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Hörmander type theorem on bi-parameter Hardy

spaces for bi-parameter Fourier multipliers
with optimal smoothness

Jiao Chen and Guozhen Lu

Abstract. The main purpose of this paper is to establish, using the bi-
parameter Littlewood–Paley–Stein theory (in particular, the bi-parameter
Littlewood–Paley–Stein square functions), a Hörmander–Mihlin type the-
orem for the following bi-parameter Fourier multipliers on bi-parameter
Hardy spaces Hp(Rn1× Rn2) (0 < p ≤ 1) with optimal smoothness:

Tmf(x1, x2) =
1

(2π)n1+n2

∫
Rn×Rm

m(ξ, η)f̂(ξ, η)e2π(x1ξ+x2η) dξ dη.

One of our results (Theorem 1.7) is the following: assume that m(ξ, η)
is a function on Rn1× Rn1 satisfying

sup
j,k∈Z

‖mj,k‖W (s1 ,s2) < ∞,

with s1 > n1(1/p − 1/2), s2 > n2(1/p − 1/2). Then Tm is bounded from
Hp(Rn1× Rn2) to Hp(Rn1× Rn2) for all 0 < p ≤ 1, and

‖Tm‖Hp→Hp � sup
j,k∈Z

‖mj,k‖W (s1 ,s2) .

Moreover, the smoothness assumption on s1 and s2 is optimal. Here,
mj,k(ξ, η) = m(2jξ, 2kη)Ψ(ξ)Ψ(η), where Ψ(ξ) and Ψ(η) are suitable cut-
off functions on Rn1 and Rn2 , respectively, andW (s1,s2) is a two-parameter
Sobolev space on Rn1×Rn2 . We also establish that under the same smooth-
ness assumption on the multiplierm, ‖Tm‖Hp→Lp �supj,k∈Z

‖mj,k‖W (s1,s2)

and ‖Tm‖CMOp→CMOp � supj,k∈Z
‖mj,k‖W (s1,s2) for all 0 < p ≤ 1. More-

over, ‖Tm‖Lp→Lp � supj,k∈Z
‖mj,k‖W (s1 ,s2) for all 1 < p < ∞ under the

assumption s1 > n1/2 and s2 > n2/2.
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Keywords: Hörmander multiplier, minimal smoothness condition, Littlewood–Paley–Stein square
functions, bi-parameter Hardy Hp spaces, bi-parameter Sobolev spaces.



1542 J. Chen and G. Lu

1. Introduction

The aim of this paper is to consider the minimal smoothness condition on the bi-
parameter Fourier multipliers to guarantee their boundedness on the bi-parameter
Hardy spaces. This is a bi-parameter version of the well-known Hörmander–Mihlin
type multiplier theorem on one-parameter Hardy spaces due to Calderón and
Torchinsky [1].

Let S(Rd) denote the space of Schwartz functions, and let S ′(Rd) denote the

class of tempered distributions. The Fourier transform f̂ and the inverse Fourier
transform f̌ of f ∈ S(Rd) are defined by

Ff(ξ) = f̂(ξ) =

∫
Rd

e−ix·ξf(x) dx , F−1f(ξ) = f̌(x) =
1

(2π)d

∫
Rd

eix·ξf(ξ) dξ.

We first recall the following Mihlin theorem in the linear case [32]. We use [α] to
denote the largest integer not exceeding the real number α.

Theorem 1.1. If a multiplier m ∈ C [n/2]+1(Rn\{0}) satisfies the following con-
dition :

|∂αm(ξ)| ≤ Cα |ξ|−|α|, for all |α| ≤ [n/2] + 1,

then the Fourier multiplier operator m(D)f = F−1[mf̂ ] defined with the symbol
m(ξ) is bounded from Lp(Rn) to Lp(Rn) for all 1 < p <∞.

On the other hand, Hörmander [24] reformulated and improved Mihlin’s the-
orem using the Sobolev regularity of the multiplier. To describe Hörmander’s
theorem, we let Ψ ∈ S(Rd) be a Schwartz function in Rd (with d changing from
time to time as needed) satisfying

(1.1) suppΨ ⊂ {ξ ∈ Rd : 1/2 ≤ |ξ| ≤ 2},
∑
j∈Z

Ψ(ξ/2j) = 1, for all ξ ∈ Rd\{0}.

For s ∈ R, the Sobolev space W s(Rn) consists of all f ∈ S ′(Rn) such that

‖f‖W s � ‖(I −�)s/2f‖L2 <∞,

where (I − �)s/2f = F−1[(1 + |ξ|2)s/2f̂(ξ)] and ξ ∈ Rn. Then the Hörmander
multiplier theorem says:

Theorem 1.2. If m ∈ L∞(Rn) satisfies

sup
j∈Z

‖m(2j·)Ψ‖W s(Rn) <∞ for all s >
n

2
,

where Ψ is the same as in (1.1) when d = n and W s(Rn) is the Sobolev space, then
the Fourier multiplier operator m(D) defined with the symbol m is bounded from
Lp(Rn) to Lp(Rn) for all 1 < p <∞.
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Clearly, Hörmander’s theorem is stronger than Mihlin’s one and the number n/2
cannot be improved in Hörmander’s theorem.

In order to study the boundedness of Fourier multipliers with optimal smooth-
ness on Hardy spaces Hp(Rn) for 0 < p ≤ 1, Calderón and Torchinsky [1] set up
the following Hörmander’s multiplier theorem in Hardy spaces.

Theorem 1.3. If m ∈ L∞(Rn) satisfies

sup
j∈Z

‖m(2j ·)Ψ‖W s(Rn) <∞ for all s >
n

p
− n

2
,

where Ψ is the same as in (1.1) when d = n and W s(Rn) is the Sobolev space, then
the Fourier multiplier operator m(D) defined with the symbol m is bounded from
Hp(Rn) to Hp(Rn) for all 0 < p ≤ 1.

Before we proceed further, we give a brief introduction on the theory of multi-
parameter singular integrals and Hardy spaces. Multi-parameter structures play
an important role in harmonic analysis. On the one hand, the Calderón–Zygmund
operators are extension of the classical Hilbert transform and can be regarded as
centering around singular integrals associated with the Hardy–Littlewood maximal
operator M that commutes with the usual dilations on Rn, δ · x = (δx1, . . . , δxn)
for δ > 0. On the other hand, multi-parameter Calderón–Zygmund operators are
singular integral operators that are extension of the double Hilbert transform and
are associated with the strong maximal functionMS that commutes with the multi-
parameter dilations on Rn, δ · x = (δ1x1, . . . , δnxn) for δ = (δ1, . . . , δn) ∈ Rn

+, [26].

