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Abstract The purpose of this paper is five-fold. First, we employ the harmonic analysis techniques

to establish the following Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel on

the upper half space

∫
R

n
+

∫
∂R

n
+

f(ξ)P (x, ξ, α)g(x)dξdx ≤ Cn,α,p,q′‖g‖Lq′ (Rn
+)‖f‖Lp(∂Rn

+),

where f ∈ Lp(∂R
n
+), g ∈ Lq′

(Rn
+) and p, q′ ∈ (1, +∞), 2 ≤ α < n satisfying n−1

np
+ 1

q′ + 2−α
n

= 1.

Second, we utilize the technique combining the rearrangement inequality and Lorentz interpolation to

show the attainability of best constant Cn,α,p,q′ . Third, we apply the regularity lifting method to obtain

the smoothness of extremal functions of the above inequality under weaker assumptions. Furthermore,

in light of the Pohozaev identity, we establish the sufficient and necessary condition for the existence of

positive solutions to the integral system of the Euler–Lagrange equations associated with the extremals

of the fractional Poisson kernel. Finally, by using the method of moving plane in integral forms, we

prove that extremals of the Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel

must be radially symmetric and decreasing about some point ξ0 ∈ ∂R
n
+. Our results proved in this
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paper play a crucial role in establishing the Stein–Weiss inequalities with the Poisson kernel in our

subsequent paper.

Keywords Existence of extremal functions, Hardy–Littlewood–Sobolev inequality, Moving plane

method, Poisson kernel
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1 Introduction

The classical Hardy–Littlewood–Sobolev inequality which was first established by Hardy, Lit-
tlewood and Sobolev in [32, 47] states that∫

Rn

∫
Rn

|x− y|−λf(x)g(y)dxdy ≤ Cn,p,q′‖f‖Lq′ (Rn)‖g‖Lp(Rn), (1.1)

where 1 < q′, p <∞, 0 < λ < n, 1
q′ + 1

p + λ
n = 2 and q′ = q

q−1 .
By utilizing the layer cake representation formula, Lieb and Loss [40] proved that the sharp

constant Cn,p,q′ satisfies the following estimate

Cn,p,q′ ≤ n

n− λ

(
π

λ
2

Γ(1 + n
2 )

) λ
n 1
q′p

((
λq′

n(q′ − 1)

) λ
n

+
(

λp

n(p− 1)

) λ
n
)
.

Lieb [39] also employed the rearrangement inequalities to obtain the existence of the extremal
functions of inequality (1.1). Furthermore, they also classified extremals of the inequality (1.1)
and computed the sharp constant Cn,p,q′ only when one of p and q′ is equal to 2 or p = q′.

The Hardy–Littlewood–Sobolev inequality was extended by Stein and Weiss to the following
Stein–Weiss inequalities∫

Rn

∫
Rn

|x|−α|x− y|−λf(x)g(y)|y|−βdxdy ≤ Cn,α,β,p,q′‖f‖Lq′ (Rn)‖g‖Lp(Rn), (1.2)

where 1 < p, q′ <∞, α, β and λ satisfy the following conditions,

1
q′

+
1
p

+
α+ β + λ

n
= 2,

1
q′

+
1
p
≥ 1,

α+ β ≥ 0, α <
n

q
, β <

n

p′
, 0 < λ < n.

(see also an alternative proof of establishing the Stein–Weiss inequalities recently found in [29]
by using conditions on weights to guarantee the weighted boundedness of fractional integrals
given in [46] and such a method also applies to establish the Stein–Weiss inequalities on the
Heisenberg groups and works for more general stratified and homogeneous groups). Lieb [39]
used the method based on symmetrization argument and the Riesz rearrangement to establish
the existence of extremals for the inequality (1.2) in the case p < q and α, β ≥ 0. Furthermore,
in the case of p = q, the extremals can’t be expected to exist (see Lieb [39] and also Herbst [33]
for the case λ = n− 1, p = q = 2, α = 0, β = 1). In the case of p = q, Beckner [2, 3] obtained
the sharp constant of the Stein–Weiss inequalities (1.2) by establishing a general Stein–Weiss
lemma. The precise estimate of the sharp constant of the Stein–Weiss inequalities for the case
of p �= q was also established in [3]. For more results about proving precise estimates for Stein–
Weiss functionals in conjunction with the study of Pitt’s type inequalities and their multilinear
versions, we refer the reader to the works of Beckner [4–6]. We note that the existence of
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extremal functions for the Stein–Weiss inequalities in the case p < q under the assumption
α + β ≥ 0 has been established by Chen, Lu and Tao [18], which extends Lieb’s result under
the stronger assumption that α ≥ 0 and β ≥ 0, using the concentration-compactness of Lions
[41, 42].

Through the inequality (1.1), we can deduce many important geometrical inequalities such
as the Gross logarithmic Sobolev inequality [26] and the Moser–Onofri–Beckner inequality [1],
etc. It is also well-known that if we pick λ = n− 2, p = q = 2n

2n−λ , then the Hardy–Littlewood–
Sobolev inequality is in fact equivalent to the Sobolev inequality by Green’s representation
formula. By using the competing symmetry method, Carlen and Loss [10] provided a dif-
ferent proof from Lieb’s of the sharp constants and extremal functions in the diagonal case
p = q′ = 2n

2n−λ and Frank and Lieb [22] offered a new proof using the reflection positivity
of inversions in spheres in the special diagonal case. Frank and Lieb [23] further employed a
rearrangement-free technique developed in [24] to recapture the best constant of inequality (1.1).
Folland and Stein [21] extended the inequality (1.1) to the Heisenberg group and established the
Hardy–Littlewood–Sobolev inequality on Heisenberg group. Frank and Lieb in [24] classify the
extremals of this inequality in the diagonal case. This extends the earlier work of Jerison and
Lee for sharp constants and extremals for the Sobolev inequality on the Heisenberg group in the
conformal case in their study of CR Yamabe problem [34–36]. Furthermore, Han [27] employed
the concentration-compactness principle of Lions [41, 42] to establish existence of extremals of
this inequality for general indices. Han, Lu and Zhu established the double weighted Hardy–
Littlewood–Sobolev inequality (namely, Stein–Weiss inequality) on the Heisenberg group and
discussed the regularity and asymptotic behavior of the extremal functions. Recently, Chen, Lu
and Tao [18] used the concentration-compactness principle to obtain existence of extremals of
the Stein–Weiss inequality on the Heisenberg group for all indices. We also mention that when
q′ = p = 2n

2n−λ , Euler–Lagrange equation of the extremals to the Hardy–Littlewood–Sobolev
inequality in the Euclidean space is a conformal invariant integral equation. Using the method
of moving plane or moving sphere in integral forms in Euclidean space (see [15, 38]), one can
classify the positive solutions to this integral equation. The inequality (1.1) and its extensions
have many applications in partial differential equations. For example, these inequalities are
efficient in studying the radial symmetry and a priori estimate of positive solutions for the
Hardy–Sobolev type equations and systems. For more results about the inequality (1.1) and
its applications in partial differential equations, one can also see [7, 11, 12, 16, 43, 44] and the
references therein.

Hang, Wang and Yan in [31] derived the following integral inequalities with the Poisson
kernel, ∥∥∥∥

∫
∂R

n
+

P (x, ξ)f(ξ)dξ
∥∥∥∥

Lq(Rn
+)

≤ Cn,p‖f‖Lp(∂R
n
+), (1.3)

where P (x, ξ) = cn
xn

|x−ξ|n and q = np
n−1 . They used the concentration-compactness principle

to establish the existence of extremals for this inequality. For special index p = 2(n−1)
n−2 , by

the method of moving-spheres, they classified the extremal functions of the inequality (1.3)
and computed the sharp constant Cn,p. Integral inequality with the Poisson kernel is highly
related with Carleman’s proof of isoperimetric inequality in the plane (see [9]). By duality, one



856 Chen, L. et al.

can easily see that the inequality (1.3) is in fact equivalent to the Hardy–Littlewood–Sobolev
inequality with the Poisson kernel which can be stated as follows:∫

R
n
+

∫
∂R

n
+

f(ξ)P (x, ξ)g(x)dξdx ≤ Cn,p,‖g‖Lq′ (Rn
+)‖f‖Lp(∂R

n
+),

where 1 < p <∞, 1 < q′ <∞, satisfying
n− 1
n

1
p

+
1
q′

= 1.

