequality fails if the constant β is replaced by any β ≥ β2m,m. Moreover, in the case
0 < t < 2m, the best constant C(m, t) is achieved.

Remark 1.8 In the case t = 0, the validity and the sharpness of inequality (1.8) were estab-
lished by Lam and Lu [25]. See also Fontana and Morpurgo [15], Masmoudi and Sani [53]
for more general subcritical and critical Adams inequality in Wm, n

m (R
n
m ) for general m ≥ 1

and n ≥ m.

In the setting of Wm,2(R2m), we will further prove the following

Theorem 1.9 For 0 < β < β2m,m and 0 ≤ t < 2m, there exists a positive constant C(m, t)
such that

∫
R2m

exp(β(1 − t
2m )|u|2)|u|2

|x |t dx ≤ C(m, t)

(∫
R2m

|u|2dx
)1− t

2m

, (1.9)

holds for all functions u ∈ Ẇm,2(R2m) ∩ L2(R2m) with ‖∇mu‖2 = 1. The constant β2m,m

is sharp in the sense that the inequality fails if the constant β is replaced by any β ≥ β2m,m.
Moreover, in the case 0 < t < 2m, the best constant C(m, t) is achieved.

Remark 1.10 In the proof of getting the attainability of Cm,t , Ẇm,2(R2m) ∩ Lq(R2m) ↪→↪→
Lr (R2m, dx

|x |t ) for any r ≥ q and t > 0 plays an important role. It is also well-known to us
that the above compact imbedding fails in the case t = 0. However, if u is a radial function,
we are in a position to show that Ẇm,2(R2m) ∩ Lq(R2m) can be compactly imbedded into
Lr (R2m) for any r > q . A natural question arise: Do Theorem 1.7 and 1.9 still remain true
in the case t = 0? Using the Fourier rearrangement inequality established by Lenzmann
and Sok [35], we can reduce our problem on inequality (1.8) and (1.9) to the radial case.
Combining these facts, by modifying the proof of Theorems 1.7 and 1.9, we can obtain the
following results.

1 We note that the main results of [33] were described in [13].
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Theorem 1.11 In the case t = 0, the best constant C(m, 0) in inequalities (1.8) and (1.9) is
achieved.

Finally, as an application of the above theorems, we obtain the higher order Caffarelli–
Kohn–Nirenberg (CKN) inequalities in the critical case which was not included in Lin’s
work [40] and investigate the asymptotic behavior of the best constants of Caffarelli–Kohn–
Nirenberg inequalities.We note that the existence of extremal functions for higher order CKN
inequalities have been established by Dong [11]. Indeed, we obtain the following results.

Theorem 1.12 Suppose n ≥ 2 and 0 ≤ t < n, there exists a constant c(n, t, q) such that for
any u ∈ Ẇ 2, n2 (Rn) ∩ L

n
2 (Rn), there holds

‖u‖Lq (Rn;|x |−t dx) ≤ c(n, t, q)‖u‖
n−t
2q
n
2

‖�u‖1−
n−t
2q

n
2

. (1.10)

Furthermore, if we assume α > (βn,2(1 − t
n )en′)−

1
n′ , then there exists a sharp constant

q1(n, t, α) ≥ n
2 such that for u ∈ Ẇ 2, n2 (Rn) ∩ L

n
2 (Rn) and q ≥ q1, there holds

‖u‖Lq (Rn;|x |−t dx) ≤ αq
1
n′ ‖u‖

n−t
2q
n
2

‖�u‖1−
n−t
2q

n
2

. (1.11)

Theorem 1.13 Suppose m ≥ 2 and 0 ≤ t < 2m, there exists a constant c(m, t, q) such that
for any u ∈ Ẇm,2(R2m) ∩ L2(R2m), there holds

‖u‖Lq (R2m ;|x |−t dx) ≤ c(m, t, q)‖u‖
2m−t
qm

2 ‖∇mu‖1−
2m−t
qm

2 . (1.12)

Furthermore, if we assume α > (β2m,m(1 − t
2m )2e)− 1

2 , there exists a sharp constant
q1(m, t, β) ≥ 2 such that for any u ∈ Ẇm,2(R2m) ∩ L2(R2m) and q ≥ q1, there holds

‖u‖Lq (R2m ;|x |−t dx) ≤ αq
1
n′ ‖u‖

2m−t
qm

2 ‖∇mu‖1−
2m−t
qm

2 . (1.13)

For the convenience of the statement, we give some notations.We define the sharp constant
μk1k2,k2,t,β(Rk1k2) by

μk1k2,k2,t,β(Rk1k2) := sup
u∈Ẇ k2,k1 (Rk1k2 ),‖∇k2u‖k1=1

Fk1k2,k2,t,β(u),

where

Fk1k2,k2,t,β(u) :=
∫
R
k1k2

�k1k2,k2 (β|u|
k1

k1−1 )

|x |t dx

‖u‖
k1k2−t

k2
k1

.

This paper is organized as follows. In Sects. 2 and 3,we establish a newcompact imbedding
theorem. By applying the rearrangement-free argument in the spirit of the work [29] and

the weighted Adams’ inequalities in W
2, n2
N (�), we establish inequalities (1.6) and (1.7).

We also employ the scaling invariant form of the weighted Adams inequality and a new
compact imbedding to establish the existence of extremals for inequalities (1.6) and (1.7).
With the help of the equivalence results of the weighted Adams’ inequalities with Dirichlet
norms (subcritical case) and Sobolev norms (critical case) in [32], we derive the first result
for the existence of the Adams inequality with the Sobolev norm in Sect. 4. Section 5 is
devoted to obtaining the Adams inequalities with the Dirichlet norm and the existence of
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their extremals in Sobolev space Wm,2(R2m). As an application of Theorems 1.1 and 1.7,
in Sect. 6, we establish the critical higher order Caffarelli–Kohn–Nirenberg inequalities and
investigate some relationship between the best constants of the weighted Adams inequality
and the Caffarelli–Kohn–Nirenberg inequality in the asymptotic sense.

2 The proof of Theorem 1.1

In this section, we give the attainability of sharp constant C(n, t) for Adams inequality
(1.5) which equipped with the Dirichlet norm. For this purpose, we need the following
compact imbedding lemma which also plays a crucial role in obtaining extremal functions
for inequalities (1.6) and (1.7).

Lemma 2.1 Let n ≥ 3 and 0 < t < n, then Ẇ 2, n2 (Rn)∩L
n
2 (Rn) can be compactly embedded

into L p(Rn, |x |−t dx) for p ≥ n
2 .

Proof To begin with, we show that Ẇ 2, n2 (Rn)∩ L
n
2 (Rn) can be continuously imbedded into

L p(Rn, |x |−t dx). For p ≥ n
n−2 ( j n2 − 1), the continuous embedding is a direct result of

inequality (1.5). For p = n
2 , one can employ the following inequality

∫
Rn

|u| n2
|x |t dx ≤

∫
Rn

|u| n2 dx +
(∫

B1(0)

|u|q
|x |t dx

) n
2q
(∫

B1(0)

1

|x |t dx
)1− n

2q
(2.1)

to obtain the desired continuous imbedding. For n
2 < p < n

n−2 ( j n2 − 1), it follows from the
general interpolation inequality.Next it suffices to verify that the above continuous embedding
is compact, i.e. for any sequence (uk) bounded inW 2, n2 (Rn), there exists a subsequencewhich
we still denote as (uk) such that ‖uk − u‖L p(Rn;|x |−t dx) → 0 as k → ∞. We conclude it
through two steps.