For Calderón–Zygmund theory in this multi-parameter setting, we are inter-
ested in considering operators of the form Tf = K ∗f, where K is homogeneous in
the sense of δ1...δnK(δ ·x) = K(x), or more generally, K(x) satisfies certain differ-
ential inequalities and cancellation conditions such that the kernels δ1...δnK(δ · x)
also satisfy the same bounds. These operators and their non-convolution type
analogues have been studied extensively in the literature. The Lp (1 < p < ∞)
boundedness of such operators of convolution type was established by R. Feffer-
man and E. Stein [15]. To study the endpoint estimates, the multi-parameter
Hardy spaces introduced by Gundy–Stein ([16]) have been further investigated by
R. Fefferman ([13]), Chang and R. Fefferman ([4], [6]). The non-convolution type
multi-parameter singular integral operators were studied by Journé ([27], [28]). We
also refer the reader to the more recent work [10], [11], [12], [31] on boundedness
on multi-parameter Triebel–Lizorkin and Besov spaces for Fourier multipliers and
singular integral operators, Lp estimates for multi-parameter Fourier integral op-
erators [22], [23] and Lp estimates by Street and Stein on multi-parameter singular
Radon transforms [36], [37], [38].

However, as far as the endpoint theory for p = 1 and p = ∞ in the multi-
parameter setting is considered, it is well-known that there is a basic obstacle
to both the multi-parameter Hardy space and the multi-parameter BMO space
theory. The role of cubes in the classical atomic decomposition of one-parameter
Hardy spaces Hp(Rn) is replaced by arbitrary open sets of finite measure in the
multi-parameter Hardy space Hp(Rn1 × Rn2). This makes the multi-parameter
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Hardy space theory more difficult. Motivated by a counterexample of L. Car-
leson [3], the multi-parameter BMO(Rn1× Rn2) and Hardy space Hp(Rn1× Rn2)
theory was developed by Chang and R. Fefferman ([4], [6], [5]). Due to the compli-
cated nature of atoms in multi-parameter Hardy spaces, it was a difficult task to
establish boundedness of singular integral operators from multi-parameter Hardy
spaces Hp to Hp or from Hp to Lp. R. Fefferman discovered a criterion for the Hp

to Lp boundedness of a Calderón–Zygmund operator T obtained by restricting the
action of T to rectangle atoms and applying a geometric lemma due to Journé (see
Journé [27], [28], [29]). However, this beautiful theorem is restricted to two pa-
rameters only as observed by Journé and cannot be applied to the case of three or
more parameters [27], [28]. Subsequently, the Hp to Lp boundedness for Journé’s
class of singular integral operators with arbitrary number of parameters was es-
tablished by J. Pipher [35] by considering directly the action of the operator on
(non-rectangle) atoms. More recently, the boundedness criterion on multiparam-
eter Hardy spaces for Journé’s class of singular integral operators with arbitrary
number of parameters were given in [18], [19].

We are now ready to review the early works on multi-parameter Fourier multi-
pliers in the literature. We refer the reader to definitions of multi-parameter Hardy
spaces Hp(Rn1× Rn2) to Section 2.

R. Fefferman and K.C. Lin [14] extended the Fourier multiplier theorems in
one-parameter setting to product Hardy spaces H1(Rn1 × Rn2) and proved the
following.

Theorem 1.4. Let k = [n1/2]+1, l = [n2/2]+1. Suppose m ∈ Ck(Rn1)×Cl(Rn2)
and ∫

r1<|ξ|≤2r1

∫
r2<|η|≤2r2

|∂αξ ∂βηm(ξ, η)|2 dξ dη ≤ C r1
−2|α|+n1 r2

−2|β|+n2 ,

where |α| ≤ k, |β| ≤ l. Then the multiplier operator Tm maps Hq(Rn1 × Rn2)
boundedly to Lq(Rn1× Rn2) for 1 ≤ q ≤ 2.

Lung-Kee Chen ([9]) extended the above multiplier theorem to product Hardy
spaces Hp(Rn1 × Rn2) for 0 < p ≤ 1 under stronger hypothesis and proved the
following.

Theorem 1.5. Let k = [n1(1/p − 1/2)] + 1, l = [n2(1/p − 1/2)] + 1, 0 < p ≤ 1.
Suppose m ∈ Ck(Rn1)× Cl(Rn2) and

|∂αξ ∂βηm(ξ, η)| ≤ C |ξ|−|α| |η|−|β| for all |α| ≤ k, |β| ≤ l.

Then the multiplier operator Tm maps Hq(Rn1×Rn2) boundedly to Lq(Rn1×Rn2)
for p ≤ q ≤ 2.

Viet-Le Hung extended the above result in [9] under weaker condition on the
multiplier m and proved the following.

Theorem 1.6. Let m be a bounded function in Ck(Rn1)× Cl(Rn2), where

k = [n1(1/p− 1/2)] + 1, l = [n2(1/p− 1/2)] + 1, 0 < p ≤ 1.
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Suppose that∫
Δi×Δj

∑
|α|≤k

∑
|β|≤l

|2i|α| 2j|β| ∂αξ ∂βη (ξuηvm(ξ, η))|2dξ dη ≤ C 2n1i 2n2j 22i|u| 22j|v|,

where Δi = {ξ ∈ Rn1 : 2i ≤ |ξ| ≤ 2i+1}, and a similar definition for Δj,

sup
ξ∈Rn1

{∫
Δj

∑
|β|≤l

|2j|β|∂βη (ηvm(ξ, η))|2| dη
}
≤ C 2n2j 22j|v|,

and

sup
η∈Rn2

{∫
Δi

∑
|β|≤k

|2i|β|∂αξ (ξum(ξ, η))|2| dξ
}
≤ C 2n1i 22i|v|.

Then the Fourier multiplier Tm maps Hq(Rn1× Rn2) boundedly to Lq(Rn1× Rn2)
for p ≤ q ≤ 2.

As we have observed in the above theorems, theHp(Rn1×Rn2) to Lp(Rn1× Rn2)
boundedness has been established in [14], [9], [25] under the smoothness assumption
on the bi-parameter Fourier multiplier, roughly speaking, of order k = [n1(1/p−
1/2)]+1 in the first parameter and l = [n2(1/p−1/2)]+1 in the second parameter.

One of the main goals of this paper is to extend Calderón and Torchinsky’s
Hörmander–Mihlin type multiplier theorem [1] to the setting of product Hardy
spaces and improve those bi-parameter multiplier theorems in [14], [9], [25] by prov-
ing that the bi-parameter multiplier operator is bounded from the bi-parameter
Hardy spaces Hp(Rn1 × Rn2) to Hp(Rn1 × Rn2) for all 0 < p ≤ 1. It is known
that Hp(Rn1× Rn2) � Lp(Rn1× Rn2) and ||f ||Lp(Rn1×Rn2) ≤ C||f ||Hp(Rn1×Rn2) for
all 0 < p ≤ 1 (see [17], [20]), thus our theorem indeed sharpens those results on
Hp(Rn1×Rn2) to Lp(Rn1×Rn2) in the literature. Moreover, our theorem is optimal
as far as the smoothness of the multiplier is concerned.

To describe our theorem, we introduce the two-parameter Sobolev spaces. For
s1, s2 ∈ R, the two-parameter Sobolev space W (s1,s2)(Rn1× Rn2) is defined to be
the class of all f ∈ S ′(Rn1× Rn2) such that

‖f‖W (s1,s2)(Rn1×Rn2) = ‖(I −�)s1/2,s2/2f‖L2(Rn1×Rn2) <∞,

where (I −�)s1/2,s2/2f = F−1[(1 + |ξ|2)s1/2(1 + |η|2)s2/2f̂(ξ, η)] and ξ ∈ Rn1 and
η ∈ Rn2 .