The Hardy–Littlewood–Sobolev inequalities are equivalent to the Lp to Lq boundedness for
the convolution operators with the Riesz potential. It is well known that the Riesz potential
can also be seen as the fundamental solution of the fractional Laplacian operator. On the other
hand, the kernel

P (x, ξ, α) = − 1
n− α

∂

∂xn

1
|x− ξ|n−α

,

considered in [19], up to a constant, can be viewed as the fundamental solution of the fractional
Laplacian operator on the upper half space. In fact, for α = 2, this is the classical Poisson
kernel.

From this point of view and the work of Hang, Wang and Yan, we are interested in the
question whether there exists an integral inequality with the fractional Poisson kernel on the
upper half space R

n
+. Furthermore, we like to know if such an inequality has an extremal

function for all the indices. In fact, the authors of [19] established the integral inequality with
the fractional Poisson kernel in the special index through the methods based on conformal
transformation and the moving spheres in integral forms. However, this method cannot be
used to establish our inequality (1.5) for general index. We also note that the authors of [20]
established the following Hardy–Littlewood–Sobolev inequality on the upper half space R

n
+

which states ∫
R

n
+

∫
∂R

n
+

|x− y|−λf(x)g(y)dydx ≤ Cn,,p,q′‖f‖Lq′ (Rn
+)‖g‖Lp(∂R

n
+), (1.4)

where p > 1, q′ > 1, 0 < λ < n with
1
q′

+
n− 1
n

1
p

+
λ+ 1
n

= 2.

Utilizing the symmetry and rearrangement technique, they derived existence of extremals for
this inequality. Furthermore, in the conformal invariant case q′ = 2n

2n−λ and p = 2n−2
2n−2−λ , they

also classified the extremals through the moving sphere method.
In this paper, we are concerned with the Hardy–Littlewood–Sobolev inequality with the

fractional Poisson kernel for general indices. Our first main result is the following:

Theorem 1.1 For n ≥ 3, 1 < p <∞, 1 < q′ <∞ and 2 ≤ α < n, satisfying
n− 1
n

1
p

+
1
q′

+
2 − α

n
= 1,

there exists some constant Cn,α,p,q′ > 0 such that for any functions f ∈ Lp(∂R
n
+) and g ∈

Lq′
(Rn

+), there holds∫
R

n
+

∫
∂R

n
+

f(ξ)P (x, ξ, α)g(x)dξdx ≤ Cn,α,p,q′‖g‖Lq′ (Rn
+)‖f‖Lp(∂R

n
+), (1.5)
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where P (x, ξ, α) = xn

(|x′−ξ|2+x2
n)

n+2−α
2

is the so-called fractional Poisson kernel.

Remark 1.2 We note that the kernel P (x, ξ, α) in our inequality is not L1 integrable unlike
the Poisson kernel of the integral inequality established by Hang, Wang and Yan [31]. Their
proofs depend on L1 integrability of P (x, ξ, α) for α = 2, which allows them to establish∥∥∥∥

∫
∂R

n
+

P (x, ξ, 2)f(ξ)dξ
∥∥∥∥

L∞(Rn
+)

≤ ‖f‖L∞(∂R
n
+),

and ∥∥∥∥
∫

∂R
n
+

P (x, ξ, 2)f(ξ)dξ
∥∥∥∥

L
n

n−1
w (Rn

+)

≤ ‖f‖L1(∂R
n
+).

Given f a measurable function on R
n
+, 0 < r < +∞, define the weak Lr norm of f as

‖f‖r
Lr

w(Rn
+) = sup

t>0
tr|{x ∈ R

n
+ : |f | > t}|.

We use the weak Lq estimate of P (f) to overcome this difficulty and directly obtain that∥∥∥∥
∫

∂R
n
+

P (x, ξ, α)f(ξ)dξ
∥∥∥∥

Lq
w(Rn

+)

≤ ‖f‖Lp(∂R
n
+).

Remark 1.3 The Hardy–Littlewood–Sobolev inequality (1.5) also plays an important role in
establishing our Stein–Weiss inequality with the fractional Poisson kernel by the authors [17].

By duality, it is easy to verify that the inequality (1.5) is equivalent to the following two
inequalities

‖P (f)‖Lq(Rn
+) ≤ Cn,α,p,q′‖f‖Lp(∂R

n
+), (1.6)

‖T (g)‖Lp′ (∂R
n
+) ≤ Cn,α,p,q′‖g‖Lq′ (Rn

+),

where p and q′ satisfy the assumptions of Theorem 1.1 and

P (f)(x) =
∫

∂R
n
+

P (x, ξ, α)f(ξ)dξ, T (g) =
∫

R
n
+

P (x, ξ, α)g(x)dx.

In order to obtain the existence of extremals of the inequality (1.5), we turn to consider the
following maximizing problem

Cn,α,p,q′ := sup{‖P (f)‖Lq(Rn
+) : f ≥ 0, ‖f‖Lp(∂R

n
+) = 1}. (1.7)

It is not hard to verify that the extremals of the inequality (1.5) are those solving the maxi-
mizing problem (1.7). We use the method combining the rearrangement inequality and Lorentz
interpolation to obtain the attainability of maximizers for the maximizing problem (1.7).

Theorem 1.4 For n ≥ 3, 1 < p <∞, 1 < q′ <∞ and 2 ≤ α < n, satisfying
n− 1
n

1
p

+
1
q′

+
2 − α

n
= 1,

there exists some nonnegative function f ∈ Lp(∂R
n
+) such that ‖f‖Lp(∂R

n
+) = 1 and ‖P (f)‖Lq(Rn

+)

= Cn,α,p,q′ .

Now, it is also interesting to study some properties such as the regularity and radial sym-
metry for the extremal functions of the inequality (1.5). By maximizing the functional

J(f, g) =
∫

R
n
+

∫
∂R

n
+

f(ξ)P (x, ξ, α)g(x)dξdx (1.8)
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under the constraint ‖f‖Lp(∂R
n
+) = ‖g‖Lq′ (Rn

+) = 1, one can use the Euler–Lagrange multiplier
theorem to derive that (f, g) satisfies the following integral system

⎧⎪⎪⎨
⎪⎪⎩
J(f, g)f(ξ)p−1 =

∫
R

n
+

P (x, ξ, α)g(x)dx, ξ ∈ ∂R
n
+,

J(f, g)g(x)q′−1 =
∫

∂R
n
+

P (x, ξ, α)f(ξ)dξ, x ∈ R
n
+.

(1.9)

Set u = c1f
p−1, v = c2g

q′−1, 1
p−1 = p0 and 1

q′−1 = q0 and pick two suitable constants c1
and c2, then system (1.9) is simplified as

⎧⎪⎪⎨
⎪⎪⎩
u(ξ) =

∫
R

n
+

P (x, ξ, α)vq0(x)dx, ξ ∈ ∂R
n
+,

v(x) =
∫

∂R
n
+

P (x, ξ, α)up0(ξ)dξ, x ∈ R
n
+,

(1.10)

where p0 and q0 satisfy n−1
n

1
p0+1 + 1

q0+1 = n−α+1
n .

We use the regularity lifting lemma in the spirit of Hang [31] to obtain the smoothness of
positive solutions to the integral system (1.10). We also point out that this regularity lifting
method is different from the usual regularity lifting method, which is basically a linear method
(see [13, 16]), and can also be applied to obtain the smoothness for positive solutions to more
general integral systems.

Theorem 1.5 For 2 ≤ α < n, α−2
n+1−α < p0 <∞, α−1

n+1−α < q0 <∞ satisfying

1
p0 + 1

n− 1
n

+
1

q0 + 1
=
n+ 1 − α

n
,

if we only suppose that u(x) ∈ Lp0+1
loc (∂R

n
+) and (u, v) satisfies the following integral system

⎧⎪⎪⎨
⎪⎪⎩
u(ξ) =

∫
R

n
+

P (x, ξ, α)vq0(x)dx, ξ ∈ ∂R
n
+,

v(x) =
∫

∂R
n
+

P (x, ξ, α)up0(ξ)dξ, x ∈ R
n
+,

then (u, v) ∈ C∞(∂R
n
+) × C∞(Rn

+).

Corollary 1.6 Under the assumptions of Theorem 1.1, then extremals of the inequality (1.5)
must be C∞ smooth.

Through the Pohozaev identity in integral forms, we obtain some necessary conditions for
the existence of positive solutions to the integral system (1.10).