Step 1 We show that there exists a subsequence still denoted by (uk) such that uk → u
for almost x ∈ R

n . Through Sobolev interpolation inequalities with weights (see Lin’s work
[41]) and the L p(Rn) boundedness of Riesz transform, we have

‖∇u‖ n
2

≤ ‖D2u‖
1
2
n
2
‖u‖

1
2
n
2

≤ ‖�u‖
1
2
n
2
‖u‖

1
2
n
2
,

which implies that
∫

�

|∇u| n2 + |u| n2 dx ≤ C(�).

Due to the classical Sobolev compact embeddingW 1, n2 (�) ↪→↪→ Lr (�) for 1 ≤ r < n and
the diagonal trick, one can obtain that there exists a subsequence (we still denote by (uk))
such that

uk(x) → u(x), strongly in Lr
loc(R

n),

uk(x) → u(x), for almost everywhere x ∈ R
n .

Step 2 We claim that for any p ≥ n
2 , uk → u in L p(Rn; |x |−t dx). For any R > 0, by

applying the Egoroff theorem, one can find that for any BR(0) and δ > 0,

∃ Eδ ⊂ BR(0) satisfying m(Eδ) < δ,
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such that

uk uniformlyconvergesto u in BR(0) \ Eδ.

Thus, we split the integral into three parts.

lim
R→+∞ lim

δ→0
lim

k→+∞

∫
Rn

|uk − u|p
|x |t dx

= lim
R→+∞ lim

δ→0
lim

k→+∞

∫
Eδ

|uk − u|p
|x |t dx + lim

R→+∞ lim
δ→0

lim
k→+∞

∫
BR(0)\Eδ

|uk − u|p
|x |t dx

+ lim
R→+∞ lim

δ→0
lim

k→+∞

∫
Rn\BR(0)

|uk − u|p
|x |t dx

=: I1 + I2 + I3.
(2.2)

For I1, the Hölder inequality and the classical Sobolev continuous embedding lead to

I1 ≤ lim
δ→0

lim
k→+∞

(∫
Eδ

1dx

) 1
s
(∫

Eδ

|uk − u|ps′
|x |ts′ dx

) 1
s′

� lim
δ→0

(m(Eδ))
1
s

= 0,

(2.3)

where s > 1 and ts′ < n. As for I2, it follows from the uniform convergence of uk in
BR(0)\Eδ that

I2 = lim
R→+∞ lim

δ→0
lim

k→+∞

∫
BR(0)\Eδ

|uk − u|p
|x |t dx

= lim
R→+∞ lim

δ→0

∫
BR(0)\Eδ

lim
k→+∞

|uk − u|p
|x |t dx

= 0.

(2.4)

For I3, using continuous imbedding W 2, n2 (Rn) ↪→ L p(Rn) for p ≥ n
2 , we obtain that

I3 ≤ lim
R→+∞ lim

δ→0
lim

k→+∞
1

Rt

∫
Rn\BR(0)

|uk − u|pdx

� lim
R→+∞

1

Rt

= 0.

(2.5)

Combining (2.3), (2.4) and (2.5), we get a result which states that

lim
k→+∞

∫
Rn

|uk − u|p
|x |t = 0. (2.6)

Thus we finish the proof of Lemma 2.1. ��
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Lemma 2.2 For 0 < t < n and 0 < β < βn,2, let (uk) ∈ Ẇ 2, n2 (Rn) ∩ L
n
2 (Rn) satisfying

uk⇀u in Ẇ 2, n2 (Rn) ∩ L
n
2 (Rn) as k → +∞. Then, we have the following convergence.

∫
Rn

⎛
⎝�n,2

(
β

(
1 − t

n

)
|uk | n

n−2

)
−
(
β
(
1 − t

n

)) j n
2
−1

(
j n
2

− 1
)
!

|uk |
n

n−2

(
j n
2
−1
)⎞
⎠ dx

|x |t

→
∫
Rn

⎛
⎝�n,2

(
β

(
1 − t

n

)
|u| n

n−2

)
−
(
β
(
1 − t

n

)) j n
2
−1

(
j n
2

− 1
)
!

|u|
n

n−2

(
j n
2
−1
)⎞
⎠ dx

|x |t as k → ∞.

(2.7)

Proof For simplicity, we define�n,2(τ ) := exp(τ )−
j n
2
−1∑

j=0

τ n
′ j
j ! for τ > 0, n ≥ 2, k ∈ N∪{0},

where n′ = n
n−2 and 0 < β < βn,2. Then we can rewrite (2.7) as

lim
k→∞

∫
Rn

�n,2

(
β

(
1 − t

n

)
|uk | n

n−2

)
dx

|x |t =
∫
Rn

�n,2

(
β

(
1 − t

n

)
|u| n

n−2

)
dx

|x |t . (2.8)

Hence, it follows from the mean value theorem and the convexity of the function �n,2 that
∣∣∣∣�n,2

(
β

(
1 − t

n

)
|uk | n

n−2

)
− �n,2

(
β

(
1 − t

n

)
|u| n

n−2

)∣∣∣∣
� �n,2

(
θβ

(
1 − t

n

)
|uk | n

n−2 + (1 − θ) β

(
1 − t

n

)
|u| n

n−2

)(
|u| 2

n−2 + |uk | 2
n−2

)
|uk − u|

� (|uk | + |u|) 2
n−2

(
�n,2

(
β

(
1 − t

n

)
|uk | n

n−2

)
+ �n,2

(
β

(
1 − t

n

)
|u| n

n−2

))
|uk − u|,

(2.9)
where θ ∈ [0, 1].

This together with the singular Adams inequality (1.4) leads to
∣∣∣∣
∫
Rn

(
�n,2

(
β

(
1 − t

n

)
|uk | n

n−2

)
− �n,2

(
β

(
1 − t

n

)
|u| n

n−2

))
dx

|x |t
∣∣∣∣

�
∫
Rn

(|uk | + |u|) 2
n−2

(
�n,2

(
β

(
1 − t

n

)
|uk | n

n−2

)
+ �n,2

(
β

(
1 − t

n

)
|u| n

n−2

))
|uk − u| dx|x |t

� ‖|uk | + |u|‖
2

n−2

L
2a
n−2 (Rn ;|x |−t dx)

× ‖�n,2

(
β

(
1 − t

n

)
|uk | n

n−2

)
+ �n,2

(
β

(
1 − t

n

)
|u| n

n−2

)
‖Lb(Rn ;|x |−t dx)‖uk − u‖Lc(Rn ;|x |−t dx)

� ‖uk − u‖Lc(Rn ;|x |−t dx)
(2.10)

where the constants 2
n−2a ≥ n

2 , b > 1 sufficiently close to 1 and 1
a + 1

b + 1
c = 1. Moreover,

thanks to the compact result of Lemma 2.1, we obtain (2.7). ��
Keeping the previous result in mind, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Let (uk) be a bounded function sequence in Ẇ 2, n2 (Rn) such that
‖�uk‖ n

2
= 1 and Fn,2,t,β(uk) → μn,2,t,β(Rn) as k → ∞. Denote a new sequence (vk)

by vk(x) := uk(‖uk‖
1
2
n
2
x) for x ∈ R

n . Then it is easy to check that

‖�vk‖ n
2

= 1, ‖vk‖ n
2

= 1
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and

Fn,2,t,β(vk) = Fn,2,t,β(uk) → μn,2,t,β(Rn) as k → ∞.