Our first result is the following.

Theorem 1.7. Assume that m(ξ, η) is a function on Rn1× Rn2 satisfying

sup
j,k∈Z

‖mj,k‖W (s1,s2) <∞

with s1 > n1(1/p− 1/2), s2 > n2(1/p− 1/2). Then Tm is bounded from Hp(Rn1×
Rn2) to Hp(Rn1× Rn2) for all 0 < p ≤ 1 and

‖Tm‖Hp→Hp � sup
j,k∈Z

‖mj,k‖W (s1,s2) .
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Moreover, the smoothness assumption on s1 and s2 is optimal in the sense that
there exists a bi-parameter multiplier m with smoothness with s1 ≤ n1(1/p− 1/2)
and s2 ≤ n2(1/p− 1/2) such that Tm is not bounded on Hp(Rn1× Rn2).

In the above theorem, and below,

(1.2) mj,k(ξ, η) = m(2jξ, 2kη)Ψ(ξ)Ψ(η),

where Ψ(ξ) is the same as in (1.1) with d = n1 and Ψ(η) is the same as in (1.1)
with d = n2.

Since Hp → Hp boundedness implies Hp → Lp boundedness, we in fact derive
the same conclusion as those by Lung-Kee Chen and Viet-Le Hung but under
weaker conditions on the multiplier m. We state them as follows.

Theorem 1.8. Assume that m(ξ, η) is a function on Rn1× Rn2 satisfying

sup
j,k∈Z

‖mj,k‖W (s1,s2) <∞

with s1 > n1(1/p− 1/2), s2 > n2(1/p− 1/2). Then Tm is bounded from Hp(Rn1×
Rn2) to Lp(Rn1× Rn2) for all 0 < p ≤ 1. Moreover,

‖Tm‖Hp→Lp � sup
j,k∈Z

‖mj,k‖W (s1,s2) .

Moreover, by interpolation and duality argument of the multi-parameter mul-
tiplier operators (see [5]), for 1 < p <∞ we have:

Theorem 1.9. Assume that m(ξ, η) is a function on Rn1× Rn2 satisfying

sup
j,k∈Z

‖mj,k‖W (s1,s2) <∞

with s1>n1/2, s2>n2/2. Then Tm is bounded from Lp(Rn1×Rn2) to Lp(Rn1× Rn2)
for all 1 < p <∞. Moreover,

‖Tm‖Lp→Lp � sup
j,k∈Z

‖mj,k‖W (s1,s2) .

By duality of the product Hp(Rn1×Rn2) and CMOp(Rn1× Rn2) (see [30] and
Section 2 in this paper) and the Hp(Rn1× Rn2) boundedness of Tm, we have:

Theorem 1.10. Assume that m(ξ, η) is a function on Rn1× Rn2 satisfying

sup
j,k∈Z

‖mj,k‖W (s1,s2) <∞

withs1 > n1(1/p− 1/2), s2 > n2(1/p− 1/2) and 0 < p ≤ 1. Then Tm is bounded
from CMOp(Rn1× Rn2) to CMOp(Rn1× Rn2). Moreover,

‖Tm‖CMOp→CMOp � sup
j,k∈Z

‖mj,k‖W (s1,s2) .
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In the case of p = 1, we derive the boundedness of Tm on the bi-parameter
BMO(Rn1×Rn2) under the assumption that the multiplier m satisfies the minimal
smoothness s1 > n1/2 and s2 > n2/2.

We end this introduction with the following remarks. In order to establish our
Theorem 1.7, we will need to show that Fefferman’s criterion (see Theorems 3.1
and 3.2) is satisfied on rectangle atoms a for the Littlewood–Paley–Stein square
function T ∗

m(a) for Tm(a). It is a very delicate issue to show that Fefferman’s crite-
rion holds under the minimal smoothness condition on the multiplier m. A careful
and rather complicated analysis is required to accomplish this. More precisely, for
instance, the proof of our Theorem 1.7 can be reduced into proving that the oper-
ator T ∗

m satisfies Fefferman’s criterion on rectangle atom a, where T ∗
m(a) is defined

as the bi-parameter Littlewood–Paley–Stein function of the Tm(a) defined by

T ∗
m(a)(x, y) =

(∑
j,k

|ψj,k ∗ Tm(a)|2(x, y)
)1/2

.

(See Section 2 for more details of definitions of the bi-parameter Littlewood–Paley–
Stein square function). The detailed proof is presented in Section 3.

Finally, we mention that the results of this paper on bi-parameter Fourier
multipliers have been extended to the case of arbitrary number of parameters
in [7].

The organization of this paper is as follows. In Section 2 we recall some prelim-
inary facts and give some relevant definitions. In Section 3, we prove Theorem 1.7.
Then Theorems 1.8, 1.9 and 1.10 follow. In Section 4, we show the smoothness in
our Theorem 1.7 is optimal.

2. Preliminary results

Theorem 2.1 ([15]). Let 1 < p < ∞, and let Ψ1 ∈ S(Rn1),Ψ2 ∈ S(Rn2) be such
that supp ψ1 ⊂ {ξ ∈ Rn1 : 1/a ≤ |ξ| ≤ a} for some a > 1, supp ψ2 ⊂ {η ∈ Rn2 :
1/b ≤ |η| ≤ b} for some b > 1. Then there exists a constant C > 0 such that

∥∥∥
{ ∑

j,k∈Z

|Ψ1(D/2
j)Ψ2(D/2

k)f |2
}1/2∥∥∥

Lp
≤ C ‖f‖Lp for all f ∈ Lp(Rn1+n2),

where

[Ψ1(D/2
j)Ψ2(D/2

k)f ](ξ1, ξ2) = F−1
[
Ψ1(·/2j)Ψ2(·/2k)f(·, ·)

]
(ξ1, ξ2).

Moreover, if
∑

j∈Z
Ψi(ξi/2

j) = 1 for all ξi 
= 0, for i = 1, 2, then

∥∥∥
{ ∑

j,k∈Z

|Ψ1(D/2
j)Ψ2(D/2

k)f |2
}1/2∥∥∥

Lp
≈ ‖f‖Lp for all f ∈ Lp(Rn1+n2).
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Now we recall the definitions of product Hardy spaces Hp(Rn1 × Rn2) and
Hp(Rn1×Rn2)-(p, r)-atoms, where 2 ≤ r <∞ and 0 < p ≤ 1. Denote by S ′

∞(Rn1×
Rn2) the functions f ∈ S(Rn1× Rn2) such that for every i, 1 ≤ i ≤ 2,∫

Rn1

f(x1, x2)x
α1
1 dx1 = 0 for any |α1| ≥ 0,

∫
Rn2

f(x1, x2)x
α2
2 dx2 = 0 for any |α2| ≥ 0.

The product Littlewood–Paley square function of f ∈ S ′(Rn1 × Rn2) is de-
fined by

G(f)(x1, x2) =
{ ∑

j,k∈Z

|Ψ1(D/2
j)Ψ2(D/2

k)f |2
}1/2

.

