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The main purpose of this paper is three-fold. First of all, we are concerned with the limited
smoothness conditions in the spirit of Hormander on the multi-linear and multi-parameter
Coifman-Meyer type Fourier multipliers studied by C. Muscalu, J. Pipher, T. Tao, C. Thiele
(2004, 2006) where they established the L" estimates for the multiplier operators under the
assumption that the multiplier has smoothness of sufficiently large order. Under our lim-
ited smoothness assumption, we will prove the [P x - - - x [P* — L" boundedness with i +

cee pin = % for1 < py,...,pn < o0and 0 < r < oo. Second, our proof of L" estimates
also offers a different and more direct approach than the one given in Muscalu et al. (2004,
2006) where they use the deep analysis of multi-linear and multi-parameter paraproducts.
Third, we also prove a Hérmander type multiplier theorem in the weighted Lebesgue spaces
for such operators when the Fourier multiplier is only assumed with limited smoothness.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this paper is to consider the limited smoothness condition on the Fourier multipliers in the multi-parameter
and multi-linear setting. This is an analogue of the well-known Hérmander-Mihlin type theorem in the linear and multi-

linear cases.

Let 8(R%) denote the space of Schwartz functions, and &' (R%) denote tempered distributions. The Fourier transform f
and the inverse Fourier transform f of f € 8(RY) are defined by

FFE) = (&) =f

Rrd

e ™ f(xydx and FTUS(E) =fx) =

ix-&
i [ T (.

In the linear case, we first recall the following Mihlin theorem (see, e.g., [1, Corollary 8.11]):
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Theorem 1.1. If a multiplier m € clzln (R™ \ {0}) satisfies the following condition
0"m©)] = C,l¢| ™ forallla| <[] +1 (12)
then the Fourier multiplier operator m(D)f = ¥ ! [mf ] defined with the symbol m(&) is bounded from I[P (R") to [P (R") for all

1<p<oo

On the other hand, Hérmander reformulated and improved Mihlin’s theorem using the Sobolev regularity of the multi-
plier [2]. To describe Hormander’s theorem, we let & € $(R%) be a Schwartz function satisfying

supp¥ C geRd:15|g|§2}, Zw<'§>=1, forall € € R%\ {0}. (1.3)

Jjez Y
For s € R, the Sobolev space H*(R") consists of all f € 4'(R") such that
IFllss 2 110 = AYfllj2 < o0, (14)

where (I — A)2f = F1[(1 + |£[2)¥2f (€)]. Then the Hérmander multiplier theorem says
Theorem 1.2. If m € L°°(R") satisfies

. n
sup |m@ )Y ||ps@eny < 00, foralls > —,
jez 2
where W is the same as in (1.3) when d = n and H*(R") is the Sobolev space, then the Fourier multiplier operator m(D) defined
with the symbol m is bounded from [P (R") to [P(R") forall1 < p < oc.

Clearly, Hormander’s theorem is stronger than Mihlin’s and the number 5 cannot be improved in Hérmander’s theorem.
We now turn to the weighted estimates for Fourier multipliers. We first introduce the notion of Muckenhoupt’s A,
weights [3]. Let 1 < p < oo and denote p’ = p%]. We say that a weight w > 0 belongs to the Muckenhoupt class A, (R"), if

! d ! 17y . (15
Stép (W/Rw(x) x> <®/Rw(x) x) < 00 .5)

1
where the supremum is taken over all cubes R in R". We also use the notation ||f ”L’ﬂ; ®Y = (fR,, If %) |Pw(x)dx) L
Then, Kurtz and Wheeden [4] extended Hérmander’s theorem to weighted Lebesgue spaces and proved the following:

Theorem 1.3. Let 5 <s <nand1 < p < oo.Assume { <p < ooandw € Ap. If m € L*(R") satisfies

sup [mZ )Y ||gs@ny < 00,
JEZ

then the Fourier multiplier operator m(D) defined with the symbol m is bounded from L? (R") to L? (R") forall 1 < p < oo.