Thus we obtain a new maximizing sequence for μn,2,t,β(Rn) satisfying that (vk) is bounded
in Ẇ 2, n2 (Rn)∩ L

n
2 (Rn). As a consequence, there exists a subsequence (still denoted by (vk))

such that

vk⇀v in Ẇ 2, n2 (Rn) ∩ L
n
2 (Rn).

By the weak semi-continuity of the norm in Ẇ 2, n2 (Rn) ∩ L
n
2 (Rn), we derive that

‖�v‖ n
2

≤ 1, ‖v‖ n
2

≤ 1. (2.11)

Up to a sequence, we can apply Lemmas 2.1 and 2.2 to obtain that

μn,2,t,β(Rn) = lim
k→∞ Fn,2,t,β(vk)

= lim
k→∞

∫
Rn

�n,2

(
β

(
1 − t

n

)
|vk | n

n−2

)
dx

|x |t

+
∫
Rn

(
β
(
1 − t

n

)) j n
2
−1

(
j n
2

− 1
)
!

|uk |
n

n−2

(
j n
2
−1
)
dx

|x |t

=
∫
Rn

�n,2

(
β

(
1 − t

n

)
|v| n

n−2

)
dx

|x |t ,

(2.12)

which implies that
μn,2,t,β(Rn) ≤ Fn,2,t,β(v). (2.13)

On the other hand, through the definition of μn,2,t,β(Rn) and (2.11), we can write

μn,2,t,β(Rn) ≥ Fn,2,t,β

(
v

‖�v‖ n
2

)

=
‖�v‖

n−t
2

n
2

‖v‖
n−t
2

n
2

∞∑
i= j n

2
−1

β i

i !
‖v‖n′i

n′i(Rn;|x |−t dx)

‖�v‖n′i
n
2

≥ Fn,2,t,β(v) +

⎛
⎜⎜⎝ 1

‖�v‖n
′( j n

2
−1)− n−t

2
n
2

− 1

⎞
⎟⎟⎠ Fn,2,t,β(v),

which implies that ‖v‖ n
2

= ‖�v‖ n
2

= 1 andμn,2,t,β(Rn) = Fn,2,t,β(v). Thenwe accomplish
the proof of Theorem 1.1. ��

Corollary 2.3 For q ≥ n
2 , there exists a constant C(q, n, t) such that

∫
Rn

|u|q
|x |t dx �

(∫
Rn

|u| n2 dx
)1− t

n

(2.14)

holds for all functions u ∈ Ẇ 2, n2 (Rn) ∩ L
n
2 (Rn) with ‖�u‖ n

2
= 1.
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Proof For q ≥ n
n−2 ( j n2 − 1), inequality (2.14) is a direct consequence of Theorem 1.1.

We only need to verify that inequality (2.14) holds for q = n
2 . We can split the integral in

inequality (2.14) into two parts.

∫
Rn

|u| n2
|x |t dx =

∫
�c(u)

|u| n2
|x |t dx +

∫
�(u)

|u| n2
|x |t dx .

= I1 + I2,

(2.15)

where �(u) = {x |u(x) > 1}. For I1, by dividing the integral into two parts, one can obtain
that

I1 =
∫

�c(u)∩
{

|x |≤‖u‖
1
2
n
2

} |u| n2
|x |t dx +

∫
�c(u)∩

{
|x |>‖u‖

1
2
n
2

} |u| n2
|x |t dx

≤
∫
{

|x |≤‖u‖
1
2
n
2

} 1

|x |t dx +
∫

�c(u)

|u| n2
‖u‖

t
2
n
2

dx

�
(∫

Rn
|u| n2 dx

)1− t
n

.

(2.16)

As for I2, by setting |u| = v+1, it follows from the singularAdams inequality inW
2, n2
N (�(u))

that

I2 � |�(u)|1− t
n �

(∫
Rn

|u| n2 dx
)1− t

n

. (2.17)

Then the proof of Corollary 2.3 is completed. ��

3 Proofs of Theorems 1.2 and 1.3

In this section, we utilize the arrangement-free argument introduced in [28,29] together with
the singular Adams inequality with the Navier boundary condition to establish inequalities
(1.6) and (1.7). By exploring the scaling invariant form of singular Adams’ inequalities (1.6)
and (1.7), we also establish the existence of their extremals.

We start the proof of Theorem 1.2. We first show that inequality (1.6) holds. By splitting
the integral in inequality (1.6) into two parts, we have

∫
Rn

exp(β(1 − t
n )|u| n

n−2 )|u| n2
|x |t dx

=
∫
Rn

�n,2(β(1 − t
n )|u| n

n−2 )|u| n2
|x |t +

j n
2
−2∑

i=0

(β(1 − t
n ))i |u| in

n−2 |u| n2
|x |t dx

=: I1 + I2.

(3.1)
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For I1, choose p > 1 sufficiently close to 1 such that pβ < βn,2, then it follows from the
Hölder inequality, Theorem 1.1 and Corollary 2.3 that

I1 ≤
(∫

Rn

�n,2(pβ(1 − t
n )|u| n

n−2 )

|x |t dx

) 1
p
(∫

Rn

|u|p′ n
2

|x |t dx

) 1
p′

≤
(∫

Rn
|u(x)| n2

) n−t
n

.

(3.2)

For I2, note the fact that I2 consists of j n
2

− 1 terms and the power of every term is larger
than n

2 . Thus we can apply Corollary 2.3 to employ that

I2 =
j n
2
−2∑

i=0

(
β

(
1 − t

n

))i ∫
Rn

|u| in
n−2 |u| n2
|x |t dx

�
j n
2
−2∑

i=0

(
β

(
1 − t

n

))i (∫
Rn

|u(x)| n2 dx
)1− t

n

�
(∫

Rn
|u(x)| n2 dx

)1− t
n

.

(3.3)

This together with (3.1) and (3.2) yields inequality (1.6).
In order to obtain the sharpness of inequality (1.6),we use the test sequence (uk) introduced

in [32]. Its definition is given by

uk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( 1
βn,2

ln k)1− 2
n − nβ

2
n −1
n,2
2

|x |2
( ln kk )

2
n

+ nβ
2
n −1
n,2
2

1

( ln kk )
2
n
, if 0 ≤ |x | ≤ ( 1k )

1
n ,

nβ
2
n −1
n,2 (ln k)− 2

n ln 1
|x | , if ( 1k )

1
n ≤ |x | ≤ 1,

ςk, if |x | > 1,

where ςk is a smooth function satisfying supp(ςk) ⊂ {|x | < 2},

ςk ||x |=1 = 0,
∂ςk

∂v
||x |=1 = nβ

2
n −1
n,2 (lnk)

− 2
n , ςk = O((lnk)

2
n ), �ςk = O((lnk)

2
n ).

Directly computations yield that

1 ≤ ‖�uk‖
n
2
n
2

≤ 1 + O

(
1

ln k

)
.