For 0 < p ≤ 1, the product Hardy space on Rn1× Rn2 can be defined by

Hp(Rn1× Rn2) = {f ∈ S ′
∞(Rn1× Rn2) : G(f) ∈ Lp(Rn1× Rn2)},

with the norm ‖f‖Hp(Rn1×Rn2) ≈ ‖G(f)‖Lp(Rn1×Rn2) ([20]).

By this definition, the proof of our main theorem (Theorem 1.7) can be reduced
into proving that T ∗ maps Hp → Lp, where T ∗ is defined as the bi-parameter
Littlewood–Paley function of Tf defined by

T ∗(f)(x, y) =
(∑

j,k

|ψj,k ∗ Tf |2(x, y)
)1/2

.

Next we introduce the definition of atoms in Rn1×Rn2 which provide a powerful
tool in proving the boundedness of singular integrals on Rn1× Rn2 ([4], [22]) Let
r ≥ 2. A function a defined in Rn1× Rn2 is called an Hp(Rn1× Rn2) is called an
Hp(Rn1 × Rn2)-(p, r)-atom if a is supported in an open set Ω ⊆ Rn1 × Rn2 with
finite measure and satisfies the following conditions:

• ‖a‖Lr
w
≤ |Ω|1/r−1/p;

• a can be decomposed as a(x1, x2) =
∑

R∈M(Ω) aR(x1, x2), where aR are

supported on 2R = 2(I1×I2), Ii are dyadic cubes in Rni , i = 1, 2, and M(Ω)
is the collection of all dyadic rectangles contain in Ω which are maximal in
all directions x1 and x2. Moreover,

{ ∑
R∈M(Ω)

‖aR‖rLr

}1/r

≤ |Ω|1/r−1/p ;

•
∫
2I1

aR(x1, x2)x
α
1 dx1 = 0 for all x2 ∈ Rn2 and 0 ≤ |α| ≤ Np,n1 ,∫

2I2
aR(x1, x2)x

α
2 dx2 = 0 for all x1 ∈ Rn1 and 0 ≤ |α| ≤ Np,n2 .

where Np,ni is a large integer depending on p and ni.

The dual space of weighted multi-parameter Hardy spaces Hp(Rn1 × Rn2) is
introduced in [30]. We only consider the nonweighted case here. It is the so-called
Carleson measure space CMOp = CMOp(Rn1 × Rn2). We refer to [30] for more
details.
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Definition 2.1. For 0<p ≤1, we call f ∈CMOp(Rn1×Rn2) if f ∈ (S∞)
′
(Rn1× Rn2)

with the finite norm defined by

sup
Ω

{ 1

|Ω|2/p−1

∑
j,k∈Z

∑
I1×I2

|Ψ1(D/2
j)Ψ2(D/2

k) f(2−jl1 , 2−kl2)|2 × |I1 × I2|
}1/2

for all open sets Ω in Rn1 × Rn2 with finite measures, here I1 are dyadic cubes
in Rn1 with the side length 2−j and the left lower corners of I1 is 2−jl1, l1 ∈ Zn1

and I2 are dyadic cubes in Rn2 with the side length 2−k and the left lower corners
of I2 is 2−kl2, l2 ∈ Zn2 .

We use BMO(Rn1 × Rn2) to denote CMO1(Rn1 × Rn2). From [30], we know
the definition of the space CMOp is independent of choice of functions Ψ1 and Ψ2,
Thus the space CMOp(Rn1×Rn2) is well defined. Then the authors in [30] set up
the following.

Theorem 2.2. For 0 < p ≤ 1,

(Hp)∗(Rn1× Rn2) = CMOp(Rn1× Rn2).

To be precise, if g ∈ CMOp(Rn1×Rn2), the map lg given by lg(f) = 〈f, g〉, defined
initially for f ∈ S∞, extends to a continuous linear functional on Hp with ‖lg‖ ≈
‖g‖CMOp .

Conversely, for every l ∈ (Hp)∗(Rn1×Rn2) there exists some g ∈ CMOp(Rn1×
Rn2) so that l = lg. In particular, (H1)∗(Rn1× Rn2) = BMO(Rn1× Rn2).

We now state some lemmas which will be needed in the sequel. The proofs of
these lemmas are easy.

Lemma 2.1. ( [34]) Let 2 ≤ q <∞, r > 0 and s ≥ 0. Then there exists a constant
C > 0 depending on r such that

‖f̂‖Lq(wsq) ≤ C ‖f‖W s

for all f ∈W s(Rn) with suppf ⊂ {|x| ≤ r}, where wsq = (1+ |x|2)sq/2 is a weight
function.

Proposition 2.1. If sj > n/2 for 1 ≤ j ≤ 2, then W (s1,s2)(Rn1 × Rn2) is an
algebra under pointwise multiplication.

Lemma 2.2. Assume s > n/2 and max{1, n/s} < q < 2 and suppose m ∈
W s(Rn), s > 0 and suppm ⊂ {|ξ| ≤ 2/t}. Then there exists a constant C > 0
depending only on N,n, s and q such that, for all f ∈ S(Rn),

|Tm(f)(x)| ≤ C ‖m(·/t)‖W s(Rn)M(|f |q)(x)1/q

for all x ∈ Rn, where M is the Hardy–Littlewood maximal function of f .
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Lemma 2.3. Let s1, s2 ∈ R and let Ψ1 ∈ S(Rn1) and Ψ2 ∈ S(Rn2) be such that
supp Ψ1, supp Ψ2 are compact and none of them contains the origin. Assume that
Φ ∈ C∞(Rn1 \ {0} × Rn2 \ {0}) satisfies

|∂αξ ∂βηΦ(ξ, η)| ≤ Cα,β |ξ|−|α||η|−|β|

for all α, β ∈ Nn
0 . Then there exists a constant C > 0 such that

sup
t,s>0

‖m(tξ, sη)Φ(tξ, sη) Ψ1(ξ)Ψ2(η)‖W (s1,s2)(Rn1×Rn2)

≤ C sup
j,k∈Z

‖mj,k‖W (s1,s2)(Rn1×Rn2)

for all m satisfying supj,k∈Z
‖mj,k‖W (s1,s2)(Rn1×Rn2) < ∞, where mj,k is defined

by (1.2).

Proof. We mimic the proof of Lemma (3.4) in [8]. For simplicity, we use W s1,s2 to
denote W (s1,s2)(Rn1× Rn2). First, we assume that supp Ψ1 ⊂ {1/2j0 ≤ |ξ| ≤ 2j0}
and supp Ψ2 ⊂ {1/2k0 ≤ |η| ≤ 2k0} for some j0, k0 ∈ N. Given t, s > 0, take
j, k ∈ Z satisfying 2j−1 ≤ t ≤ 2j , 2k−1 ≤ s ≤ 2k. Then, since 1 < 2j/t ≤ 2, 1 <
2k/s ≤ 2, by change of variables,

‖m(t·, s·)Φ(t·, s·)Ψ1(·)Ψ2(·)‖W s1,s2

� ‖m(2j·, 2k·)Φ(2j ·, 2k·)Ψ1(2
jt−1·)Ψ2(2

ks−1·)‖W s1,s2 .