We now turn to the discussion of multi-linear Coifman-Meyer Fourier multiplier operators. We only state the bilinear
case as an example for simplicity of its presentation. For m e L>(R?"), the bilinear Coifman-Meyer Fourier multiplier op-
erator Ty, is defined by

1 et
_ ix(§+1) &
Tn(. &)X = 5 -G /RZH m(&, me™= TS (§)g(n)dédn (1.6)

forallf, g € $(R").
Coifman and Meyer [5-7] first proved that if m € CE(R?" \ {0}) satisfies

199§ m(E. )| < Cap (18] + )T+ (17)

for all |¢| + |B| < L, where L is a sufficiently large natural number, then T, is bounded from LP(R") x LI(R")
to I'(R") for all 1 < p,q,r < oo satisfying 1/p + 1/q = 1/r. Results in [5-7] have been extended to multi-
linear Calderén-Zygmund operators by Kenig and Stein [8], Grafakos and Kalton [9], Grafakos and Torres [10], [11]
to include 0 < r < 1 (see also recent work of generalizations to bilinear square functions and vector-valued
Calder6n-Zygmund operators of Hart [12]). However, in many cases where m has only limited smoothness, we can-
not use this result since L is not an explicit number. Finding the best possible number of L thus becomes an inter-
esting problem. By reducing the bilinear Fourier multiplier operators to linear Calder6n-Zygmund operators, Coifman-
Meyer obtained the L" estimates under the assumption L = 2n + 1. In [10], the authors also proved the condition (1.7)
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with L = 2n + 1 assures the boundedness of T, by using the bilinear T1 theorem. However this number seems to be too
large in view of the linear case.

Recently, Tomita [13] improved this theorem for multipliers with limited smoothness in terms of the Sobolev regularity.
To state the result in [13], for m € L (R?"), we set my (&, n) = m(2*&, 2kn)W (&1, n1), where ¥ is the same as the (1.3) with
d=2n.

Theorem 1.4. Lets > n,1 < p,q,r <ooand 1/p+ 1/q = 1/r. If m € L (R?") satisfies

sup ||mk||HS(R2n) < o0
kezZ

then Ty, is bounded from [P (R™) x LY(R") to L (R").

For further improvement in this direction in the case 0 < r < 1 or the case where p or g can be smaller than or equal to
1, see the works in Grafakos, Miyachi and Tomita [14], Miyachi and Tomita [15] and Grafakos and Si [16].

Fujita and Tomita [17] considered the weighted norm inequalities for multilinear Fourier multiplier operators, for sim-
plicity we only state their result in the bilinear case.

Theorem 1.5. et 1 < p,q < o0, 1/p+1/q=1/randn < s < 2n. Assume

(l) min{p, q} > 2”/5 and w € Amin{ps/Zn,qs/2n) or

1—r’

(ii) min{p, q} < 2n/s)’, 1 <r < oo and w € Avg/on.

If m e L®(R?") satisfies

sup [|mg|l s geny < 00.
keZ

Then T,, is bounded from [P (w) x LY(w) to L™ (w).

This theorem can be understood as bilinear version of the results by Kurtz and Wheeden [4].
Next, we discuss the L" estimates for the multi-linear and multi-parameter Fourier multiplier operators. In the bilinear
and bi-parameter case, Muscalu, Pipher, Tao, and Thiele [18] proved the following

Theorem 1.6. Let 1 < p,q <00, 1/r =1/p+1/q,0 < r < oo and m € L®(R*") satisfy

1921882081952 m(E1, 2. 11, 12)] < Caranp (811 + i) ™IHAD (185 - [y ) (e2l+162D (18)

1

for |a1| + 181] < M, and |az| + | 82| < N, where M, N are sufficiently large natural numbers.
Then Ty, is bounded from LP(R?") x LI(R®") — L"(R?"), where Ty, is defined by

1 ; ; A R
T (f, 8)(x1,x2) = @m)@ f4 m(&, &, m, np)e™1ETITREEIRE & C£)6 (11, 0,)dE dExdnd,. (1.9)
R n