Let ṽk = uk‖�uk‖ n
2

, we derive that

‖�ṽk‖ n
2

= 1 and ‖̃vk‖
n
2
n
2

≤ ‖�uk‖
n
2
n
2

≤ A(ln k)−1 + B(ln k)
n−2
2

1

k
.
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Then we manage the calculation as follows:

‖̃vk‖− n
2 (1− t

n )
n
2

∫
Rn

exp
(
β
(
1 − t

n

) |̃vk | n
n−2

)
|̃vk | n2

|x |t dx

≥ ‖̃vk‖− n
2 (1− t

n )
n
2

∫
|x |≤

(
1
k

) 1
n

exp
(
β
(
1 − t

n

) |̃vk | n
n−2

)
|̃vk | n2

|x |t dx

≥
(

1

βn,2
ln k

) n
2 −1

‖̃vk‖− n
2 (1− t

n )
n
2

∫
|x |≤

(
1
k

) 1
n

exp
(
β
(
1 − t

n

) |̃vk | n
n−2

)

|x |t dx

≥
(

1

βn,2
ln k

) n
2 −1

‖̃vk‖− n
2 (1− t

n )
n
2

∫
|x |≤

(
1
k

) 1
n

�n,2

(
β
(
1 − t

n

) |̃vk | n
n−2

)

|x |t dx

≥
(

1

βn,2
ln k

) n
2 −1

⎛
⎝ 1

1 − β
βn,2

⎞
⎠

1− t
n

→ ∞ as β → βn,2,

(3.4)

which completes the proof of the sharpness of inequality (1.6).
The proof of the attainability of the best constant C(n, t) for inequality (1.6) is similar to

that of Theorem 1.1. In fact, by the scaling invariant form of the weighted Trudinger–Moser
inequality, we can choose a maximizing sequence (vk) for C(n, t) satisfying that (vk) is
bounded in Ẇ 2, n2 (Rn) ∩ L

n
2 (Rn). Following the same procedure as that of Lemma 2.2 and

Theorem 1.1, we can obtain

lim
k→∞

∫
Rn

(exp(β(1 − t
n )|vk | n

n−2 ) − 1)|vk | n2
|x |t dx =

∫
Rn

(exp(β(1 − t
n )|v| n

n−2 ) − 1)|v| n2
|x |t dx

and ‖�v‖ n
2

= ‖v‖ n
2

= 1, which implies the attainability of the best constant C(n, t).
We now start to prove Theorem 1.3. We first apply the arrangement-free argument intro-

duced in [29] and theweightedAdams inequality inW
n
2
N (�) to obtain inequality (1.7). Indeed,

by dividing the integral into two parts, we have

∫
Rn

exp(β(1 − t
n )|u| n

n−2 )|u|q
|x |t dx =

∫
|u|≤1

exp(β(1 − t
n )|u| n

n−2 )|u|q
|x |t dx

+
∫

|u|>1

exp(β(1 − t
n )|u| n

n−2 )|u|q
|x |t dx

=: I1 + I2.

(3.5)

For I2, setting |u| = v + 1 and using an elementary inequality

|u| n
n−2 ≤ (1 + ε)v

n
n−2 + Cε, ∀ε > 0,
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one can obtain

I2 ≤
∫

|u|>1

exp(β(1 − t
n )(1 + ε)v

n
n−2 ) exp(β(1 − t

n )Cε)|u|q
|x |t dx

�
(∫

|u|>1

exp(β(1 − t
n )p(1 + ε)v

n
n−2 )

|x |t dx

) 1
p
(∫

|u|>1

(v + 1)qp
′

|x |t dx

) 1
p′

� |{|u| > 1}| n−t
np

(∫
|u|>1

|v|qp′

|x |t + 1

|x |t dx
) 1

p′

� |{|u| > 1}| n−t
np |{|u| > 1}| n−t

np′ + |{|u| > 1}| n−t
np

(∫
|u|>1

1

|x |t dx
) 1

p′

�
(∫

Rn
|u|qdx

)1− t
n

.

(3.6)

For I1, direct computations show that

∫
|u|≤1

exp(β(1 − t
n )|u| n

n−2 )|u|q
|x |t dx

�
∫

{|u|≤1}∩
{
|x |≤‖u‖

q
n
q

} |u|q
|x |t dx +

∫
{|u|≤1}∩

{
|x |>‖u‖

q
n
q

} |u|q
|x |t dx

=: I11 + I12.

(3.7)

We can estimate I11 as follows

∫
{|u|≤1}∩

{
|x |≤‖u‖

q
n
q

} |u|q
|x |t dx ≤

∫
{
|x |≤‖u‖

q
n
q

} |x |−t dx = ‖u‖
q(n−t)

n
q . (3.8)

Similarly, we also derive that

∫
{|u|≤1}∩

{
|x |≥‖u‖

q
n
q

} |u|q
|x |t dx ≤ ‖u‖− qt

n
q

∫
{|u|≤1}

|u|qdx = ‖u‖
q(n−t)

n
q . (3.9)

Combining inequalities (3.5), (3.6), (3.8) with (3.9), we obtain the required inequality (1.7).
Next, we show the sharpness of inequality (1.7). Using the same test function sequence

(uk)k as that of Theorem 1.2, one can easily calculate that

‖̃vk‖qq ≤ A(ln k)−
2
n q + B

(ln k)(1− 2
n )q

k
+ C

(ln k)− 2
n q

k
.
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Then, it follows that

‖̃vk‖−q(1− t
n )

q

∫
Rn

exp
(
β
(
1 − t

n

) |̃vk | n
n−2

)
|̃vk |q

|x |t dx

≥ ‖̃vk‖−q(1− t
n )

q

∫
|x |≤

(
1
k

) 1
n

exp
(
β
(
1 − t

n

) |̃vk | n
n−2

)
|̃vk |q

|x |t dx

≥
(

1

βn,2
ln k

)q
(
1− 2

n

)
‖̃vk‖−q(1− t

n )
n
2

∫
|x |≤

(
1
k

) 1
n

exp
(
β
(
1 − t

n

) |̃vk | n
n−2

)

|x |t dx

≥
(

1

βn,2
ln k

)q
(
1− 2

n

)
‖̃vk‖− n

2 (1− t
n )

n
2

∫
|x |≤

(
1
k

) 1
n

exp
(
β
(
1 − t

n

) |̃vk | n
n−2

)

|x |t dx

→ ∞ as β → βn,2.

(3.10)

Then, we show the attainability of the sharp constantC(n, t) for inequality (1.7). We need
the following compact imbedding.

Lemma 3.1 For n ≥ 3, r ≥ q and 0 < t < n, Ẇ 2, n2 (Rn) ∩ Lq(Rn) can be embedded
compactly into Lr (Rn; |x |−t dx).

For the continuity of the proof, we postpone the proof of Lemma 3.1. With the help of
Lemma 3.1, applying the same method in Lemma 2.2, we can derive the following required
convergence.

lim
k→∞

∫
Rn

(exp(β(1 − t
n )|uk | n

n−2 ) − 1)|uk |q
|x |t dx =

∫
Rn

(exp(β(1 − t
n )|u| n

n−2 ) − 1)|u|q
|x |t dx .

(3.11)
Then, we can use the same procedure as Theorem 1.1 to obtain the attainability of the best
constant. At last, we focus on the proof of Lemma 3.1.

The continuity of the embedding is a direct result of inequality (1.7) and the Hölder
inequality. Then it is sufficient to show that for any bounded sequence (uk) in Ẇ 2, n2 (Rn) ∩
Lq(Rn), there exists a subsequence which we still denote as (uk) such that

lim
k→∞ ‖uk − u‖Lr (Rn;|x |−t dx) = 0 as k → ∞ for r ≥ q.