Let Ψ1(ξ),Ψ2(η) be as in (1.1) with d = n1 and d = n2 respectively. Using
supp Ψ1(2

jt−1·) ⊂ {1/2j0+1 ≤ |ξ| ≤ 2j0} and supp Ψ2(2
ks−1·) ⊂ {1/2k0+1 ≤ |η| ≤

2k0}, we have

‖m(2j·, 2k·)Φ(2j ·, 2k·)Ψ1(2
jt−1·)Ψ2(2

ks−1·)‖W s1,s2

≤ C

j0∑
j1=−(j0+1)

k0∑
k1=−(k0+1)

∥∥m(2j ·, 2k·)Φ(2j ·, 2k·)Ψ1(2
jt−1·)

× Ψ2(2
ks−1·)Ψ(·/2j1)Ψ(·/2k1)

∥∥
W s1,s2

≤ C

j0∑
j1=−(j0+1)

k0∑
k1=−(k0+1)

∥∥m(2j ·, 2k·)Ψ(·/2j1)Ψ(·/2k1)
∥∥
W s1,s2

× ∥∥Φ(2j ·, 2k·)Ψ1(2
jt−1·)Ψ2(2

ks−1·)∥∥
W s1,s2

≤ C

j0∑
j1=−(j0+1)

k0∑
k1=−(k0+1)

‖m(2j+j1 ·, 2k+k1 ·)Ψ(·)Ψ(·)‖W s1,s2 ‖Φ(t·, s·)Ψ1Ψ2‖W s1,s2

≤ C
(

sup
j,k∈Z

‖m(2j+j1 ·, 2k+k1 ·)ΨΨ‖W s1,s2

)(
sup
j,s>0

‖Φ(t·, s·)Ψ1Ψ2‖W s1,s2

)

Obviously, supj,s>0 ‖Φ(t·, s·)Ψ1Ψ2‖W s1,s2 <∞.

The proof is then complete. �
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3. The proof of Theorem 1.7

In this section, we use the notations A ≈ B to denote C−1B ≤ A ≤ CB for
some absolute constant C ≥ 1 and A � B to denote A ≤ CB for some absolute
constant C > 0.

We first recall a boundedness criterion due to R. Fefferman [13].

Theorem 3.1. Suppose that T is a bounded linear operator from L2(Rn1 × Rn2)
to L2(Rn1 × Rn2). Let R̃r denote the r fold enlargement of R and cR̃r denote
its complement. Suppose further that if a is an Hp(Rn1 × Rn2) rectangle atom
(0 < p ≤ 1) supported on R, we have∫∫

cR̃r

|T (a)(x, y)|p dx dy � B r−δ for all r ≥ 2

and some fixed δ > 0. Then T is a bounded operator from Hp(Rn1 × Rn2) to
Lp(Rn1× Rn2). Moreover,

‖T ‖Hp→Lp � (‖T ‖L2→L2 +B).

If we replace Tf by T ∗f and use the Fefferman criterion, then we can obtain:

Theorem 3.2. Suppose that T is a bounded linear operator from L2(Rn1 × Rn2)
to L2(Rn1 × Rn2). Suppose further that if a is an Hp(Rn1 × Rn2) rectangle atom
(0 < p ≤ 1) supported on R, we have∫∫

cR̃r

|T ∗(a)(x, y)|p dx dy � B r−δ for all r ≥ 2

and some fixed δ > 0. Then T is a bounded operator from Hp(Rn1 × Rn2) to
Hp(Rn1× Rn2). Moreover,

‖T ‖Hp→Hp � (‖T ‖L2→L2 +B).

Therefore, to establish the main theorem (Theorem 1.7), we only need to prove:
if a is an Hp(Rn1× Rn2) rectangle atom (0 < p ≤ 1) supported on R, we have∫∫

cR̃r

|T ∗
m(a)(x, y)|p dx dy � B r−δ for all r ≥ 2

and some fixed δ > 0, where

T ∗
m(f)(x, y) =

(∑
j,k

|ψj,k ∗ Tmf |2(x, y)
)1/2

.

Since Tm is a convolution operator, we have

‖Tm‖L2→L2 � ‖m‖L∞

By the Sobolev embedding theorem, we have

‖m‖L∞ � sup
j,k

‖mj,k‖W (s1,s2)

when s1 > n1/2, s2 > n2/2
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Thus, to prove Tm : Hp(Rn1×Rn2) −→ Hp(Rn1×Rn2), by a translation it only
needs to show the estimate

(3.1) ‖T ∗
m(a)(x, y)‖p

Lp(cR̃r)
�

(
sup
j,k

‖mj,k‖W s1,s2

)
r−δ

for all s1 > n1/2 − p/2, s2 > n2/2 − p/2, where a is a rectangle atom supported
in R, where R = I × J is centered at (0,0).

By Sobolev’s embedding theorem, it is sufficient to consider the case

ni(1/p− 1/2) < s1 < [ni(1/p− 1)] + ni/2 + 1, for 1 ≤ i ≤ 2.

Define
Kj,k(x, y) = F−1[m(·, ·)Ψ(·/2j)Ψ(·/2k)](x, y).

If we write K̃j,k = F−1[mj,k], then Kj,k(x, y) = 2jn1+kn2K̃j,k(2
jx, 2ky), where

x, y ∈ Rn1× Rn2 . Then

T ∗
m(a)(x, y) =

(∑
j,k

|Tm(·,·)Ψ(·/2j)Ψ(·/2k)(a)|2(x, y)
)1/2

=
(∑

j,k

∣∣∣
∫
R2n

Kj,k(x − x1, y − y1)a(x1, y1)dx1 dy1

∣∣∣2
)1/2

�
(∑

j,k

|Fj,k(x, y)|2
)1/2

.

We decompose the integral domain cR̃r into three parts:

cR̃1
r = {(ξ, η)|ξ ∈ cĨr, η ∈ J̃r},

cR̃2
r = {(ξ, η)|ξ ∈ Ĩr, η ∈ cJ̃r},

and cR̃3
r = cR̃r\(cR̃1

r ∪ cR̃2
r).

By the subadditivity of the p-th power of the Lp-norm, p ≤ 1 and Hölder’s
inequality, to prove (3.1), we estimate

∫
cR̃3

r

|T ∗
m(a)(x, y)|p dx dy ≤

∑
j,k∈Z

∫
cR̃3

r

|Fj,k(x, y)|p dx dy

≤
∑
j,k∈Z

(∫
cR̃3

r

|x|−s1(
2p

2−p )|y|−s2(
2p

2−p ) dx dy
)1−p/2

×
(∫

cR̃3
r

|x1|2s1 |x2|2s2 |Fj,k(x1, x2)|2 dx dy
)p/2

�
∑
j,k∈Z

{
(r−s1+n1/p−n1/2 + r−s2+n2/p−n2/2)|I|−s1/n1+1/p−1/2

× |J |−s2/n2+1/p−1/2 ‖|x|s1 |y|s2Fj,k‖L2(cR̃3
r)

}p
,

where we used the condition s1 > n1/p−n1/2 and s2 > n2/p−n2/2 to obtain the
last inequality.
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We note

Fj,k(x, y) =

∫
Rn1×Rn2

(
Kk,j(x− x1, y − y1)−

∑
|α|≤L1−1

1

α!
(−x1)α ∂α1Kj,k(x, y − y1)

)

× a(x1, y1) dx1 dy1

= L1

∑
|α|=L1

∫
Rn1×Rn2

∫
0<t<1

(−x1)α
α!