Theorem 1.7 For 2 ≤ γ < n, if we suppose that there exists a pair of positive solutions
(u, v) ∈ Lp0+1(∂R

n
+)×Lq0+1(Rn

+) satisfying the integral system (1.10), then the following balance
condition must hold:

n− 1
p0 + 1

+
n

q0 + 1
= n+ 1 − α.

As a corollary, we immediately obtain the following Liouville type theorem for positive
solutions of the integral system (1.10).

Corollary 1.8 For 2 < α < n, suppose that
n− 1
p0 + 1

+
n

q0 + 1
�= n+ 1 − α,
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then there does not exist any pair of positive solutions (u, v) ∈ Lp0+1(∂R
n
+) ×Lq0+1(Rn

+) satis-
fying the integral system (1.10).

Obviously, extremals (f, g) of inequality (1.5) satisfies the integral system (1.9). In light of
Theorem 1.4 and Theorem 1.5, we obtain the sufficient and necessary conditions for existence
of positive solutions to the integral system (1.10).

Theorem 1.9 For p0 > 0, q0 > 0, then the sufficient and necessary condition for the existence
of a pair of positive solutions (u, v) ∈ Lp0+1(∂R

n
+) × Lq0+1(Rn

+) to the system (1.10) is

n− 1
p0 + 1

+
n

q0 + 1
= n+ 1 − α.

We also employ the method of moving plane in integral forms to investigate the radial
symmetry of positive solution of the integral system (1.10).

Theorem 1.10 For 2 ≤ α < n, 0 < p0 <∞, 0 < q0 <∞ satisfying n−1
n

1
p0+1 + 1

q0+1 = n−α+1
n ,

if (u, v) ∈ Lp0+1(∂R
n
+)×Lq0+1(Rn

+) is a pair of positive solutions of the integral system (1.10),
then u(ξ) and v(x)|∂R

n
+

are radially symmetric and monotone decreasing about some point ξ0 ∈
∂R

n
+.

Corollary 1.11 Under the assumptions of Theorem 1.1, extremals of inequality (1.5) must
be radially decreasing about some point ξ0 ∈ ∂R

n
+.

This paper is organized as follows. In Section 2, we employ the harmonic analysis technique
to establish the Hardy–Litttlewood–Sobolev inequality with the fractional Poisson kernel on the
upper half space. In Section 3, by the rearrangement inequality and Lorentz interpolation, we
obtain the existence of extremals of the inequality (1.5). Section 4 and Section 6 are devoted to
the regularity estimate and the radial symmetry of extremals of the Hardy–Litttlewood–Sobolev
inequality with the fractional Poisson kernel. In Section 5, using the Pohozaev identity in
integral forms, we give sufficient and necessary conditions for the existence of positive solutions
of the integral system (1.10).

2 The Proof of Theorem 1.1

In this section, we will use the Marcinkiewicz interpolation theorem and weak type estimate to
establish the Hardy–Littlewood–Sobolev inequality with the fractional Poisson kernel.

For n ≥ 3, 2 ≤ α < n, t > 0 and x′ ∈ R
n−1, we define

Pt(x′) =
t

(|x′|2 + t2)
n+2−α

2

.

Clearly, we have

P (x, ξ, α) = Pxn
(x′ − ξ) for x = (x′, xn) ∈ R

n
+, ξ ∈ ∂R

n
+,

P (f)(x) = (Pxn
∗ f)(x′) for x ∈ R

n
+.

By Young’s inequality, we derive the following estimate.

Lemma 2.1 For 2 ≤ α < n and 1 < p < n−1
α−2 , pick r < np

n−1+(2−α)p sufficiently close to
np

n−1+(2−α)p and s ≥ 1 satisfying 1
r + 1 = 1

p + 1
s , there holds

∫
0<xn<a

(Pf)r(x)dx � a
(n−1)r

s +1−(n+1−α)r‖f‖r
Lp(∂R

n
+).
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Proof By Young inequality, it follows∫
0<xn<a

(Pf)r(x)dx =
∫ a

0

∫
Rn−1

|(Pxn
∗ f)(x′)|rdx′dxn

≤ ‖f‖r
Lp(Rn−1)

∫ a

0

‖Pxn
‖r

Ls(Rn−1)dxn

= ‖f‖r
Lp(Rn−1)

∫ a

0

(∫
Rn−1

( |xn|
(|x′|2 + x2

n)
n+2−α

2

)s

dx′
) r

s

dxn

= ‖f‖r
Lp(Rn−1)

∫ a

0

|xn|
(n−1)r

s −(n+1−α)rdxn

∫
Rn−1

1

(|x′|2 + 1)
(n+2−α)s

2

dx′.

Since r < np
n−1+(2−α)p sufficiently close to np

n−1+(2−α)p , thus∫
Rn−1

1

(|x′|2 + 1)
(n+2−α)s

2

dx′ <∞ and
∫ a

0

|xn|
(n−1)r

s −(n+1−α)rdxn <∞.

Thus we complete the proof of Lemma 2.1. �

Proof of Theorem 1.1 By the Marcinkiewicz interpolation theorem (see [50]), we only need to
prove the weak-type estimate. Namely, we will prove that

‖P (f)‖Lq
w(Rn

+) ≤ Cn,α,p,q′‖f‖Lp(∂R
n
+). (2.1)

Without the loss of generality, we may assume that ‖f‖p = 1. In view of the Holder inequality
and the integration of fractional Poisson kernel, we can see that

P (f)(x) ≤ C(n, α, p)x
n−1
p′ −(n+1−α)

n .

Hence for any t > 0,

|{x ∈ R
+
n : P (f)(x) > t}| =

∣∣∣∣
{
x ∈ R

+
n : 0 < xn < C(n, α, p)

(
1
t

) p′
p′(n+1−α)−(n−1)

, P (f)(x) > t

}∣∣∣∣
≤ 1
tr

∫
x∈R

n
+,0<xn<C(n,α,p)( 1

t )
p′

p′(n+1−α)−(n−1)
(Pf)r(x)dx. (2.2)

Pick r < np
n−1+(2−α)p sufficiently close to np

n−1+(2−α)p and q ≥ 1 satisfying 1
r + 1 = 1

p + 1
s , by

Lemma 2.1, we obtain

|{x ∈ R
+
n : P (f)(x) > t}| �

(
1
t

) np
n−1+(2−α)p

,

which implies that
‖P (f)‖Lq

w(Rn
+) ≤ Cn,α,β,p,q‖f‖Lp(∂R

n
+).

3 The Proof of Theorem 1.4

Throughout this section, we will employ the method based on the Lorentz interpolation and
rearrangement inequality to investigate the existence of maximizers for the maximizing problem

Cn,α,p,q′ := sup{‖P (f)‖Lq(Rn
+) : f ≥ 0, ‖f‖Lp(∂R

n
+) = 1}. (3.1)

Proof Assume that {fi}i is a maximizing sequence for the problem (3.1), namely ‖fi‖Lp(∂R
n
+) =

1 and limi→+∞ ‖P (fi)‖Lq(Rn
+) = Cn,α,p,q′ . By the Riesz rearrangement inequality [40], we ob-

tain
‖f∗i ‖Lp(∂R

n
+) = ‖fi‖Lp∂R

n
+) = 1, ‖P (fi)‖q

Lq(Rn
+) ≤ ‖P (f∗i )‖q

Lq(Rn
+).
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Hence we may assume {fi}i is a nonnegative radially decreasing sequence.
For any fi ∈ Lp(∂R

n
+) and λ > 0, set fλ

i (ξ) = λ−
n−1

p fi( ξ
λ ), then it is clear that ‖fλ

i ‖Lp(∂R
n
+)

= ‖fi‖Lp(∂R
n
+) and ‖P (fλ

i )‖Lq(Rn
+) = ‖P (fi)‖Lq(Rn

+). Hence {fλ
i }i is also a maximizing sequence

for problem (3.1). For convenience, denote

e1 = (1, 0, . . . , 0) ∈ R
n and ai = sup

λ>0
fλ

i (e1) = sup
λ>0

λ−
n−1

p fi

(
e1
λ

)
.

It follows that

0 ≤ fi(ξ) ≤ ai|ξ|−
n−1

p and ‖fi‖Lp,∞(∂R
n
+) ≤ w

1
p

n−2ai.