Similar to the proof of Lemma 2.1, we carry out the process of proof by two steps.
Step 1Wefirst show that there exists a subsequence still denoted by (uk) such that uk → u

for almost x ∈ R
n . In fact, through Sobolev interpolation inequalities with weights (see Lin’s

work [41]), we can obtain

‖∇u‖2q ≤ ‖�u‖
1
2
n
2
‖u‖

1
2
q .

Then it follows from the Hölder inequality that∫
�

|∇u| n2 + |u| n2 dx ≤ C(�).

According to the classical Sobolev compact embeddingW 1, n2 (�) ↪→↪→ Lr (�) for 1 ≤ r <

n and the diagonal trick, one can obtain that there exists a subsequence (we still denote by
(uk)) such that
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uk(x) → u(x), strongly in Lr
loc(R

n),

uk(x) → u(x), for almost everywhere x ∈ R
n .

Step 2 We claim that for any r ≥ q , uk → u inLr (Rn; |x |−t dx). Since the process of the
proof is similar to that of Lemma 2.1, we omit the details.

4 Proof of Theorem 1.5

Throughout this section, we will employ the method of using the relationship between the
supremums of the subcritical and critical inequalities developed by Lam et al. [33] to establish
the existence of maximizers for the singular Adams inequality with the Sobolev norm. We
need the following lemmas whose proofs can be found in Lam [21], Lam et al. [33].

Lemma 4.1 For 0 < t < n, a, b > 0, then AT A(·, t) is continuous on (0, βn,2).

Lemma 4.2 If t > 0, a, b > 0, then

lim
s→0

⎛
⎝1 − ( s

β
)
n−2
n a

( s
β
)
n−2
n b

⎞
⎠

n−t
2b

AT A(s, t) = 0.

Lemma 4.3 For a > 0, if (β < βn,2, b > 0) or (β = βn,2, 0 < b < n
2 ), then

lim
s→β

⎛
⎝1 − ( s

β
)
n−2
n a

( s
β
)
n−2
n b

⎞
⎠

n−t
2b

AT A(s, t) = 0.

Proof of Theorem 1.5 With the help of Theorem 1.1, Lemmas 4.1, 4.2 and 4.3, we are in a
position to establish the existence of extremals for the singular Adams inequality with the
Sobolev norm. We only need to prove that there exists an extremal function for Aa,b,t (β) in
the case of (β < βn,2, b > 0) or (β = βn,2, b < n

2 ). It is easy to check that

lim
s→0

⎛
⎝1 − ( s

β
)
n−2
n a

( s
β
)
n−2
n b

⎞
⎠

m−t
2b

AT A(β, s) < Aa,b,t (β)

and

lim
s→α

⎛
⎝1 − ( s

β
)
n−2
n a

( s
β
)
n−2
n b

⎞
⎠

n−t
2b

AT A(β, s) < Aa,b,t (β).

On the other hand, we also have

Aa,b,t (β) = sup
s∈(0,β)

⎛
⎝1 − ( s

β
)
n−2
n a

( s
β
)
n−2
n b

⎞
⎠

n−t
2b

AT A(s, t).

This together with Lemma 4.2 and Lemma 4.3 yields that there exists s ∈ (0, β) such that
⎛
⎝1 − ( s

β
)
n−2
n a

( s
β
)
n−2
n b

⎞
⎠

n−t
2b

AT A(s, t) = Aa,b,t (β).
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Assume that u ∈ W 2, n2 (Rn) with ‖�u‖ n
2

≤ 1 = ‖u‖ n
2
is the maximizer for AT A(s, t).

Define

v(x) =
(
s

β

) n−2
n

u(λx),

λ =

⎛
⎜⎜⎝

(
s
β

) n−2
n b

1 − ( s
α

) n−2
n a

⎞
⎟⎟⎠

1
2b

,

then it follows that

‖�v‖an
2

=
(
s

β

) n−2
n a

‖�u‖an
2

≤
(
s

β

) n−2
n a

,

‖v‖bn
2

=
(
s

β

) n−2
n b 1

λb
‖u‖bn

2
= 1 −

(
s

β

) n−2
n a

.

which implies that ‖�v‖an
2

+ ‖v‖bn
2

≤ 1. Hence,

Aa,b,t (β) =

⎛
⎜⎜⎝
1 −

(
s
β

) n−2
n a

(
s
β

) n−2
n b

⎞
⎟⎟⎠

n−t
2b ∫

Rn

�n,2

(
s
(
1 − t

n

) |u| n
n−2

)

|x |t dx

=

⎛
⎜⎜⎝
1 −

(
s
β

) n−2
n a

(
s
β

) n−2
n b

⎞
⎟⎟⎠

n−t
2b ∫

Rn

�n,2

(
s
(
1 − t

n

) |u(λx)| n
n−2

)

|λx |t d(λx)

=

⎛
⎜⎜⎝
1 −

(
s
β

) n−2
n a

(
s
β

) n−2
n b

⎞
⎟⎟⎠

n−t
2b

λn−t
∫
Rn

�n,2

(
β
(
1 − t

n

) |v| n
n−2

)

|x |t dx

=
∫
Rn

�n,2

(
β
(
1 − t

n

) |v| n
n−2

)

|x |t dx .

(4.1)

This implies that v is actually a maximizer for Aa,b,t (β). ��

5 Proofs of Theorems 1.7, 1.9 and 1.11

In this section, we establish weighted Adams’ inequalities (1.8) and (1.9) which equipped
with the Dirichlet norm and the existence of their extremal functions. It is well known that the
arrangement-free argument introduced in [29] is a useful tool in dealing with the Trudinger–
Moser inequality and the second-order Adams inequality. However, this method may fail
when we come to consider the higher order inequalities. Therefore, we use the method based
on Fourier transform to establish inequalities (1.8) and (1.9). We need the following lemma.
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Lemma 5.1 For any β ∈ (0, β2m,m), there exists a positive constant Cβ such that

∫
R2m

�2m,m(β(1 − t
2m )|u|2)

|x |t dx ≤ Cβ, (5.1)

where u ∈ Wm,2(R2m), ‖∇mu‖2 ≤ 1 and ‖u‖2 = 1.

Proof We first claim that for any fixed β ∈ (0, β2m,m), there exists sufficient small τ > 0
such that for all u ∈ Ẇm,2(R2m) ∩ L2(R2m) with ‖∇mu‖2 ≤ 1 and ‖u‖2 = 1, there holds

‖(τ I − �)
m
2 u‖22 ≤ β2m,m

β
. (5.2)

Indeed, by Fourier transform, we have

‖(τ I − �)
m
2 u‖22 =

m∑
j=0

C j
mτm− j‖∇ j u‖22.