This theorem was extended to the case of multi-linear and multi-parameter setting in [19]. The method of proof of the
above theorem in [ 18,19] is to decompose the multi-linear and multi-parameter Fourier multiplier operator into discretized
multi-linear and multi-parameter paraproducts. By proving the L" estimates for the discretized paraproducts, they establish
the L" estimates for the Fourier multipliers. The difficult part of their proofis in the quasi-Banach case when 0 < r < 1where
the standard duality argument for the paraproducts does not work (see also [20]). Therefore, the authors of [ 18,19] establish
the desired result by using a new duality lemma of L"*° for (0 < r < 1), the stopping-time decompositions arguments and
multi-linear interpolation. We mention in passing that the endpoint estimates of results in [ 18,19] were obtained by Lacey
and Metcalfe [21] and L" estimates in the above Theorem 1.6 have also been established recently in the case of multi-linear
and multi-parameter pseudo-differential operators by W. Dai and the second author [22]. Furthermore, symbolic calculus
has been carried out and boundedness of multi-parameter and multi-linear pseudo-differential operators in the Hormander
classes have been established by Q. Hong and the second author [23]. More recently, LP estimates for modified bilinear and
multi-parameter Hilbert transforms have also been established by W. Dai and the second author in [24], where we address
the open question raised in [18].

It is worth noting that the smoothness condition for the Fourier multiplier m(&1, &, n1, n2) in [18,19] requires M and
N to be sufficiently large. Thus, it is interesting to know what the limited smoothness assumption is on m to assure the L"
estimates. This is one of the main purposes of this paper.

To establish the L™ estimates of the multi-linear and multi-parameter Fourier multipliers with limited smoothness, we
need to introduce the two-parameter Sobolev spaces. For sq, s, € R, the two-parameter Sobolev space H1-52 (R*") consists
ofallf e & (R*) such that

Ifllksrss = 1A = A)V222f 12 < oo, (1.10)
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where

U= AV22Pf = F A+ &P+ Im P2 (A + 18] + D2 €, €, mu n)]

where &1, &, 11, 72 € R™.
In this paper, we first establish a Hormander’s type theorem in the bilinear and bi-parameter setting. One of our main
theorems states that:

Theorem 1.7. Let m € L®°(R*"). Set

m; k&1, 2, 11, m2) = m2&;, 2%, 2y, 2X00) W (61, 1) W2 (&2, m2), (1.11)

where W1, ¥, are the same as (1.3) with d = 2n. Let s1,s, > n, s = min(sy,$2), 1 < p,q < oo, p > Zs*n,q > z?n and
1/p+1/q=1/rwith0 < r < co.If m € L®(R*") satisfies

sup [Im; k[l gs1.52 (gany < 00 (1.12)
j.keZ

then Ty, is bounded from I[P (R*") x LI(R?") to " (R>").
Remark. If we allow the smoothness exponents sy, S, to be close to 2n, then p, g are allowed to be taken in the whole range
of 1 < p,q < oo. Consequently, r is allowed to be taken all % < r < oo. Therefore, our theorem indeed improves the

theorem of Muscalu, Pipher, Tao and Thiele [ 18] by requiring only limited smoothness and our proof given here provides an
alternative one different than that in [18,19].

From the theorem above, we have

Theorem 1.8. Let 1 < p,q < coand 1/p + 1/q = 1/r.If m € C*""1(R?" \ {0} x R?"\ {0}) satisfies

|8§‘11 8?223511 3522m(§'1, £, 11, 12| < Coyanpy o (1611 + |nl|)(*\al\+|ﬁ1|)(|$2| + |n2|)(7\az\+\ﬂzl) (1.13)
forall |aq| + |81 < n+1, |az| + B2 <n+1and (&1, 11, &, n2) € R?™\ {0} x R?"\ {0}, then Ty, is bounded from L” (R?") x
LI(R?") to L (R*").