In the proof of Theorem 1.1, we have obtained that for 2 ≤ α < n and 1 < p < n−1
α−2 , there

holds

‖P (f)‖Lq
w(Rn

+) ≤ Cn,α,p,q′‖f‖Lp(∂R
n
+). (3.2)

Given f a measurable function on ∂R
n
+, 0 < r, s < +∞, define the Lorentz norm with indices

r and s as

‖f‖Lr,s(∂R
n
+) =

⎧⎪⎨
⎪⎩

( ∫ ∞

0

(t
1
r f �(t))s dt

t

) 1
s

, if s <∞,

supt>0 t
1
r f �(t), if s = ∞,

where f �(t) denotes the decreasing rearrangement of f . By the Lorentz interpolation theorem,
we have

‖P (f)‖Lq(Rn
+) ≤ Cn,α,p,q′‖f‖Lp,q(∂R

n
+). (3.3)

Combining the above estimate, we derive that

‖P (f)‖Lq(Rn
+) ≤ Cn,α,p,q′‖f‖Lp,q(∂R

n
+)

≤ Cn,α,p,q′‖f‖1− p
q

Lp,∞‖f‖
p
q

Lp

≤ Cn,α,p,q′a
1− p

q

i ,

which implies ai ≥ Cn,α,p,q′ > 0. Then, we may choose λi > 0 such that fλi
i (e1) ≥ Cn,α,p,q′ > 0.

Hence, we may demand our maximizing sequence {fi}i satisfying fi(1) ≥ Cn,α,p,q′ > 0. On the
other hand, for any R > 0, direct calculation yields

vn−1f
p
i (R)Rn−1 ≤ ωn−2

∫ R

0

fp
i (r)rn−2dr

≤ ωn−2

∫ +∞

0

fp
i (r)rn−2dr

=
∫

∂R
n
+

fp
i (x)dx

= 1,

which implies that

0 ≤ fi(ξ) ≤ v
− 1

p

n−1|ξ|−
n−1

p . (3.4)

Following Lieb’s argument [39] based on the Helly theorem, after passing to a subsequence we
may find a nonnegative, radially decreasing function f such that fi → f almost everywhere
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in ∂R
n
+. Clearly, we have f(ξ) ≥ Cn,α,p,q′ > 0 for |ξ| ≤ 1. With the help of the Brezis–Lieb

theorem (see [8]), we obtain

‖fi − f‖p
Lp(∂R

n
+) = ‖fi‖p

Lp(Rn−1) − ‖f‖p
Lp(∂R

n
+) + o(1)

= 1 − ‖f‖p
Lp(∂R

n
+) + o(1).

(3.5)

From (3.4), we know

P (fi)(x) ≤
∫

∂R
n
+

xn

(|ξ − x′|2 + x2
n)

n+2−α
2

1

|ξ|n−1
p

dξ. (3.6)

According to the assumptions of Theorem 1.1, we can obtain that α < n−1
p + 2, which implies

that the right hand of (3.6) is finite. Then it follows from the dominated convergence theorem
that P (fi)(x) → P (f)(x) for x ∈ R

n
+. Note that

lim
i→∞

‖P (fi)‖q
Lq(Rn

+) = ‖P (f)‖q
Lq(Rn

+) + lim
i→∞

‖P (fi) − P (f)‖q
Lq(Rn

+)

≤ Cn,α,p,q′‖f‖q
Lp(∂R

n
+) + Cn,α,p,q′ lim

i→∞
‖fi − f‖q

Lp(∂R
n
+),

which implies that
1 ≤ ‖f‖q

Lp(∂R
n
+) + (1 − ‖f‖p

Lp(∂R
n
+))

q
p .

Since q > p and f �= 0, ‖f‖Lp(Rn−1) must be equal to 1. Hence fi → f in Lp(Rn−1) and f is a
actually maximizer for the problem (3.1). Then we complete the proof of Theorem 1.4. �

4 The Proof of Theorem 1.5

Through out this section, we will give the regularity estimate for extremal function of the
integral inequality (1.5). For this purpose, we need the following two regularity lifting lemmas.
The main idea of this proof is similar to that of regularity lifting proved by Hang [30]. Our case
is more complicated and we give a detailed proof here. For simplicity, we give the following
notation. Define

BR(x) = {y ∈ R
n : | y − x |< R, x ∈ R

n},
Bn−1

R (x) = {y ∈ ∂R
n
+ : | y − x |< R, x ∈ ∂R

n
+},

B+
R(x) = {y = (y1, y2, . . . , yn) ∈ BR(x) : yn > 0, x ∈ R

n
+}.

For x = 0, we write BR = BR(0), Bn−1
R = Bn−1

R (0), B+
R = B+

R(0).

Lemma 4.1 For 2 ≤ α < n, n ≥ 3, 1 < a, b ≤ +∞, 1 ≤ r < +∞, n
n−α+1 < p < q < +∞

satisfying
α− 1
n

<
r

q
+

1
a
<
r

p
+

1
a
≤ 1, and

n− 1
b

+
n

ar
+ (2 − α) =

α− 1
r

,

if we suppose that u, v ∈ Lp(B+
R), U ∈ La(B+

R), F ∈ Lb(Bn−1
R ) are all nonnegative functions

satisfying v|B+
R/2

∈ Lq(B+
R/2),

‖U‖1/r

La(B+
R)
‖F‖Lb(Bn−1

R ) ≤ ε(n, α, p, q, r, a, b) small

and

u(x) ≤
∫

Bn−1
R

P (x, ξ, α)F (ξ)
(∫

B+
R

P (y, ξ, α)U(y)u(y)rdy

)1/r

dξ + v(x) (4.1)
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for x ∈ B+
R , then we have u|B+

R/4
∈ Lq(B+

R/4) and

‖u‖Lq(B+
R/4)

≤ c(n, α, p, q, r, a, b)(R
n
q −n

p ‖u‖Lp(B+
R) + ‖v‖Lq(B+

R/2)
).

Proof By scaling, we may assume R = 1. We carry out the proof of Lemma 4.1 by two steps.

Step 1 u, v ∈ Lq(B+
1 ). Denote

f(ξ) =
∫

B+
1

P (x, ξ, α)U(x)u(x)rdx for ξ ∈ Bn−1
1 .

Let p1 and q1 be the numbers satisfying
n− 1
p1

=
nr

p
+
n

a
− (α− 1),

n− 1
q1

=
nr

q
+
n

a
− (α− 1).

Clearly

‖f‖Lp1 (Bn−1
1 ) ≤ C(n, p, r, a)‖U‖La(B+

1 )‖u‖r
Lp(B+

1 )
,

‖f‖Lq1 (Bn−1
1 ) ≤ C(n, q, r, a)‖U‖La(B+

1 )‖u‖r
Lq(B+

1 )
, (4.2)

with the help of the integral inequality (1.6). Straightforward calculations yield that for 0
< s < t ≤ 1

2 and x ∈ B+
s , there holds

u(x) ≤
∫

Bn−1
(s+t)/2

P (x, ξ, α)F (ξ)f(ξ)1/rdξ +
∫

Bn−1
1 \Bn−1

(s+t)/2

P (x, ξ, α)F (ξ)f(ξ)1/rdξ + v(x)

≤
∫

Bn−1
(s+t)/2

P (x, ξ, α)F (ξ)f(ξ)1/rdξ +
c(n, α)

(t− s)n+1−α

∫
Bn−1

1 \Bn−1
(s+t)/2

F (ξ)f(ξ)1/rdξ + v(x)

≤
∫

Bn−1
(s+t)/2

P (x, ξ, α)F (ξ)f(ξ)1/rdξ +
c(n, α, p)

(t− s)n+1−α
‖F‖Lb(Bn−1

1 )‖f‖1/r

Lp1 (Bn−1
1 )

+ v(x)

≤
∫

Bn−1
(s+t)/2

P (x, ξ, α)F (ξ)f(ξ)1/rdξ +
c(n, α, p, q, r, a, b)

(t− s)n+1−α
‖u‖Lp(B+

1 ) + v(x).