Thanks to the Sobolev interpolation inequalities, one can derive that for every ε > 0, there
exists a positive constant Cε > 0 such that

‖(τ I − �)
m
2 u‖22 ≤ (1 + ε)‖∇mu‖22 + Cετ‖u‖22,

which implies inequality (5.2). With the help of Theorem D in [29], we derive that

∫
R2m

�2m,m(β(1 − t
2m )|u|2)

|x |t dx =
∫
R2m

�2m,m

(
β(1 − t

2m )‖(τ I − �)
m
2 u‖22

∣∣∣∣ u

‖(τ I−�)
m
2 u‖2

∣∣∣∣
2
)

|x |t dx

≤
∫
R2m

�2m,m

(
β2m,m(1 − t

2m )

∣∣∣∣ u

‖(τ I−�)
m
2 u‖2

∣∣∣∣
2
)

|x |t dx

≤ Cβ,

(5.3)
which finishes the proof. ��

With the help of Lemma 5.1, we start the proof of inequality (1.8). In fact, for any u ∈
Wm,2(R2m) satisfying ‖∇mu‖2 ≤ 1, we define uλ(x) = u(λx) with λ = ‖u‖

1
m
2 . Through

direct calculations, we derive that

‖uλ‖22 = λ−2m‖u‖22 = 1,

‖∇muλ‖2 = ‖∇mu‖2 = 1,∫
R2m

�2m,m(β(1 − t
2m )|uλ|2)

|x |t dx = λt−2m
∫
R2m

�2m,m(β(1 − t
2m )|u|2)

|x |t dx .

Then it follows from inequality (5.1) that
∫
R2m

�2m,m(β(1 − t
2m )|u|2)

|x |t dx = λ2m−t
∫
R2m

�2m,m(β(1 − t
2m )|uλ|2)

|x |t dx

≤ λ2m−tCβ

= Cβ‖u‖2(1−
t
2m )

2 .

(5.4)
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Next, we show the sharpness of inequality (1.8).
Wewillmodify the idea of constructing test functions for theAdams inequality on domains

of finite measure in Euclidean spaces [2]. Let φ ∈ C∞
0 ([0, 1]) such that

φ(0) = φ′(0) = · · · = φm−1(0) = 0, φ(1) = φ′(1) = 1,

φ′′(1) = · · · = φm−1(1) = 0.

For 0 < ε < 1
2 , set

H(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εφ( t
ε
), if 0 < t ≤ ε,

t, if ε < t ≤ 1 − ε,

1 − εφ( 1−t
ε

), if 1 − ε < t ≤ 1,

1, if t ≥ 1.

For any fixed r > 0 sufficiently small, we define

ψr (|x |) := Hε(r)

(
log 1

|x |
log 1

r

)
,

where ε(r) = 1
log 1

r
. Obviously, ψr ∈ Wm,2

0 (B1) and

ψr = 1 on Br .

It was proved in Adams [2] that

‖∇mψr‖22 ≤ (2m)−1β2m,m

(
log

1

r

)−1

Ar ,

where

Ar := 1 + O

(
1

log 1
r

)
.

Moreover, direct computations show

‖ψr‖2 � 1

log 1
r

.

Define

ur := ψr(
(2m)−1β2m,m(log 1

r )
−1Ar

) 1
2

.

By direct calculations, one can obtain that

‖∇mur‖2 ≤ 1

and

‖ur‖22 ∼
‖ψr‖22

(log 1
r )

−1Ar
� 1

log 1
r

.
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Let r → 0, it follows that

lim
r→0

∫
R2m �2m,m

(
β2m,m

(
1 − t

2m

) |ur |2) |x |−t dx

‖ur‖2(1−
t
2m )

2

� lim
r→0

(
log

1

r

)1− t
2m
∫
Br

exp

(
β2m,m

(
1 − t

2m

)
|ur |2

)
|x |−t dx

= lim
r→0

(
log

1

r

)1− t
2m
∫
Br

exp

(
(2m − t) log

1

r
A−1
r

)
|x |−t dx

� lim
r→0

(
log

1

r

)1− t
2m

r2m−t exp

(
(2m − t) log

1

r
A−1
r

)

� lim
r→0

(
log

1

r

)1− t
2m

exp

(
(2m − t) log

1

r

(
A−1
r − 1

))

� lim
r→0

(
log

1

r

)1− t
2m → ∞,

(5.5)

which completes the proof of sharpness.
At last, we show the attainability of μ2m,m,t,β . Just as what we did in Theorem 1.1, we

need the following compactness lemma.

Lemma 5.2 For m ≥ 2, p ≥ 2 and 0 < t < 2m, then Ẇm,2(R2m) ∩ L2(R2m) can be
compactly embedded into L p(R2m, |x |−t dx).

Proof The proof is similar to that of Lemma 2.1 once we prove the equivalence between the
space Ẇm,2(R2m)∩L2(R2m) and the standard Sobolev spaceWm,2(R2m). Indeed, it suffices
to show that

‖∂αu‖22 � ‖u‖22 + ‖∇mu‖22, ∀ |α| ≤ m. (5.6)

We first prove the

‖∇ku‖22 � ‖u‖22 + ‖∇mu‖22, ∀ 1 ≤ k ≤ m, k ∈ N. (5.7)

In fact, by the Fourier transform, we have∫
R2m

|∇ku|2dx =
∫
R2m

|ξ |2k |û(ξ)|2dξ

≤
∫
R2m

(1 + |ξ |2m)|û(ξ)|2dξ

=
∫
R2m

|û(ξ)|2dξ +
∫
R2m

|ξ |2m |û(ξ)|2dξ

=
∫
R2m

|u|2dx +
∫
R2m

|∇mu|2dx .

Combining this result, in order to obtain the equivalence result, we only need to show that

‖∂αu‖22 ≤ ‖∇|α|u‖22. (5.8)

One can derive it by induction. For |α| ≥ 2, α = (α1, α2, · · · , αn), there exist α j + αk ≥ 2

such that ∂α = ∂2

∂x j ∂xk
∂β .Hence, it follows from theFourier transformand theRiesz transform

that
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‖∂αu||22 =
∫
R2m

∣∣∣∣∣
(

∂2

∂x j∂xk
∂βu

)∧
(ξ)

∣∣∣∣∣
2

dξ

=
∫
R2m

|4π2ξ jξk ∂̂βu(ξ)|2dξ

=
∫
R2m

∣∣∣∣
(

−i
ξ j

|ξ |
)(

−i
ξk

|ξ |
)

(4π2|ξ |2 )̂∂βu(ξ)

∣∣∣∣
2

dξ

=
∫
R2m

|(R j Rk�(∂βu))∧(ξ)|2dξ.

Then, with the help of the induction and the definition of ∇m , one can get
∫
R2m

|(R j Rk�(∂βu))∧(ξ)|2dξ ≤ ‖∂β(�u)‖22 ≤ ‖∇|β|�u‖22 = ‖∇|α||u‖22,

which proves the required equivalence. ��

Now we show that the best constant μ2m,m,t,β could be attained by a function in
Ẇm,2(R2m) ∩ L2(R2m). Assume that (uk) ⊂ Ẇm,2(R2m) ∩ L2(R2m) satisfying

‖∇muk‖2 = 1 and F2m,m,t,β(uk) → μ2m,m,t,β(R2m) as k → ∞.

Constructing a new function sequence (vk) defined by vk(x) := uk(‖uk‖
1
m
2 x) for x ∈ R

2m ,
one can easily verify that

‖∇mvk‖2 = 1, ‖vk‖2 = 1,

and

F2m,m,t,β(vk) = F2m,m,t,β(uk) → μ2m,m,t,β(R2m) as k → ∞.

Hence, (vk) is also a maximizing sequence for μ2m,m,t,β(R2m). Note that (vk) is bounded in
Ẇm,2(R2m) ∩ L2(R2m), thus up to a sequence, we may assume that

vk⇀v in Ẇm,2(R2m) ∩ L2(R2m).