(1− t)L1−1

× ∂α1Kj,k(x − tx1, y − y1) a(x1, y1) dt dx1 dy1

= L1

∑
|α|=L1

∫
Rn1×Rn2

∫
0<t<1

(−x1)α
α!

(1− t)L1−1
(
∂α1Kj,k(x− tx1, y − y1)

−
∑

|β|≤L2−1

(−y1)β
β!

∂β3 ∂
α
1Kj,k(x− tx1, y − y1)

)
a(x1, y1) dt dx1 dy1

= L1L2

∑
|α|=L1

∑
|β|=L2

∫
Rn1×Rn2

∫
I×J

∫
0<t<1

∫
0<s<1

(−x1)α
α!

(−y1)β
β!

× (1−t)L1−1(1−s)L2−1 ∂α1 ∂
β
2Kj,k(x−tx1, y−sy1)a(y1, y2) ds dt dx1 dy1,

where L1 and L2 are integers satisfying

0 ≤ L1 ≤ [n1(1/p− 1/2)], 0 ≤ L2 ≤ [n2(1/p− 1/2)].

Thus we have

|Fj,k(x, y)|
� |I|L1/n1 |J |L2/n2

×
∑

|α|=L1

∑
|β|=L2

( ∫
I×J

∫
0<t<1

∫
0<s<1

|∂α1 ∂β2Kj,k(x−tx1, y−sy1)|2ds dt dx1 dy1
)1/2

×
(∫

I×J

|a(x1, y1)|2dx1 dy1
)1/2

� |I|1/2−1/p+L1/n1 |J |1/2−1/p+L2/n2

×
∑

|α|=L1

∑
|β|=L2

( ∫
I×J

∫
0<t<1

∫
0<s<1

|∂α1 ∂β2Kj,k(x−tx1, y−sy1)|2ds dt dx1 dy1
)1/2

.

Next we estimate the term

∥∥ |x|s1 |y|s2 Fj,k(x, y)
∥∥
L2(cR̃3

r)
.

Since it is easy to see |x− tx1| ≈ |x|, |y − sy1| ≈ |y|.
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Hence, we have

∥∥∥|x|s1 |y|s2
( ∫

I×J

∫
0<t<1

∫
0<s<1

|∂α1 ∂β2Kj,k(x−tx1, y−sy1)|2dsdtdx1dy1
)1/2∥∥∥

L2(cR̃3
r)

=
(∫

I×J

∫
0<t<1

∫
0<s<1

∫
cR̃3

r

||x− tx1|s1 |y − sy1|s2∂α1 ∂β2

×Kj,k(x− tx1, y − sy1)|2 dx dy ds dt dx1 dy1
)1/2

≤
(∫

I×J

∫
0<t<1

∫
0<s<1

∫
Rn1×Rn2

∣∣|x|s1 |y|s2∂α1 ∂β2Kj,k(x, y)
∣∣2 dxdydsdtdx1dy1

)1/2

= |I|1/2 |J |1/2 ∥∥|x|s1 |y|s2 ∂α1 ∂β2Kj,k(x, y)
∥∥
L2(Rn1×Rn2)

.

Since Kj,k(x, y) = 2jn1+kn2K̃j,k(2
jx, 2ky), the last term above can be written as

2j(−s1+n1+|α|) 2k(−s2+n2+|β|)|I|1/2|J |1/2
× ∥∥|2jx|s1 |2ky|s2∂α1 ∂β2 K̃j,k(2

jx, 2ky)
∥∥
L2(Rn1×Rn2)

= 2j(−s1+n1/2+L1)2k(−s2+n2/2+L2)|I|1/2|J |1/2
× ∥∥|x|s1 |y|s2∂α1 ∂β2 K̃j,k(x, y)

∥∥
L2(Rn1×Rn2)

� 2j(−s1+n1/2+L1) 2k(−s2+n2/2+L2) |I|1/2 |J |1/2
× ∥∥〈x〉s1 〈y〉s2∂α1 ∂β2 K̃j,k(x, y)

∥∥
L2(Rn1×Rn2)

= 2j(−s1+n1/2+L1) 2k(−s2+n2/2+L2) |I|1/2 |J |1/2
× ∥∥〈x〉s1 〈y〉s2F−1[ξαηβmj,k(ξ, η)](x, y)

∥∥
L2(Rn1×Rn2)

� 2j(−s1+n1/2+L1) 2k(−s2+n2/2+L2) |I|1/2 |J |1/2 ‖mj,k‖W s1,s2
.

Thus we have

∥∥∥|x|s1 |y|s2
∫
I×J

∫
0<t,s<1

|∂α1 ∂β2Kj,k(x−tx1, y−sy1)a(x1, y1)|dtdsdx1 dy1
∥∥∥
L2(cR̃3

r)

� 2j(−s1+n1/2+L1) 2k(−s2+n2/2+L2) |I|1/2 |J |1/2 ‖mj,k‖W s1,s2 .

Thus, we obtain

(r−s1+n1/p−n1/2 + r−s2+n2/p−n2/2) |I|−s1/n1+1/p−1/2

× |J |−s2/n2+1/p−1/2
∥∥|x|s1 |y|s2Fj,k(x, y)

∥∥
L2(cR̃3

r)

� r−δ 2j(−s1+n1/2+L1) 2k(−s2+n2/2+L2) |I|−s1/n1+L1/n1+1/2

× |J |−s2/n2+L2/n2+1/2 ‖mj,k‖W s1,s2 ,

where δ = min{s1 − n1/p+ n1/2, s2 − n2/p+ n2/2}.
For each rectangle I × J , there exist integers j0, k0 such that |I|1/n1 ≈ 2−j0 ,
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|J |1/n2 ≈ 2−k0 . Therefore

‖T ∗
m(a)‖p

Lp(cR̃3
r)

≤
∑
j,k

‖Fj,k‖pLp(cR̃3
r)

=
∑
j≥j0

∑
k≥k0

+
∑
j≥j0

∑
k<k0

+
∑
j<j0

∑
k≥k0

+
∑
j<j0

∑
k<k0

{‖Fk,j‖pLp(cR̃3
r)

}
.

First we consider the sums
∑

j≥j0

∑
k≥k0

and pick L1 = 0, L2 = 0. Since s1 >
n1/p− n1/2, s2 > n2/p− n2/2 and 0 < p ≤ 1, we have∑
j≥j0

∑
k≥k0

|Fj,k‖pLp(cR̃3
r)

� r−pδ
∑
j≥j0

2pj(−s1+n1/2)|I|p(−s1/n1+1/2)

×
∑
k≥k0

2kp(−s2+n2/2)|J |p(−s2/n2+1/2)‖mj,k‖W (s1,s2)

≈ r−pδ
∑
j≥j0

2p(j−j0)(−s1+n1/2)
∑
k≥k0

2p(k−k0)(−s2+m/2)‖mj,k‖W (s1,s2)

� r−pδ sup
j,k

‖mj,k‖W (s1,s2) .