Combining this and the inequality (4.2), we obtain

‖u‖Lq(B+
s ) ≤ c(n, α, q, r, a)‖F‖Lb(Bn−1

1 )‖f‖1/r

Lq1 (Bn−1
(s+t)/2

+
c(n, α, p, q, r, a, b)

(t− s)n+1−α
‖u‖Lp(B+

1 ) + ‖v‖Lq(B+
1/2)

. (4.3)

On the other hand, for ξ ∈ Bn−1
(s+t)/2, we also have

f(ξ) =
∫

B+
t

P (x, ξ, α)U(x)u(x)rdx+
∫

B+
1 \B+

t

P (x, ξ, α)U(x)u(x)rdx

≤
∫

B+
t

P (x, ξ, α)U(x)u(x)rdx+
c(n)

(t− s)n+1−α

∫
B+

1 \B+
t

U(x)u(x)rdx

≤
∫

B+
t

P (x, ξ, α)U(x)u(x)rdx+
c(n, p, r, a)

(t− s)n+1−α
‖U‖La(B+

1 )‖u‖r
Lp(B+

1 )
.

Then it follows

‖f‖Lq1 (Bn−1
(s+t)/2)

≤ c(n, α, q, r, a)‖U‖La(B+
1 )‖u‖r

Lq(B+
1 )

+
c(n, α, p, r, a)
(t− s)n+1−α

‖U‖La(B+
1 )‖u‖r

Lp(B+
1 )
. (4.4)
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Thanks to the inequalities (4.3) and (4.4), one can derive

‖u‖Lq(B+
s ) ≤

1
2
‖u‖Lq(B+

t ) +
c(n, α, p, q, r, a, b)

(t− s)n+1−α
‖u‖Lp(B+

1 ) + ‖v‖Lq(B+
1/2)

.

For sufficiently small ε(n, α, p, q, r, a, b), one can employ the usual iteration procedure (see [28])
to obtain

‖u‖Lq(B+
1/4)

≤ c(n, α, p, q, r, a, b)(‖u‖Lp(B+
1 ) + ‖v‖Lq(B+

1/2)
).

Step 2 We will show the above estimate still holds if we only assume u ∈ Lp(B+
1 ), v ∈

Lq(B+
1/2). According to the inequality (4.1), we can find that there exists a function 0 ≤ η(x) ≤

1 such that

u(x) ≤ η(x)
∫

Bn−1
1

P (x, ξ, α)F (ξ)
(∫

B+
1

P (y, ξ, α)U(y)u(y)rdy

)1/r

dξ + η(x)v(x).

We may define a map T by

T (ϕ) = η(x)
∫

Bn−1
1

P (x, ξ, α)F (ξ)
(∫

B+
1

P (y, ξ, α)U(y)|ϕ(y)|rdy
)1/r

dξ.

Choosing small enough ε(n, α, p, q, r, a, b), in view of the integral inequality (1.6), we have

‖T (ϕ)‖Lp(B+
1 ) ≤ c(n, α, p, q, r, a, b)‖U‖1/r

La(B+
1 )
‖F‖Lb(Bn−1

1 )‖ϕ‖Lp(B+
1 ) ≤

1
2
‖ϕ‖Lp(B+

1 ),

‖T (ϕ)‖Lq(B+
1 ) ≤ c(n, α, p, q, r, a, b)‖U‖1/r

La(B+
1 )
‖F‖Lb(Bn−1

1 )‖ϕ‖Lq(B+
1 ) ≤

1
2
‖ϕ‖Lq(B+

1 ).

Furthermore, one can utilize the Minkowski inequality to obtain that for ϕ, ψ ∈ Lp(B+
1 ),

|T (ϕ)(x) − T (ψ)(x)| ≤ T (|ϕ− ψ|)(x) for x ∈ B+
1 ,

which implies

‖T (ϕ) − T (ψ)‖Lp(B+
1 ) ≤ ‖T (|ϕ− ψ|)‖Lp(B+

1 ) ≤
1
2
‖ϕ− ψ‖Lp(B+

1 ).

Similarly, we also obtain

‖T (ϕ) − T (ψ)‖Lq(B+
1 ) ≤

1
2
‖ϕ− ψ‖Lq(B+

1 )

for any ϕ and ψ ∈ Lq(B+
1 ). Set vk(x) = min{v(x), k}, using the regular lifting theorem with

contracting operators which can be seen in [13, 45], we may find a unique uk ∈ Lq(B+
1 ) such

that

uk(x) = T (uk)(x)η(x)vk(x)

= η(x)
∫

B1

P (x, ξ, α)F (ξ)
(∫

B+
1

P (y, ξ, α)U(y)u(y)rdy

)1/r

dξ + η(x)vk(x).

Applying a priori estimate to uk, we obtain

‖uk‖Lq(B+
1/4)

≤ c(n, p, r, a)(‖uk‖Lp(B+
1 ) + ‖v‖Lq(B+

1/2)
). (4.5)

Observing that

u(x) = T (u)(x) + η(x)v(x),
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and using the contraction of operator T , we have

‖uk − u‖Lp(B+
1 ) ≤ ‖T (uk − T (u))‖Lp(B+

1 ) + ‖vk − v‖Lp(B+
1 )

≤ 1
2
‖uk − u‖Lp(B+

1 ) + ‖vk − v‖Lp(B+
1 ).

Hence ‖uk − u‖Lp(B+
1 ) ≤ 2‖vk − v‖Lp(B+

1 ) → 0 as k → ∞. Taking a limit process in the
inequality (4.5), we conclude that

‖u‖Lq(B+
1/4)

≤ c(n, α, p, q, r, a, b)(‖u‖Lp(B+
1 ) + ‖v‖Lq(B+

1/2)
)

for u ∈ Lp(B+
1 ), v ∈ Lq(B+

1/2). Then we accomplish the proof of Lemma 4.1. �

Lemma 4.2 For 2 ≤ α < n, n ≥ 3, 1 < a, b ≤ +∞, 1 ≤ r < +∞, n−1
n−α+1 < p < q < +∞

satisfying

α− 2
n− 1

<
r

q
+

1
a
<
r

p
+

1
a
≤ 1, and

n

b
+
n− 1
ar

+
2 − α

r
= α− 1,

if we suppose that f and g ∈ Lp(Bn−1
R ), F ∈ La(Bn−1

R ), U ∈ Lb(B+
R) are all nonnegative

functions with g|BR/2 ∈ Lq(Bn−1
R/2 ),

‖F‖1/r

La(Bn−1
R )

‖U‖Lb(B+
R) ≤ ε(n, p, α, q, r, a, b) small

and

f(ξ) ≤
∫

B+
R

P (x, ξ, α)U(x)
(∫

Bn−1
R

P (x, ξ, α)F (ξ)f(ξ)rdξ

)1/r

dx+ g(ξ)

for ξ ∈ BR, then we have f |Bn−1
R/4

∈ Lq(BR/4) and

‖f‖Lq(Bn−1
R/4 ) ≤ c(n, α, p, q, r, a, b)(R

n−1
q −n−1

p ‖f‖Lp(Bn−1
R ) + ‖g‖Lq(Bn−1

R/2 )).

Proof Without loss of generality, we may assume that R = 1. As we did in Lemma 4.1, we
first suppose that f and g ∈ Lq(Bn−1

1 ). For x ∈ B+
1 , define

u(x) =
∫

Bn−1
1

P (x, ξ, α)F (ξ)f(ξ)rdξ.

By the integral inequality (1.6) again, we derive that

‖u‖Lp1 (B+
1 ) ≤ C(n, p, r, a)‖F‖La(Bn−1

1 )‖f‖r
Lp(Bn−1

1 )
,

‖u‖Lq1 (B+
1 ) ≤ C(n, q, r, a)‖F‖La(Bn−1

1 )‖f‖r
Lq(Bn−1

1 )
,

where
n

p1
=
n− 1
a

+
(n− 1)r

p
+ (2 − α),

n

q1
=
n− 1
a

+
(n− 1)r

q
+ (2 − α).

For 0 < s < t ≤ 1
2 and ξ ∈ Bn−1

s , a similar argument as we did in the proof of Lemma 4.1 leads
to

f(ξ) ≤
∫

B+
(s+t)/2

P (x, ξ, α)U(x)u(x)1/rdx+
c(n, α, p, q, r, a, b)

(t− s)n+1−α
‖f‖Lp(Bn−1

1 ) + g(ξ).