It follows from weak semicontinuity of the norm in Ẇm,2(R2m) ∩ L2(R2m) that

‖∇mv‖2 ≤ 1, ‖v‖2 ≤ 1. (5.9)

Then, implementing same procedures as we did in Lemma 2.2, we have

lim
k→∞

∫
R2m

(
�2m,m

(
β

(
1 − t

2m

)
|uk |2

)
− β

(
1 − t

2m

)
|uk |2

)
dx

|x |t

=
∫
R2m

(
�2m,m

(
β

(
1 − t

2m

)
|u|2

)
− β

(
1 − t

2m

)
|u|2

)
dx

|x |t .
(5.10)

Combining (5.10) with Lemma 5.2, we derive that up to a sequence,

μ2m,m,t,β(R2m) =
∫
R2m

�2m,m(β(1 − t

2m
)|vk |2) dx|x |t + o(1)

=
∫
R2m

�2m,m(β(1 − t

2m
)|v|2) dx|x |t ,

(5.11)
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which implies v �= 0. Then we can deduce from (5.9) and (5.11) that

μ2m,m,t,β(R2m) ≤
∫
R2m �2m,m(β(1 − t

2m )|v|2) dx
|x |t

‖v‖2−
t
m

2

= F2m,m,t,β(v). (5.12)

Therefore, it remains to show that ‖∇mv‖2 = 1. By the definition of μ2m,m,t,β(R2m) and
(5.9), we see that

μ2m,m,t,β(R2m) ≥ F2m,m,t,β

(
v

‖∇mv‖2
)

=
∞∑
i=1

β i

i ! ‖v‖2iL2i (R2m ;|x |−t dx)‖v‖
t
m −2
2 ‖∇mv‖2−

t
m −2i

2

≥ F2m,m,t,β(v) + (‖∇mv‖− t
m

2 − 1)F2m,m,t,β(v).

(5.13)

This together with (5.9) and (5.12) implies that ‖∇mv‖2 = 1. Then we complete the proof
of Theorem 1.7.

The Proof of Theorem 1.9 We first establish inequality (1.9). Just as what we did in Theo-
rem 1.2, we divide the integral in inequality (1.9) into two parts.

∫
R2m

exp(β(1 − t
2m )|u|2)|u|2

|x |t dx

=
∫
R2m

�2m,m(β(1 − t
2m )|u|2)|u|2

|x |t dx +
∫
R2m

|u|2
|x |t dx

=: I1 + I2.

(5.14)

By applying the Hölder inequality and inequality (1.8), one can estimate I1 as follows

I1 ≤
(∫

R2m

�2m,m
(
β p(1 − t

2m )|u|2)
|x |t dx

) 1
p
(∫

R2m

|u|2p′

|x |t dx

) 1
p′

≤
(∫

R2m
|u|2dx

) 1
p (1− t

2m ) (∫
R2m

|u|2dx
) 1

p′ (1− t
2m )

=
(∫

R2m
|u|2dx

)(1− t
2m )

,

(5.15)

where p > 1 and β p < β2m,m . As for I2, it is an immediate result of inequality (1.8).
One can deduce the sharpness of inequality (1.9) from the sharpness of inequality (1.13).

In fact, one only needs to observe the following fact
∫
R2m

exp(β(1 − t
2m )|u|2)|u|2

|x |t dx ≥
∫
R2m

�2m,m(β(1 − t
2m )|u|2)

|x |t dx .

For the attainability of the best constantC(m, t) of inequality (1.9), one canmanage the same
steps as what we do in Theorem 1.7 to obtain the required results. ��
The Proof of Theorem 1.11 We first employ the Fourier rearrangement tools to prove there
exists radially maximizing sequence for μ2m,m,0,β(R2m). In fact, assume that (uk) is a max-
imizing sequence for μ2m,m,0,β(R2m), that is

‖(−�)
m
2 uk‖2 = 1, lim

k→∞ F2m,m,0,β(uk) → μ2m,m,0,β(R2m).
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Define u�
k by u

�
k = F−1{(F(uk))∗}, where F denotes the Fourier transform on R

2m (with its
inverse F−1) and f ∗ stands for the Schwarz symmetrization of f . Using the property of the
Fourier rearrangement from [35], one can derive that

‖(−�)
m
2 u�

k‖2 ≤ ‖(−�)
m
2 uk‖2, ‖u�

k‖2 = ‖uk‖2, ‖u�
k‖q ≥ ‖uk‖q .

Hence, lim
k→∞ F2m,m,0,β(uk) ≤ lim

k→∞ F2m,m,0,β(u�
k), which implies that (u�

k) is also the max-

imizing sequence for μ2m,m,0,β(R2m). Constructing a new function sequence (vk) defined

by vk(x) := uk(‖uk‖
1
m
2 x) for x ∈ R

2m , one can easily verify that (vk) is also a maximizing
sequence for μ2m,m,0,β(R2m) with ‖∇mvk‖2 = 1 and ‖vk‖2 = 1. Note (vk) is bounded in
Wm,2(R2m), up to a sequence, we may assume that

vk⇀v in Ẇm,2(R2m) ∩ L2(R2m),

thus v satisfies that ‖v‖2 ≤ 1 and ‖∇mv‖22 ≤ 1. Since Wm,2(R2m) can be compactly
imbedded into Lr (R2m) for any r > 2 (please refer to [7], Lemma 5.3), implementing same
procedures as what we did in Lemma 2.2, one can deduce that

lim
k→∞

∫
R2m

(
�2m,m(β|uk |2) − β|uk |2

) =
∫
R2m

(
�2m,m(β|u|2) − β|u|2) . (5.16)

Then it follows that

μ2m,m,0,β(R2m) = F2m,m,0,β(vk) + o(1)

=
∫
R2m

�2m,m(β|vk |2)dx + o(1)

= β +
∫
R2m

�2m,m(β|vk |2) − β|vk |2dx + o(1)

= β +
∫
R2m

�2m,m(β|v|2) − β|v|2dx .

(5.17)

Next, we show v �= 0. Indeed, one can pick u0 in Ẇm,2(R2m) ∩ L2(R2m) satisfying
‖∇mu0‖2 = 1 arbitrarily. Then, we have

μ2m,m,0,β(R2m) ≥ F2m,m,0,β(u0) =
∫
R2m �2m,m(β|u0|2)dx

‖u0‖22

=
∑∞

j=1
β j

j ! ‖u0‖2 j2 j
‖u0‖22

= β +
∑∞

j=2
β j

j ! ‖u0‖2 j2 j
‖u0‖22

> β.

Hence,

μ2m,m,0,β(R2m) ≤ β +
∫
R2m �2m,m(β|v|2) − β|v|2dx

‖v‖22
=
∫
R2m �2m,m(β|v|2)dx

‖v‖22
= F2m,m,0,β(v).
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Therefore, it remains to show ‖∇mv‖22 = 1. Recall that ‖∇mv‖22 ≤ 1, it suffices to show that
‖∇mv‖22 ≥ 1. Through the definition of μ2m,m,0,β(R2m), one can obtain that

μ2m,m,0,β(R2m) ≥ F2m,m,0,β(
v

‖∇mv‖2 )

=
∞∑
j=1

β j

j !
‖v‖2 j2 j
‖v‖22

‖∇mv‖2−2 j
2

≥ β + β2

2

‖v‖44
‖v‖22

‖∇mv‖−2
2 +

∞∑
j=2

β j

j !
‖v‖2 j2 j
‖v‖22

= F2m,m,0,β(v) + β2

2

‖v‖44
‖v‖22

(‖∇mv‖−2
2 − 1)

≥ μ2m,m,0,β(R2m) + β2

2

‖v‖44
‖v‖22

(‖∇mv‖−2
2 − 1)

(5.18)

which implies that ‖∇mv‖22 ≥ 1. Thus, v is amaximizer forμ2m,m,0,β(R2m)which completes
the proof of Theorem 1.11. ��

6 Proofs of Theorems 1.12 and 1.13

In this section, we give some applications of Theorem 1.1 and Theorem 1.7. We first estab-
lish the higher order critical Caffarelli–Kohn–Nirenberg inequalities which are not included
in Lin’s work [40]. Moreover, we also investigate the relationship between the best con-
stants of the singular Adams inequality and the Caffarelli–Kohn–Nirenberg inequality in the
asymptotic sense.