We pick L1 = 0, L2 = [n2/p− n2] + 1 for the sums
∑

j≥j0

∑
k<k0

. Then

∑
j≥j0

∑
k≥k0

‖Fj,k‖pLp(cR̃3
r)

� r−pδ
∑
j≥j0

2pj(−s1+n1/2)|I|p(−s1/n1+1/2)‖mj,k‖W (s1,s2)

·
∑
k<k0

2pk(−s2+n2/2+[n2/p−n2])|J |p(−s2/n2+1/2+[n2/p−n2]/n2)‖mj,k‖W (s1,s2)

≈ r−pδ
∑
j≥j0

2p(j−j0)(−s1+n1/2)
∑
k<k0

2p(k0−k)(s2−n2/2−[n2/p−n2]−1)‖mj,k‖W (s1,s2)

� r−pδ sup
j,k

‖mj,k‖W (s1,s2) .

By picking L1 = [n1/p − n1] + 1, L2 = 0 for the sums
∑

j≤j0

∑
k>k0

and L1 =
[n1/p−n1] + 1, L2 = [n2/p−n2] + 1 for the sums

∑
j≤j0

∑
k≤k0

, we can reach the
same conclusion.

Since 0 < p ≤ 1 and by Hölder’s inequality, we have∫
cR̃1

r

|T ∗
m(a)(x, y)|p dx dy ≤

∑
j∈Z

∫
cR̃1

r

(∑
k

|Fj,k|2(x, y)
)p/2

dx dy

≤
∑
j∈Z

(∫
cR̃1

r

|x|−s1(
2p

2−p ) dx dy
)1−p/2(∫

cR̃1
r

|x|2s1
∑
k

|Fj,k|2(x, y) dx dy
)p/2

�
∑
j∈Z

{
r−s1+n1/p−n1/2|I|−s1/n1+1/p−1/2|J |1/p−1/2‖{|x|s1Fj,k}l2k‖L2(cR̃1

r)

}p
,

where the last inequality is obtained by the condition s1 > n1/p− n1/2.
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Using the same method as above, we can deduce for Fj(x, y) =
∑

k Fj,k(x, y)
and Kj(x, y) =

∑
kKj,k(x, y) the following estimate:

Fj(x, y)

= L1

∑
|α|=L1

∫
I×J

∫ 1

0

(−x1)α
α!

(1− s)L1−1∂α1Kj(x− θx1, y − y1)a(x1, y1)dθ dx1 dy1.

Note that

‖{|x|s1Fj,k}l2k ‖L2(cR̃1
r)

≤ ‖{|x|s1Fj,k}l2k‖L2(cĨr×Rn2)

≤ sup
‖{hk}l2

k
‖L2(cĨr×R

n2 )≤1

∣∣∣∑
k

∫
cĨr×Rn2

|x|s1Fj,k(x, y)hk(x, y) dx dy
∣∣∣.

Fixing h, we have
∫
Rn1×Rn2

|x|s1Fj,k(x, y)hk(x, y) dx dy

=
∑

|α|=L1

∫
Rn1×Rn2

∫
Rn1×Rn2

∫ 1

0

|x|s1 (−x1)α
α!

(1 − θ)L1−1

· ∂α1Kj,k(x− θx1, y − y1) a(x1, y1) dθ dx1 dy1 h(x, y) dx dy.

Define

Tx,θ,x1,k(a)(y) =

∫
Rn2

∂α1Kj,k(x− θx1, y − y1) a(x1, y1) dy1.

Obviously, Tx1,θ,y1,z1 is a Fourier multiplier operator with symbol

mx,θ,x1,k(η) = ∂α1 K̂
2
j,k(x− θx1, η).

Denote ax1 and hk,x the cross-section functions by ax1(y1) = a(x1, y1) and hk,x(y) =
hk(x, y), then we have

∣∣∣
∫
Rn2

Tx,θ,x1,k(ax1)(y)hk,x(y)dy
∣∣∣ =

∣∣∣
∫
Rn2

Tx,θ,x1,k(ax1)(y)ψk ∗ hk,x(y) dy
∣∣∣

� ‖F−1mx,θ,x1,k‖Lq′ (wsq′ )

∫
Rn2

M(|ψk ∗ ax1 |q)(y)1/q |ψk ∗ hk,x(y)| dy.

Then, we have

∣∣∣∑
k

∫
cĨr×Rn2

|x|s1Fj,k(x, y)hk(x, y) dx dy
∣∣∣

�
∑

|α|=L1

|I|L1/n1

∑
k

∫ 1

0

∫
cĨr

∫
Rn2

∫
Rn1

|x|s1‖F−1mx,θ,x1,k‖Lq′(ws2q′ )

·M(|ψk ∗ ax1 |q)(y)1/q |ψk ∗ hk,x(y)| dx1 dy dx dθ.
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First, since

‖F−1mx,θ,x1,k‖Lq′(ws2q′ )
≤ ‖〈y〉s2∂α1Kj,k(x− θx1, y)‖L2(R

n2
y ),

we have

∫
cĨr

|x|s1‖〈y〉s∂α1Kj,k(x− θx1, y)‖L2(R
n2
y )|ψk ∗ hk,x(y)|dx

≤
∫

cĨr

|x− θx1|s1‖〈y〉s∂α1Kj,k(x− θx1, y)‖L2(R
n2
y )|ψt ∗ hk,x(y)|dx

≤ ∥∥|x− θx1|s1〈y〉s2∂α1Kj,k(x− θx1, y)
∥∥
L2(Rn1+n2)

‖ψk ∗ hk,x(y)‖L2(R
n1
x )

=
∥∥|x|s1〈y〉s2∂α1Kj,k(x, y)

∥∥
L2(Rn1+n2)

‖ψt ∗ hk,x(y)‖L2(R
n1
x )

= 2j(−s1+n1+|α|)∥∥|2jx|s1 〈y〉s2∂α1 K̃j,k(2
jx, y)

∥∥
L2(Rn1+n2)

‖ψk ∗ hk,x(y)‖L2(R
n1
x )

= 2j(−s1+n1/2+|L1|)∥∥|x|s1〈y〉s2∂α1 K̃j,k(x, y)
∥∥
L2(Rn1+n2)

‖ψk ∗ hk,x(y)‖L2(R
n1
x )

≤ 2j(−s1+n1/2+|L1|)∥∥〈x〉s1 〈y〉s2∂α1 K̃j,k(x, y)
∥∥
L2(Rn1+n2)

‖ψk ∗ hk,x(y)‖L2(R
n1
x )

= 2j(−s1+n1/2+|L1|)‖ξαmj,k(ξ, η)‖W (s1 ,s2)‖ψk ∗ hk,x(y)‖L2(R
n1
x )

≤ 2j(−s1+n1/2+|L1|)‖mj,k(ξ, η)‖W (s1,s2)‖ψk ∗ hk,x(y)‖L2(R
n1
x )

≤ 2j(−s1+n1/2+|L1|) sup
k

‖mj,k‖W (s1,s2)‖ψk ∗ hk,x(y)‖L2(R
n1
x ),

where in the above string of inequalities we obtain the first and second inequalities
by Schwarz’s inequality. Since s1 > n1/2, we have

∣∣∣∑
k

∫
cĨr×Rn2

|x|s1Fj,k(x, y)hk(x, y) dx dy
∣∣∣

≤ 2j(−s1+n1/2+|L1|) |I|L1/n1 sup
k

‖mj,k‖W (s1,s2)

·
∑
k

∫
Rn1+n2

M(|ψk ∗ ax1 |q)(y)1/q‖ψk ∗ hk,x(y)‖L2(R
n1
x ) dy dx1.