Then it follows

‖f‖Lq(Bn−1
s ) ≤ c(n, α, q, r, b)‖U‖Lb(B+

1 )‖u‖1/r

Lq1 (B+
(s+t)/2)
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+
c(n, p, q, r, a)
(t− s)n+1−α

‖f‖Lp(Bn−1
1 ) + ‖g‖Lq(Bn−1

1/2 ). (4.6)

On the other hand, for x ∈ B+
(s+t)/2, similarly, we also obtain

u(x) ≤
∫

Bt

P (x, ξ)F (ξ)f(ξ)rdξ +
c(n, α, p, r, a)
(t− s)n+1−α

‖F‖La(Bn−1
1 )‖f‖r

Lp(Bn−1
1 )

and

‖u‖Lq1 (B+
(s+t)/2)

≤ c(n, α, q, r, a)‖F‖La(Bn−1
1 )‖f‖r

Lq(Bn−1
1 )

+
c(n, α, p, r, a)
(t− s)n+1−α

‖F‖La(Bn−1
1 )‖f‖r

Lp(Bn−1
1 )

. (4.7)

Gathering the inequalities (4.6) and (4.7), we see

‖f‖Lq(Bn−1
s ) ≤

1
2
‖f‖Lq(Bn−1

t ) +
c(n, α, p, q, r, a, b)

(t− s)n+1−α
‖f‖Lp(Bn−1

1 ) + ‖g‖Lq(Bn−1
1/2 ),

which implies

‖f‖Lq(Bn−1
1/4 ) ≤ c(n, α, p, q, r, a, b)(‖f‖Lp(Bn−1

1 ) + ‖g‖Lq(Bn−1
1/2 )).

if we choose sufficiently small ε(n, α, p, q, r, a, b). With this a priori estimate at hands, we may
proceed in the same way as the proof of Lemma 4.1 to obtain the above estimate still holds if
we suppose that f ∈ Lp(Bn−1

1 ), v ∈ Lq(Bn−1
1/2 ). �

Proof of Theorem 1.5 Define that

vR(x) =
∫

∂R
n
+\Bn−1

R

P (x, ξ, α)u(ξ)p0dξ, uR(ξ) =
∫

R
n
+\B+

R

P (x, ξ, α)v(x)q0dx.

We first verify that v ∈ Lq0+1
loc (Rn

+) and vR ∈ Lq0+1(B+
R) ∩ L∞

loc(B
+
R ∪ Bn−1

R ). In fact, from
u ∈ Lp0+1

loc (Rn−1), one can see that u < ∞ a.e. on R
n−1. The integral system (1.10) implies

v(x) <∞ a.e. on R
n
+, then there exists x0 ∈ B+

R such that v(x0) <∞. Then, it follows that
∫

∂R
n
+\Bn−1

R

u(ξ)p0

|x0 − ξ|n+2−α
dξ <∞ and

∫
∂R

n
+\Bn−1

R

u(ξ)p0

|ξ|n+2−α
dξ <∞.

For 0 < θ < 1, x ∈ B+
θR, there holds

vR(x) ≤ c(n, α)R
(1 − θ)n+2−α

∫
∂R

n
+\Bn−1

R

u(ξ)p0

|ξ|n+2−α
dξ,

which implies that vR ∈ L∞
loc(B

+
R ∪ Bn−1

R ). Thanks to the integral inequality (1.6), we derive
that ∫

Bn−1
R

P (x, ξ, α)u(ξ)p0dξ ∈ Lq0+1(Rn
+).

Hence

v ∈ Lq0+1
loc (B+

R ∪Bn−1
R ).

For sufficiently large R, we have

v ∈ Lq0+1
loc (Rn

+) and vR ∈ Lq0+1(B+
R).
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We now turn to verify that uR ∈ Lp0+1(Bn−1
R ) ∩ L∞

loc(B
n−1
R ). Since u(x) ∈ Lp0+1

loc (∂R
n
+), one

can find ξ0 ∈ Bn−1
R such that ∫

R
n
+

P (x, ξ0, α)v(x)q0dx <∞,

which implies ∫
R

n
+\B+

R

xn

|x|n+2−α
v(x)q0dx <∞.

When 0 < θ < 1, ξ ∈ Bn−1
θR , applying similar estimate as vR, one can calculate that

uR(ξ) ≤ c(n, α)
(1 − θ)n+2−α

∫
R

n
+\B+

R

xn

|x|n+2−α
v(x)q0dx,

which leads to uR ∈ L∞
loc(B

n−1
R ). Now we are going to establish the regularity of u. Our proof

can be divided into two cases.

Case 1 For n+2
2 ≤ α < n or 0 < α < n+2

2 , 0 < p0 <
n+2α−4
n+2−2α . In this case, we have q0 > 1.

Pick a number r such that
1 ≤ r < q0 and r >

1
p0
,

then it follows that

u(ξ)
1
r ≤

( ∫
B+

R

P (x, ξ, α)v(x)q0dx

) 1
r

+ uR(ξ)
1
r .

Hence

v(x) =
∫

Bn−1
R

P (x, ξ, α)u(ξ)p0− 1
r u(ξ)

1
r dξ + vR(x)

≤
∫

Bn−1
R

P (x, ξ, α)u(ξ)p0− 1
r

( ∫
B+

R

P (y, ξ, α)v(y)q0−rv(y)rdy

) 1
r

dξ + ṽR(x),

where
ṽR(x) =

∫
Bn−1

R

P (x, ξ, α)u(ξ)p0− 1
r uR(ξ)

1
r dξ + vR(x).

Since u(ξ) ∈ Lp0+1(Bn−1
R ) and uR(ξ) ≤ u(ξ), then it follows from the inequality (1.6) that

ṽR ∈ Lq0+1(B+
R). On the other hand, for 0 < θ < 1, x ∈ B+

θR, we have∫
Bn−1

R

P (x, ξ, α)u(ξ)p0− 1
r uR(ξ)

1
r dξ

≤ ‖uR‖
1
r

L∞(Bn−1
(1+θ)R/2)

∫
Bn−1

(1+θ)R/2

P (x, ξ, α)u(ξ)p0− 1
r dξ

+
c(n, α)

(1 − θ)n+2−αRn+1−α

∫
Bn−1

R \Bn−1
(1+θ)R/2

u(ξ)p0− 1
r uR(ξ)

1
r dξ

≤ ‖uR‖
1
r

L∞(Bn−1
(1+θ)R/2)

∫
Bn−1

(1+θ)R/2

P (x, ξ, α)u(ξ)p0− 1
r dξ

+
c(n, α, p0)

(1 − θ)n+2−αR
(n+1−α)p0

p0+1

‖u‖p0

Lp0+1(Bn−1
R )

.
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If (n+ 1 − α)p0r + (2 − α)r − (n− 1) ≤ 0, then ṽR ∈ Lq
loc(B

+
R) for any q0 + 1 < q <∞. Set

a =
q0 + 1
q0 − r

, b =
(n− 1)(q0 + 1)r

(α− 1)(q0 + 1) + (α− 2)(q0 + 1)r − n(q0 − r)
.

Simple computations lead to

n

ra
+
n− 1
b

+ (2 − α) =
α− 1
r

and
r

q0 + 1
+

1
a

=
(α− 1)p0 + (n+ α− 2)

n(p0 + 1)
< 1.

For q0+1 < q <∞, it follows from Lemma 4.1 that v|B+
R/4

∈ Lq(B+
R/4). Hence for any ξ ∈ BR/8,

u(ξ) =
∫

B+
R/4

P (x, ξ, α)vq0(x)dx+ uR/4(ξ)

≤ C(n, q)‖v‖q0

Lq(B+
R/4)

+ uR/4(ξ) � 1.

Since every point may be viewed as a center, we deduce that u ∈ L∞
loc(∂R

n
+) and v ∈ L∞

loc(R
n
+).

For any R > 0, x ∈ BR, ξ ∈ B+
R , one can apply∫

∂R
n
+\Bn−1

R

u(ξ)p0

|ξ|n+2−α
dξ <∞ and

∫
R

n
+\B+

R

xn

|x|n+2−α
v(x)q0dx <∞

to obtain vR ∈ C∞(B+
R ∪ Bn−1

R ) and uR ∈ C∞(BR), which yields that u ∈ Cγ
loc(R

n−1) for
0 < γ < 1. By the standard potential theory (see [25, Chap. 4]) and bootstrap method, we see
that (u, v) ∈ C∞(∂R

n
+) × C∞(Rn

+).
If (n+1−α)p0r+(2−α)r− (n−1) > 0, then with the help of the integral inequality (1.6),

we derive that ṽR ∈ L
n(p0+1)r

(n+1−α)p0r+(2−α)r−(n−1)

loc (B+
R ∪Bn−1

R ). Denote

a =
q0 + 1
q0 − r

, b =
(n− 1)(q0 + 1)r

(α− 1)(q0 + 1) + (α− 2)(q0 + 1)r − n(q0 − r)
.