Proof of Theorem 1.12 We first give the proof of inequality (1.10). Denoting

β0 := sup

{
β :

∫
Rn

�n,2(β|u| n
n−2 )

|x |t dx

≤ C(n, t)

(∫
Rn

|u(x)| n2 dx
)1− t

n

, ∀u ∈ W 2, n2 (Rn) with ‖�u‖ n
2

≤ 1

}
,

then for any β < β0, there exists a constant C(n, t) > 0 such that for u ∈ W 2, n2 (Rn) and
k ≥ j n

2
− 1, there holds

C(n, t)

( ‖u‖ n
2

‖�u‖ n
2

) n−t
2

≥
∫
Rn

�n,2(β(
|u|

‖�u‖ n
2

)
n

n−2 )

|x |t dx

≥ βk

k!

(‖u‖Ln′k (Rn;|x |−t dx)

‖�u‖ n
2

)n′k

,

(6.1)

which implies that for u ∈ W 2, n2 (Rn) and k ≥ j n
2

− 1,

‖u‖Ln′k (Rn;|x |−t dx) ≤
(
C(n, t)

k!
βk

) 1
n′k ‖u‖

n−t
2n′k
n
2

‖�u‖1−
n−t
2n′k

n
2

. (6.2)
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For any q ≥ n′( j n
2

− 1), there exists k ≥ j n
2

− 1 satisfying n′k ≤ q < n′(k + 1) such that

‖u‖Lq (Rn;|x |−t dx) ≤ ‖u‖θ

Ln′k (Rn;|x |−t dx)
‖u‖1−θ

Ln′(k+1)(Rn;|x |−t dx)
. (6.3)

Combining (6.2) with (6.3) and the fact 1
q = θ

n′k + 1−θ
n′(k+1) , one can conclude that

‖u‖Lq (Rn;|x |−t dx) ≤ C(n, t)
1
q β

− 1
n′ ((k + 1)!) 1

q ‖u‖
n−t
2q
n
2

‖�u‖1−
n−t
2q

n
2

. (6.4)

Since q
n′ ≥ k, we have

((k + 1)!) 1
q ≤

(
	(

q

n′ + 2)
) 1

q
. (6.5)

Combining inequalities (6.4) and (6.5), one can derive inequality (1.10) with estimating

c(n, q, t) ≈ C(n, t)
1
q β

− 1
n′ (	(

q
n′ + 2)

) 1
q .

Next, we claim that there exists α > 0 such that c(n, q, t) behaves like c(n, q, t) � αq
1
n′

as q → +∞ which is equivalent to say

∃ q1 ≥ j n
2
, ∀ q ≥ q1, ‖u‖Lq (Rn;|x |−t dx) ≤ αq

1
n′ ‖u‖

n−t
2q
n
2

‖�u‖1−
n−t
2q

n
2

.

By recalling Stirling’s asymptotic formula, we see that as q → ∞,

(
	(

q

n′ + 2)
) 1

q = (1 + o(1))(
q

en′ )
1
n′ .

Therefore, we derive that

‖u‖Lq (Rn;|x |−t dx) ≤ (1 + o(1))(
q

βen′ )
1
n′ ‖u‖

n−t
2q
n
2

‖�u‖1−
n−t
2q

n
2

, (6.6)

which accomplishes the claim.
At last, we show the relationship between β0 and αn,t , where

αn,t := inf

{
α > 0 : ∃q1 ≥ j n

2
, ∀q ≥ q1, ‖u‖Lq (Rn;|x |−t dx) ≤ αq

1
n′ ‖u‖

n−t
2q
n
2

‖�u‖1−
n−t
2q

n
2

}
.

According to the definition of αn,t , combining inequality (6.6), one can derive that αn,t ≤
( 1
βen′ )

1
n′ . Then it follows from the definition of β0 that

αn,t ≤
(

1

β0en′

) 1
n′

. (6.7)

Then it suffices to show that

αn,t ≥
(

1

β0en′

) 1
n′

.

Pick any α > αn,t , through the definition of αn,t , there exists q0 ≥ j n
2
such that for any

q ≥ q0,

‖u‖Lq (Rn;|x |−t dx) ≤ αq
1
n′ ‖u‖

n−t
2q
n
2

‖�u‖1−
n−t
2q

n
2

. (6.8)
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Then for u ∈ W 2, n2 (Rn) and ‖�u‖ n
2

≤ 1,

∫
Rn

�n,2(β|u| n
n−2 )

|x |t dx

=
∫
Rn

⎛
⎜⎝ ∑

j n
2
≤n′k<q0

βk

k! |u(x)|n′k

⎞
⎟⎠ dx

|x |t +
∫
Rn

⎛
⎝ ∑

n′k≥q0

βk

k! |u(x)|n′k

⎞
⎠ dx

|x |t

=: J1 + J2.

(6.9)

Since J1 consists of finite weighted norms and n
2 ≤ n′k < q0, one can get

‖u‖Ln′k (Rn;|x |−t dx) ≤ ‖u‖θ

L
n
2 (Rn;|x |−t dx)

‖u‖1−θ
Lq0 (Rn;|x |−t dx) (6.10)

through using the Hölder inequality. Taking (6.8) and (6.10) into consideration, we get that
for all n

2 ≤ n′k < q0,

‖u‖Ln′k (Rn;|x |−t dx) ≤ C‖u‖
n−t
2(n′k)
n
2

, (6.11)

where we used the fact that ‖�u‖ n
2

≤ 1. Then it follows from (6.11) that

J1 ≤ C

⎛
⎝ ∑

n
2 ≤n′k<q0

βk

k!

⎞
⎠ ‖u‖

n−t
2

n
2

. (6.12)

For J2, inequality (6.8) leads to

J2 ≤
⎛
⎝ ∑

n′k≥q0

kk

k! (βn
′αn′

)k

⎞
⎠ ‖u‖

n−t
2

n
2

. (6.13)

Then it follows from the Stirling’s asymptotic formula that the power in (6.13) converges
if βn′αn′

< 1
e , which implies that β ∈ (0, 1

en′αn′ ). Hence, the definition of β0 leads to

β0 ≥ 1
en′αn′ . Moreover, through the definition of αn,t , we get that

β0 ≥ 1

en′αn′
n,t

,

which is equivalent to

αn,t ≥
(

1

en′β0

) 1
n′

. (6.14)

Combining (6.7) and (6.14), we complete the proof. ��
Remark 6.1 The proof of Theorem1.13 is similar to that of Theorem1.12, we omit the details.
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