Finally, we consider the weighted norm inequalities for the bilinear and bi-parameter Fourier multipliers. To this end,
we first introduce the notion of product A, weights (see [25]).
Let 1 < p < oo. We say that a weight w > 0 belongs to the product Muckenhoupt class A,(R" x R"), if

1 1 , -1
sup (—/w(x, y)dxdy) (/w(x, yiP dxdy) < 00 (1.14)
r \IRl Jr IRl Jr

where the supremum is taken over all rectangles R = I x J, I andJ are both cubes in R".
We define Ay (R" x R") = Up.1 Ap(R" x R") as usual.
Then we can establish the following

Theorem 19. Let 1 < p,q <o00,1/p+1/g=1/randn < sq,s; < 2n, s = min{sy, S,}. Assume

(D) p > 2n/s1 wi € Apg,jan (1.15)

q > 2n/s, Wy € Apsyjon O (1.16)

(i) min{p, q} < 2n/s), 1 <r < oo (1.17)

wi™ € Avsjam, W € Avsjan). (1.18)
If m e L®(R*") satisfies

Sup [1mj il gsi.52 any < 00, (1.19)

j.kez

then Ty, is bounded from LP (wy) x L9(wy) to L' (w), where w = w’/Pw}/%.

The statements and their proofs of Theorems 1.7 and 1.9 can be easily generalized to multi-linear and multi-parameter
settings. We also remark that the proofs of our main theorems can be viewed as alternative ones different from those given
in [18,19]. Moreover, we provide weighted estimates for the multi-linear and multi-parameter Coifman-Meyer multiplier
operators considered in [18,19]. We only state these results here and leave the details to the reader.

In general, any collection of n generic vectors & = (S{)f;l, L& = (é,i)l?:l in R generates naturally the following
collection of t vectors in R™:

E=E) &= E o &= G (1.20)
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Let m = m(&) = m(&) be a bounded symbol in L>°(R™) that is smooth away from the subspaces {£; = 0} U - - - U {&; = 0}
and satisfying

,,,,, o | [ 117 (121)

i=1

o1 ot
021+ a2 m(E)]| < G,

for sufficiently many multi-indices «;, . . ., a;. We will naturally want to investigate the L" estimates of the n-linear multi-
plier operator T(t) defined by

TV (G S () = / m(E)fi(§1) - - fu(En)e? ™ T Hn e, (1.22)
RN

Thus, we can prove the following L" estimates for general n-linear, t-parameter multiplier operator Tr(rf ) with limited
smoothness.

Theorem 1.10. Let m € L°(R™). Set
my, g Gre e &) =m@E, L 2E)WED W (&,

where ¥y, ..., ¥, are the same as in (1.3) with d = n¥ there. Foranyn > 1, t > 2, the n-linear, t-parameter multiplier operator
" mapsL’” (R') x -« x [Pn(RY) to L' (R™"), provided that 1 < py, ..., py < o00,p1 > %, ... pn > % wheres; > &, ...,
s> Yands = mm(s1, ....s)and 1 pi 4o+ pin > 0 and the multiplier m satisfies

sup ||)le1 ,,,, jt ||1~151 ..... st (gutty < OO.
J1sendt €2

We can also establish the following weighted estimates.

Theorem 1.11. Let 1 < pq, ..., pn < OO, i ot pin = }and% < S1,...,5 < t€, s =min{sy,...,s:}. Assume one of
the following two conditions (i) and (ii) holds, namely,
. te )
@Mpj>—, wje€Aps,j=1,...,n, or (1.23)
S w
L te —
(ii) min{py,...,pn} <|— ), 1<r <00, w; IS, (1.24)
s T
If m e L®(R™) satisfies
sup  |Imy,j lgstse mey < 00. (1.25)
J1-Jt €L
Then T,, is bounded from [P1 (wq) X - -- X [P"(wy) to L' (w), where w = wl .- w,ﬁ.

The organization of this paper is as follows: In Section 2 we recall some preliminary facts and give some relevant
definitions. In Section 3, we prove Theorem 1.7, namely, the L" estimates for the multi-linear and multi-parameter Coifman-
Meyer multiplier operators with limited smoothness. In Section 4, we give the proof of Theorem 1.9, i.e., the weighted version
of Theorem 1.7.

2. Preliminary results

The strong maximal operator M for a function f on R?" is defined by

Msf (x,y) = sup ii [f(u v)|dudv, (2.1)

r1r2>0rnrn

where R = {(u, v) € R* | [u — x| < 11, |[v — y| < 5} and f is a locally integrable function on R?". It is well known that M
is bounded on IP(R?") forall 1 < p < oo.