Then
n

ra
+
n− 1
b

+ (2 − α) =
α− 1
r

and
r

q0 + 1
+

1
a

=
(α− 1)p0 + (n+ α− 2)

n(p0 + 1)
< 1.

For
q0 + 1 < q <

n(p0 + 1)r
(n+ 1 − α)p0r + (2 − α)r − (n− 1)

,

we have r
q + 1

a > α−1
n . This together with Lemma 4.1 yields that v|B+

R/4
∈ Lq(B+

R/4). Since
n(p0+1)r

(n+1−α)p0r+(2−α)r−(n−1) >
n

α−1q0, we may choose that q > n
α−1q0 such that

u(ξ) =
∫

B+
R/4

P (x, ξ, α)vq0(x)dx+ uR/4(ξ)

≤ C(n, q, α)‖v‖q0

Lq(B+
R/4)

+ uR/4(ξ).

In the same way as we did in previous argument, we conclude that (u, v) ∈ C∞(∂R
n
+)×C∞(Rn

+).

Case 2 2 ≤ α < n+2
2 , p0 ≥ n+2α−4

n+2−2α . Choosing a number r satisfying

1 ≤ r ≤ p0 and r ≥ 1
q0
,

then one can get

v(x)
1
r ≤

( ∫
Bn−1

R

P (x, ξ, α)u(ξ)p0dξ

) 1
r

+ vR(x)
1
r .
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Hence

u(ξ) ≤
∫

B+
R

P (x, ξ, α)v(x)q0−r−1
( ∫

BR

P (x, ξ)u(ξ)p0−ru(ξ)rdξ

) 1
r

dx+ gR(ξ),

where
gR(ξ) =

∫
B+

R

P (x, ξ, α)v(x)q0−r−1
vR(x)

1
r dx+ uR(ξ).

In view of v ∈ Lq0+1(B+
R), vR ≤ v and the inequality (1.6), we derive that gR ∈ Lp0+1(BR).

On the other hand, for 0 < θ < 1 and ξ ∈ BθR, we also have∫
B+

R

P (x, ξ, α)v(x)q0−r−1
vR(x)

1
r dx

≤ ‖vR‖
1
r

L∞(B+
(1+θ)R/2)

∫
B+

(1+θ)R/2

P (x, ξ, α)v(x)q0−r−1
dx

+
c(n)

(1 − θ)n+2−αRn+1−α

∫
B+

R\B+
(1+θ)R/2

v(x)q0−r−1
vR(x)

1
r dx

≤ ‖vR‖
1
r

L∞(B+
1+θ
2 R

)

∫
B(1+θ)R/2

P (x, ξ, α)v(x)q0−r−1
dx

+
c(n, p0)

(1 − θ)n+2−αR
(n+1−α)q0

q0+1

‖v‖q0

Lq0+1(B+
R)
.

If n(q0 − r−1) − (α− 1)(q0 + 1) < 0, then gR ∈ Lq
loc(B

n−1
R ) for any p0 + 1 < q <∞. Set

a =
p0 + 1
p0 − r

, b =
n(p0 + 1)r

(p0 + 1)r + (α− 2)(p0 + 1) − (n− 1)(p0 − r)
.

Direct computations show that n−1
ra + n

b + 2−α
r = α − 1, r

p0+1 + 1
a = p0

p0+1 ∈ (α−2
n−1 , 1). Hence,

one can apply Lemma 4.2 to obtain that u ∈ Lq(Bn−1
R/4 ). Then for any x ∈ B+

R/8,

v(x) =
∫

Bn−1
R/4

P (x, ξ, α)up0(ξ)dξ + vR/4(ξ)

≤ C(n, q, α)‖u‖p0

Lq(Bn−1
R/4 )

+ vR/4(ξ) � 1.

If n(q0 − r−1) − (α− 1)(q0 + 1) > 0, then gR ∈ L
(n−1)(q0+1)

n(q0−r−1)−(α−1)(q0+1)

loc (Bn−1
R ). Arguing this

as we did in Case 1, we can also v(x) ∈ L∞(B+
R/8). Hence by the standard bootstrap method,

we conclude that u ∈ C∞(∂R
n
+) and v(x) ∈ C∞(Rn

+).

5 The Proof of Theorem 1.7

In this section, we will give some necessary and sufficient conditions for the existence of positive
solutions to the integral system (1.10). For 2 < α < n, we suppose that (u, v) ∈ Lp0+1(∂R

n
+)×

Lq0+1(Rn
+) is a pair of positive solutions of the following integral system associated with the

fractional Poisson kernel⎧⎪⎪⎨
⎪⎪⎩
u(ξ) =

∫
R

n
+

P (x, ξ, α)vq0(x)dx, ξ ∈ ∂R
n
+,

v(x) =
∫

∂R
n
+

P (x, ξ, α)up0(ξ)dξ, x ∈ R
n
+.
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Applying integration by parts formula, we obtain∫
Bn−1

R

up0(ξ)(ξ · ∇u(ξ))dξ

=
1

1 + p0

∫
Bn−1

R

ξ · ∇(u1+p0(ξ))dξ

=
R

1 + p0

∫
∂Bn−1

R

up0+1(ξ)dσ − n− 1
1 + p0

∫
Bn−1

R

up0+1(ξ)dξ

and ∫
B+

R

vq0(x)(x · ∇v(x))dx

=
R

q0 + 1

∫
∂B+

R

vq0+1(x)dσ − n

q0 + 1

∫
B+

R

vq0+1(x)dx.

Then it follows from (u, v) ∈ Lp0+1(∂R
n
+) × Lq0+1(Rn

+) that there exists Rj → +∞ such that

R

∫
∂Bn−1

Rj

up0+1(ξ)dσ → 0, R

∫
∂B+

Rj

vq0+1(x)dσ → 0.

Combining the above estimate, we derive that∫
∂R

n
+

up0(ξ)(ξ · ∇u(ξ))dξ +
∫

R
n
+

vq0+1(x)(x · ∇v(x))dx

= − n− 1
p0 + 1

∫
∂R

n
+

up0+1(ξ)dξ − n

q0 + 1

∫
R

n
+

vq0+1(x)dx. (5.1)

Thanks to the integral system (1.5), one can write

∇u(ξ) · ξ =
du(ρx)
dp

|ρ=0

= −(n+ 2 − α)
∫

R
n
+

P (x, ξ, α)|x− ξ|−2(ξ − x) · ξvq0(x)dx (5.2)

and

∇v(x) · x =
dv(ρx)
dρ

∣∣∣∣
ρ=0

= −(n+ 2 − α)
∫

∂R
n
+

P (x, ξ, α)|x− ξ|−2(x− ξ) · xup0(x)dξ

+
∫

∂R
n
+

P (x, ξ, α)up0(ξ)dξ. (5.3)

Hence, it follows that∫
∂R

n
+

up0(ξ)(ξ · ∇u(ξ))dξ +
∫

R
n
+

vq0(x)(x · ∇v(x))dx

= −(n+ 1 − α)
∫

R
n
+

∫
∂R

n
+

P (x, ξ, α)up0(ξ)vq0(x)dξdx

= −(n+ 1 − α)
∫

∂R
n
+

up0+1(ξ)dξ
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= −(n+ 1 − α)
∫

R
n
+

vq0+1(x)dx.

This together with (5.1) implies that n−1
p0+1 + n

q0+1 = n+ 1 − α.

6 The Proof of Theorem 1.10

Throughout this section, we will utilize the method of moving plane in integral forms developed
by Chen, Li and Ou [15] to establish the radial symmetry for each pair of solutions (u, v) of
the integral system (1.10). In order to state our result, we first introduce some notations. For
λ ∈ R, ξ = (ξ1, ξ′′) ∈ ∂R

n
+ and x = (x1, x

′′) ∈ R
n
+, set

Hλ = {ξ ∈ ∂R
n
+ : ξ1 < λ}, Qλ = {x ∈ R

n
+ : x1 < λ} ξλ = (2λ− ξ1, ξ

′′) xλ = (2λ− x1, x
′′).