By Schwarz’s inequality,

∑
k

∫
Rn2

M(|ψk ∗ ax1 |q)(y)1/q‖ψk ∗ hk,x(y)‖L2(R
n2
x )dy

≤
(∑

k

∫
Rn2

M(|ψk ∗ ax1 |q)(y)2/qdy
)1/2(∑

k

∫
Rn1

∫
Rn2

|ψk ∗ hk,x|2(y) dx dy
)1/2

≤
(∑

k

∫
Rn2

|ψk ∗ ax1 |2(y)dy
)1/2(∑

k

∫
Rn2

∫
cĨr

|hk|2(x, y) dx dy
)1/2

≤ ‖ax1‖L2(Rn2)‖{hk}l2‖L2(cĨr×Rn2).
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Therefore, we have
∣∣∣∑

k

∫
cĨr×Rn2

|x|s1 Fj,k(x, y)hk(x, y) dx dy
∣∣∣

� 2j(−s1+n1/2+|L1|) |I|
L1
n1 sup

k
‖mj,k‖ws1,s2

∫
Rn1

‖ax1‖L2(Rn2)dx1‖{hk}l2‖L2(cĨr×Rn2)

� 2j(−s1+n1/2+|L1|) |I|L1/n1+1/2 sup
k

‖mj,k‖ws1,s2

(∫
I×J

|a(x1, y1)|2dx1 dy1
)1/2

· ‖{hk}l2‖L2(cĨr×Rn2)

� 2j(−s1+n1/2+|L1|) |I|L1/n1+1−1/p|J |1/2−1/p sup
k

‖mj,k‖W (s1,s2)‖{hk}l2‖L2(cĨr×Rn2).

Thus, we have obtained∫
cR̃1

r

|T ∗
m(a)(x, y)|p dx dy

�
∑
j∈Z

{
r−s1+n1/p−n1/2|I|−s1/n1+1/p−1/2|J |1/p−1/2‖{|x|s1Fj,k}l2k‖L2(cR̃1

r)

}p

≤
∑
j∈Z

{
r−s1+n1/p−n1/2|I|−s1/n1+1/p−1/2|J |1/p−1/22j(−s1+n1/2+|L1|)

· |I|L1/n1+1−1/p |J |1/2−1/p sup
k

‖mj,k‖W (s1,s2)

}p

=
∑
j∈Z

{
r−s1+n1/p−n1/2|I|L1−s1/n1+1/22j(−s1+n1/2+|L1|) sup

k
‖mj,k‖W (s1,s2)

}p

≤
∑
j∈Z

{
r−δ|I|L1−s1/n1+1/22j(−s1+n1/2+|L1|) sup

k
‖mj,k‖W (s1,s2)

}p
,

where δ is the same as above.
For each rectangle I, there exists an integer j0 such that |I|1/n ≈ 2−j0 . There-

fore

‖T ∗
m (a)‖p

Lp(cR̃1
r)

≤
∑
j∈Z

{
r−δ|I|L1−s1/n1+1/2 2j(−s1+n1/2+|L1|) sup

k
‖mj,k‖W (s1,s2)

}p

=
∑
j≥j0

+
∑
j<j0

{
r−δ|I|L1−s1/n1+1/2 2j(−s1+n1/2+|L1|) sup

k
‖mj,k‖W (s1,s2)

}p
.

First we consider the sums
∑

j≥j0
and pick L1 = 0. Since s1 > n1/p− n/2 and

0 < p ≤ 1, then we have∑
j≥j0

{
r−δ|I|−s1/n1+1/22j(−s1+n1/2)

}p

� r−pδ
∑
j≥j0

2pj(−s1+n1/2)|I|p(−s1/n1+1/2) sup
k

‖mj,k‖pW (s1,s2)

≈ r−pδ
∑
j≥j0

2p(j−j0)(−s1+n1/2) sup
k

‖mj,k‖pW (s1,s2) � r−pδ sup
j,k

‖mj,k‖pW (s1,s2) .
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Next, we pick L1 = [n1/p− n1] + 1 for the sums
∑

j<j0
. Then

∑
j<j0

{r−δ2j(−s1+n1/2+[n1/p−n1])|I|(−s1/n1+1/2+[n1/p−n1]/n1) sup
k

‖mj,k‖W (s1,s2)}p

≈ r−pδ
∑
j<j0

2p(j0−j)(s1−n1
2 −[

n1
p −n1]−1) sup

j,k
‖mj,k‖pW (s1,s2) � r−pδ sup

j,k
‖mj,k‖pW (s1,s2) .

Thus, we have completed the proof of the main theorem, i.e., Theorem 1.7.

4. The sharpness of Theorem 1.7

To establish the sharpness of smoothness of the multiplier in Theorem 1.7, we
only need to consider the case when m(ξ, η) = m1(ξ)m2(η). Suppose f(x, y) =
f1(x)f2(y). Then we have

Tm(f, g)(x, y) = Tm1(f1)(x)Tm2(f2)(y)

if f1 ∈ Hp(Rn1) and f2 ∈ Hp(Rn2), by the Littlewood–Paley–Stein characteri-
zation of Hardy spaces Hp(Rn1 × Rn2), we can conclude f(x, y) = f1(x)f2(y) ∈
Hp(Rn1× Rn2). Moreover,

‖Tm(f)‖Hp(Rn1×Rn2) ≈ ‖Tm1(f1)‖Hp(Rn1)‖Tm2(f2)‖Hp(Rn2)

By the sharpness of Calderón–Torchinsky’s theorem ([33]), we can see that Theo-
rem 1.7 is sharp in the sense that there exists a multiplier m with smoothness of
order s1 ≤ n1/p − n1/2 and s2 ≤ n2/p − n2/2 such that Tm is not bounded on
Hardy spaces Hp(Rn1× Rn2) for 0 < p ≤ 1.

Note added in proof. After this paper was accepted for publication, the authors
learned from Professor Jill Pipher that the Hörmander type multiplier theorem
(Theorem 1.7) has been established by Carbery and Seeger in their earlier paper [2],
among other results, using a very different method from ours by considering vector-
valued rectangle atoms of multi-parameter Hardy spaces. The authors would like
to thank Jill Pipher for bringing this to our attention.
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[24] Hörmander, L.: Estimates for translation invariant operators in Lp spaces. Acta.
Math. 104 (1960), 93–140.

[25] Hung, V. L.: Multiplier operators on product spaces. Studia. Math. 151 (2002),
no. 3, 265–275.

[26] Jessen, B., Marcinkiewicz, J. and Zygmund, A.: Note on the differentiability
of multiple integrals. Fund. Math. 25 (1935), no. 1, 217–234.
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