Lemma 2.1. Let €1, €, > 0. Then there exists a constant C > 0 such that

sup <rlnr2n [ J v dudv) < M (x,y) 22)
R

r.r2>0 am (14 nlx —u"™ (1 +rply —v)rte

for all locally integrable functions f on R*".
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Proof. Note that

u,v
ﬁ”r;zf [, v) dudv < CMf (x, y)
(v):u—x|<r] o=yl <ry ! (1 +rilx —u)™1 (1 + rply — v))"e

and

If (u, v)|
n+e n+e. dudv
(u,v):lu—x\zrl_l,|v—y|zr2_1 (1 + T |X - Ll|) 1(1 + rZIy - U|) 2
S f If (u, v)|
18 ke, <umx <2k ke <oy <2kt T (T TX = U1+ )y — vt
a 1
> o |
=g (14299 (1 + 299 J g yyqumxi<okt 1 ju—y|<2kt 15!

Then it follows immediately that

sup (rl”rZ”/ (. v)l dudv) < Mf(x,y). O
R

rn>0 o (14 rifx —u)™ (14 rply — v))r*e

<

If (u, v)|dudv.

Using the inequality for vector-valued Hardy-Littlewood maximal functions of C. Fefferman and Stein [26], and the fact
that Mf (x, y) < M{M-f(x,y), where M; and M, are the Hardy-Littlewood maximal functions with respect to the x and y
variables respectively, we have the following inequality for the vector-valued strong maximal functions:

Lemma 2.2. et 1 < p, g < oo. Then there exists a constant C > 0 such that

1/q 1/q
{Z(Mifm} <cC :Dm} (23)

keZ » keZ »

for all sequences {fi}xez, of locally integrable functions on R%",
Using the Littlewood-Paley inequality of [? estimates in the product space of R. Fefferman and Stein [27], we can deduce
immediately the following

Lemma2.3. et 1 < p < oo, and let ¥y, ¥, € 8(R") be such that suppy; C {€ € R" : 1/a < |&| < a} for somea > 1,
supp Y, C {n € R": 1/b < |n| < b} for some b > 1. Then there exists a constant C > 0 such that

1/2
{Z |W1(D/2]')%(D/2")f|2} < Cllflle forallf e I"(®*™), (24)

j,keZ
J 1

where [ (D/2)05(D/29 1(61. &) = F " [1(/2)05(./297 . )| (€1, &2). Moreover, if Y., wi(&/2) = 1forall # 0,
fori=1,2, then

172
!Z ¥ (D/zf)wz(D/Z")fF} ~ |fllw foralf e IP(R*). (2.5)
jkez »
Let ¢p¢ be a C*°-function on [0, 0o) satisfying
¢o(t) =1 on][0, 1/8], supp¢o C [0, 1/4] (2.6)
we set ¢1(t) = 1 — ¢o(t), and set for &, n € R" the following notations:
Dy (&.m) = go(El/InD)  Py(E,m) = d1(Inl/IED (2.7)
D3 (€. 1) = (1= ¢o(IE1/InD)(1 = Pr(Inl/IEDN)- (2.8)

Lemma 2.4 ([17]).
(1) For (§,n) € R" x R"\ {(0, 0)},

P&, + Py, )+ P3y(E. ) = 1. (2.9)
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(2) Each @y satisfies

19552 @) (6. )| < Cayay (18] + [y~ H1e2D (2.10)

for all multi-indices o, o.
(3) supp @3, C {I§1/8 = [n| = 8[&[}, supp Py C {|§] < Inl/2} and supp @3y C {In| = 1§1/2}.