We also write uλ(ξ) = u(ξλ) and vλ(x) = v(x). Let (u, v) ∈ Lp0+1(∂R
n
+)×Lq0+1(Rn

+) be a pair
of positive solutions of the integral system (1.10)

Through Theorem 1.5, we can see that (u, v) ∈ C∞(∂R
n
+) × C∞(Rn

+).

Lemma 6.1 If (u, v) is a pair of nonnegative solutions of the integral system (1.10), for any
ξ ∈ ∂R

n
+ and x ∈ R

n
+, we have

uλ(ξ) − u(ξ) =
∫

Qλ

(P (x, ξ, α)− P (x, ξλ, α))(vq0
λ (x) − vq0(x))dx

and

vλ(x) − v(x) =
∫

Hλ

(P (x, ξ, α)− P (x, ξλ, α))(up0(ξ) − up0
λ (ξ))dξ.

Proof Thanks to the integral system (1.10) and the change of variable, we have

u(ξ) =
∫

Qλ

P (x, ξ, α)vq0(x)dx+
∫

Qλ

P (xλ, ξ, α)vq0
λ (x)dx

and

uλ(ξ) =
∫

Qλ

P (x, ξλ, α)vq0(x)dx+
∫

Qλ

P (xλ, ξλ, α)vq0
λ (x)dx.

Since P (x, ξλ, α) = P (xλ, ξ, α) and P (xλ, ξλ, α) = P (x, ξ, α), one can write

uλ(ξ) − u(ξ) =
∫

Qλ

P (x, ξ, α)(vq0
λ (x) − vq0(x)) +

∫
Qλ

P (x, ξλ, α)(vq0(x) − vq0
λ (x))

=
∫

Qλ

(P (x, ξ, α)− P (x, ξλ, α))(vq0
λ (x) − vq0(x))dx.

Similarly, we can also obtain

vλ(x) − v(x) =
∫

Hλ

(P (x, ξ, α)− P (x, ξλ, α))(up0
λ (ξ) − up0(ξ))dξ.

Then we accomplish the proof of Lemma 6.1. �
Now we continue with the proof of Theorem 1.10, the proof will be separated from two

steps.

Step 1 We are going to show that

uλ(ξ) − u(ξ) ≥ 0, vλ(x) − v(x) ≥ 0, ∀ ξ ∈ Hλ, x ∈ Qλ (6.1)
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for λ sufficiently negative. Define

Hu
λ = {ξ ∈ Hλ | uλ(x) − u(x) < 0}, Qv

λ = {x ∈ Qλ | vλ(x) − v(x) < 0}.
It suffices to show that for sufficiently negative λ, both Hu

λ and Qv
λ must be empty set.

One can utilize the mean value theorem and Lemma 6.1 to obtain for any ξ ∈ Hu
λ and

x ∈ Qv
λ, there holds

u(ξ) − uλ(ξ) =
∫

Qλ

(P (x, ξ, α)− P (x, ξλ, α))(vq0(x) − vq0
λ (x))dx

≤
∫

Qv
λ

P (x, ξ, α)(vq0(x) − vq0
λ (x))dx

≤ q0

∫
Qv

λ

P (x, ξ, α)vq0−1(x)(v(x) − vλ(x))dx

and

v(x) − vλ(x) =
∫

Hλ

(P (x, ξ, α)− P (x, ξλ, α))(up0(ξ) − uq0
λ (ξ))dξ

≤
∫

Hu
λ

P (x, ξ, α)(up0(ξ) − vp0
λ (ξ))dξ

≤ p0

∫
Hv

λ

P (x, ξ, α)up0−1(ξ)(u(ξ)− uλ(ξ))dξ.

By the integrable condition (u, v) ∈ Lp0+1(∂R
n
+) × Lq0+1(Rn

+) and the inequalities (1.5), it is
easy to see that

‖uλ − u‖Lp0+1(Hu
λ ) ≤ q0‖v‖q0−1

Lq0+1(Qλ)
‖vλ − v‖Lq0+1(Qv

λ) (6.2)

and

‖vλ − v‖Lq0+1(Qv
λ) ≤ p0‖u‖p0−1

Lp0+1(Hλ)
‖uλ − u‖Lp0+1(Hu

λ ), (6.3)

which implies

‖uλ − u‖Lp0+1(Hu
λ ) ≤ p0q0‖v‖q0−1

Lq0+1(Qλ)
‖u‖p0−1

Lp0+1(Hλ)
‖uλ − u‖Lp0+1(Hu

λ ) (6.4)

and

‖vλ − v‖Lq0+1(Qv
λ) ≤ p0q0‖v‖q0−1

Lq0+1(Qλ)
‖u‖p0−1

Lp0+1(Hλ)
‖vλ − v‖Lq0+1(Qu

λ). (6.5)

According to the conditions (u, v) ∈ Lp0+1(∂R
n
+)×Lq0+1(Rn

+), it is possible for us to choose
sufficiently negative λ such that

‖uλ − u‖Lp0+1(Hu
λ ) ≤

1
2
‖uλ − u‖Lp0+1(Hu

λ ), ‖vλ − v‖Lq0+1(Qv
λ) ≤

1
2
‖vλ − v‖Lq0+1(Qv

λ), (6.6)

which implies that Hu
λ and Qv

λ must be empty sets.

Step 2 The inequality (6.1) provides a starting point to move the plane Tλ = {x ∈ R
n : x1 =

λ}. Now we start from the negative infinity of x1-axis and move the plane to the right as long
as (6.1) holds. Set

λ0 = sup{λ | uμ(ξ) ≥ u(ξ), vμ(x) ≥ v(x), μ ≤ λ, ∀ ξ ∈ Hμ, x ∈ Qμ}.
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Suppose that λ0 < 0, we will show that u and v must be symmetric about the plane Tλ0 , that
is

uλ0(ξ) ≡ u(ξ), vλ0(x) ≡ v(x), ∀ ξ ∈ Hλ0 , x ∈ Qλ0 . (6.7)

We argue this by contradiction. We suppose

uλ0(ξ) ≥ u(ξ), vλ0(x) ≥ v(x), but uλ0(ξ) �≡ u(ξ) or vλ0(x) �≡ v(x) ∀ ξ ∈ Hλ0 , x ∈ Qλ0 .

Since uλ0(ξ) �≡ u(ξ) on Hλ0 , through Lemma 6.1, we have uλ0(ξ) > u(ξ) and vλ0(x) > v(x) in
the interior of Hλ0 and Qλ0 respectively.

Next, we are going to illustrate that the plane can be moved further to the right. Equiva-
lently, there exists an ε > 0 such that for any λ ∈ [λ0, λ0 + ε),

uλ(ξ) ≥ u(ξ), vλ(x) ≥ v(x), ∀ ξ ∈ Hλ, x ∈ Qλ. (6.8)

Let
Hu

λ0
= {x ∈ Hλ0 |u(ξ) ≥ uλ0(ξ)}, Qv

λ0
= {x ∈ Qλ0 |v(x) ≥ vλ0(x)}.

It is not hard to obtain that Hu
λ0

and Qv
λ0

are empty sets and limλ→λ0 H
u
λ ⊂ Hu

λ0
, limλ→λ0 Q

v
λ ⊂

Qv
λ0

. Then it follows from (u, v) ∈ Lp0+1(∂R
n
+)×Lq0+1(Rn

+) that one can pick sufficiently small
ε such that

p0q0‖u‖p0−1
Lp0+1(Hu

λ )
‖v‖q0−1

Lq0+1(Qv
λ)

≤ 1
2

for all λ ∈ [λ0, λ0 + ε). Similar estimates as (6.6) yields that

‖u− uλ‖Lp0+1(Hu
λ ) = ‖v − vλ‖Lq0+1(Qv

λ) = 0.

Therefore Hu
λ and Qv

λ must be measure zero, which implies (6.7).
If λ0 = 0, then we can carry out previous procedure in the opposite direction, namely we

move the plan in the negative x1 direction from positive infinity toward the origin. If our
planes Tλ stop somewhere before the origin, we derive the symmetry and monotonicity in x1

direction by the above argument. If they stop at the origin again, we also obtain the symmetry
and monotonicity in the x1 = 0 by combing two inequalities obtained in the two opposite
directions. Replacing the x1 direction with xi direction for i = 1, 2, . . . , n − 1, we derive that
u(ξ) and v(x)|∂R

n
+

must be radially symmetric and monotone decreasing about some point
ξ0 ∈ ∂R

n
+.
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