With a similar proof to that of Lemma 3.2 in [13] with a little modification, we can obtain the following:
Lemma 2.5. Assume that m € CN*M(R?" \ {0} x R?" \ {0}) satisfies

|05 052001802 m(Er, &2, 1, )| < Cananprpy (€11 + I D TP (|| 4 [pg]) Tle2H12D (2.11)

forall 1| + |B1] < N, |aa| + |82 < M and (&1, 01, &2, 12) € R?*\ {0} x R?"\ {0}, where N, M are non-negative integers. Let
@, and @, € $(R?™) be such that none of supp @1, supp @, contains the origin, and set

st (81, &2, M1, m2) = m(s&q, t&z, s, tn2) P1(81, 1) D2(82, 1m2). (2.12)

Then sups ¢~.¢ |75, | yv.m gany < 00.
Lemma 2.6 ([14]). Let 2 < q < 0o, r > 0and s > 0. Then there exists a constant C > 0 such that

1/q
If s ) = (/4 If (x, »)1%(1 4+ x*)°(1 +y2)5dxdy)
R 1

C“f”Hs.S(]RZnX]RZn). (213)

IA

Next, we need to establish the following

Lemma 2.7. Let s, s, € R, and let ¥y, ¥, € 8(R*") be such that supp ¥;, supp ¥, are compact and none of them contains the
origin. Assume that @ € C®°(R?" \ {0} x R?" \ {0}) satisfies

1051052001002 @ (1, &2, 1. 12)| < Cayanprpp (€11 4 I [) "D (1| 4 [y )~ (o2 F1P2D
forall aq, a2, a3, a4 € Nj. Then there exists a constant C > 0 such that

sup [|m(t&y, s&, tn, sm) P (t&1, &2, tn1, sn2)W1(&1, M), Y2 (&2, m2)llms1s2 < C sup [|mj gllgsi.s2

t,s>0 J.kezZ

for all m e L (R*) satisfies SUD; kez 1M k5152 rany < 00, Where my . is defined by (1.11).

Proof. We mimic the proof of Lemma(3.4)in[14]. First, we assume that supp ¥; C {1/210 <|Cnn)| = 2i0} and supp ¥, C
{1/2% < |(&, mp)| < 2%} for some jo, ko € N.Givent,s > 0, take j, k € Z satisfying 2/~ T <t < 2,21 <5 < 2K Then,
since 1 < 2/t < 2,1 < 2¥/t < 2, by change of variables,

Im(t-, s)@ (-, sHT W () llgsis2 < Cllm2-, 2K @ (20, 2K ) 2T )@ (25571 [ljgsiosa

Let ¥ (&1, n1), ¥ (&2, n2) be as in (1.3) with d = 2n. Using supp ¥, (2t™".) C {1/20%! < |(&1, n1)| < 20} and supp ¥,
(2%s71) C {17257 < |(&, n2)| < 2%}, we have

m(2-, 2% @ (2., 25w (2Tt )W 2K || yss

ko
<C YD Im@n 2@ 2 (@ 5T W (/2D (25 [l
j1==Go+1) k1=—(ko+1)
Jo ko
<C YD Im@ 29 /2N (25 [ @2, 259 ET W 25T [l
j1==Go+1) ky=—(ko+1)
ko
<=c >3 Im@ 2 WO g D, 59U e
j1==Go+1) ky=—(ko+1)

<C (JSUP Im*., 2k+k1')‘I/‘P||H51'32> (/SUP lD(t-,s)¥ lI/Z”HSI'SZ) .
j,s>0

j,keZ

By Lemma 2.5, supj ;.o [| @ (¢, s )¥1¥2 ||gs12 < o0
The proof is then complete. O
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3. Proof of Theorem 1.7

The main effort of this section is to establish the first main theorem of this paper on L" estimates for the multi-linear
and multi-parameter Fourier multipliers with limited smoothness, namely, Theorem 1.7. The proof is quite complicated and
involved due to the multi-parameter structure of the Fourier multiplier m. Therefore, we will divide the proof into several
steps. The main idea is to decompose the multiplier into different pieces and handle them separately in each piece.

Proof. Lets;, s, > nandm e [°(R*") satisfy Sup; kez My kllgsis2 < 0o, where m;  is defined by (1.11). Since H*1+* (R*") —
gminis1s2hminisy.sa} (R4nY it js sufficient to consider H>S(R*"), where s = min{s;, s;} > n. We rewrite m as follows:

3 3
m(&1, &, n1, 12) (Z D (61, 771)) (Z D) (82 772))

i=1 Jj=1

m(é1, &2, 11, 12)

3
Y mE, &, m, m) P (Er )P (E, 12)

ij=1

3
=Y mij(Er, &, m1, 1) (3.1)
ij=1
where @;, @; (1 <1, j < 3) are defined by (2.7) and (2.8).
By Lemma 2.4, we divide these m; into four groups and estimate the bilinear and bi-parameter Fourier multiplier
operator defined by each symbol m; ;. Since the Fourier multiplier operator corresponding to every symbol m; ; in the same
group can be estimated in the similar way, we just choose one to handle in each group.

e Group 1:
- my,1, where suppmy 1 € {|§1] < |ml/2, & < In2/2}
- My, where suppmy 1 € {[n:1] < [611/2, 2] < 1&21/2}.
e Group 2:
- my 3, where suppmy s € {|&| < |1/2, In21/8 < |&2] < 8|n2|}
- my 3, where suppmy 3 € {{n1] < |&11/2, |921/8 < |&] < 8|n2[}
- mg3 1, where suppmy 3 € {|n1|/8 < |&1] < 8|n1l, [&2] < In2l/2}
- ms3,, where suppmy 3 € {|n:11/8 < [&1] < 8|ml, In2| < [621/2}.
e Group 3:
- my, wheresuppmy s € {|&1] < |ml/2, 2] < 1521/2}
- my 1, where suppmy 1 € {Im| < 1§11/2, 18] < In2l/2}.
e Group 4:
- m3 3, where suppms 3 € {|n11/8 < [&1] < 8In1l, [n2]/8 =< |&| < 8|n2l}.
In the following proof, we assume 2n/s < p, q.
Estimates for Fourier multiplier corresponding to a symbol m; i in Group 1.

First, we consider m; ,, for simplicity we denote it as m! instead of m, ,. Using the fact that P norm is bounded by the
HP norm in the multi-parameter setting established, e.g., in [28-30], and the equivalence of the definition of the multi-
parameter Hardy space, we have forall 0 < r < oo

ITm(f, ©)lp < |l sUp |@s,c * T (f, )| ll1r

5,t>0

1/2
~ :Z [Y1(D/2) Y2 (D/29 T (. )2 (3.2)
Jj.kez I

for0 < p < oo, where &, (x,y) = 2"p(25"x)2"p(2™y), ¢ € S(R™) and & does not contain the origin, ¥ is the same as
(1.3)withd = n.
Letf, g € $(R?"), since Y ez Wi(6) = 1,forall§ € R"\ {0}, we have
A & W (D/2)W (D)2 T (F, 8) (1, X2)

1 , . ) A
= m)@ /4 m' (&1, &, 11, o) ETHITREIR g £, 4 F (&, £)W(E + 12)E (01, n2)dEdEdndn,
R n

1 1 ix i
— 1E1+n1)+ix2 (62+m2)
= 2n@ jﬂ;M m- (&1, &2, M, m2)e

X Wi(& + n)FEDS (1, )W + m)Wi(E)E (11, n2)dErdExdndn;
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1 1 ; .
(27)@n /R‘ln m (&1, &2, n1, ﬂz)elxl(&MIHM(EZMZ)

X Wi(& + n)FEDF (1, £2) (&2 4+ 1) Wi(E)E (11, n2)dE1dExdndny

- / 2l — 1), 246 ), 201 — 20,240~ 22)
Rn

where ¥ (§) =

x (F(DYW (DY) V1, ¥2)g (21, 22)dy1dy2dzdz,

(3.3)

W (£/2% and ¥ (&) € 8(R") such that & (&)W (§1+m1) = &’/(E1+m) onthe suppm', since |&1+1:1| ~ |&1].
The same is true for ¥ (&), i.e., ¥ (&)¥ (& + 12) = ¥ (€, + 172), on the supp m?, since |& + 12| & |&,|.

ml, = m' (21, 2%, 21, 20 W (&1 + )W (& + 12).
Take 1 < t < 2 satisfying 2n/s < t < min{2, p, q}.

|Aj | < 2%nt2kn / A+ 2% —y1l + 2 |x1 — z11)°(1 + 2¥|x2 — 2| + 25 |%; — 25])°
R n

IA

N

X (F7'ml )@ — y1), 2402 — y2), 2 (%1 — 21), 24 (%2 — 22))
x (14 2j|~><1 —yil +2x1 —z1) (1 + 2%x0 — o] + 25 |xy — )
x (Y (D) (D)f) (Y1, ¥2)&(21, 22)dy1dy,dz,dz;

1/t

(/4 (T + il + 2D+ yal + 122D IF 'm0, v2, 21, 22)[f d}’1dJ/2dZ1d22>
R n
x ( f L2 A P =yl 4 2 = 2T+ 2 = yal + 2% — )"
]R n
1/t
X I(%(D)Wk(D)f)(v],yz)g(zl,Zz)ltdyldyzdadzZ)
1/t
lIm Jk”Lf’(w o) (/2 2" g (21, )11+ 2% — 2o )21+ 2 xg — Z]|)75[/2d21d22)
S, R n

1/t
) (/ 2@ 01yl (1 2 =yl 1+ 2 —yz|>*“/2dy1dy2)
Rn

< lml el (Ms (1D BN (%1, %)) " (Ml (31, %))

The last inequality is from Lemmas 2.1 and 2.7 since st/2 > n.
Then by Holder's inequality, (3.2) and (3.5), we have

1/2
||T,;<f,g)(x1,xz)||u5sup|| mj | {Z(Msu(@(D)%(D)f)m)z/f} (M (1g19)> ' 10

Using suppm

sup ||

j.kez

Consequently

](E j,k »
A

< sup m ! s {Zk:(Ms(l(‘f’j(D)‘f’k(D)f)I‘))Z”} (M (lg1 )2 172110
I 1w/t

< sup [Imj llss If 1 1€ -
Jj.kez

Te{1/a < I&2+ Im|* <a,1/b < /|&|% + |n2|> < b} for some a, b > 1, by Lemma 2.7 we have

1
m; i llass < sup [Im;pllgss.
j.kez

1Tt i xia—rr < sUp mjllsy.s, -

J.kezZ

Changing the roles &1, n; and &;, 1, we can prove

1Tt o xia—rr < sUp [[mpllpsis2

Jj.kez

where m! = m, ; this time.

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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Estimates for the Fourier multiplier operators with a symbol in Group 2:

We write m? instead of m 3 for simplicity. Since supp m; 3 € {|&1] < |111/2, [721/8 < |&] < 8|n2}, then there exists
ol e $(RM), such that ¥ (£,)W 1 (n,) = W (&) on {|n2]/8 < |&| < 8|n,|}, where ¥ is the function which is the same as case
1. Hence,

U (D/2) T2 (f, 8) (X1, X2)

1 . . ) A
= Q)@ f4 m* (&1, &, 0y, o) ETHITREIR g £, 4 F (&, £)8 (11, 12)dE1dExdndn,
R Ul

1 2 ix i
— m L E0 11, e E1+n)+ixy (E2+n2)
(27)@n Ek /11;‘“1 (81, &2, 11, m2)

x W& + M)W (EF (&1, £2)W, (12)€ (11, n2)dE1dExdndny

1 . .
= W Z f4 m2(§1, &, M, Uz)elxl($1+m>+m2($2+'72)‘1’j(§1 + )
k JRY

X B(E) W (E)WA(ENF (&1, £2)W) (12)8 (1, 12)dEdEdnd,

=y f 2O (E T ) @0 — y1), 2400 — 2). 200 — 21). 200 — 22))
K JRA

x (G(D)WZ (D)) (1, y2) (¥ (D)) (21, 22)dy1dy,dz1dz

I ZAJ'J‘ (3.10)
k
where ¥ is the same as we used in Estimates for symbols in Group 1 and U (5)WA(E) = W (&).
m?, = m?(2g;, 2501, 26, 250) W (&1 + )W (&) (3.11)

Take 1 < t < 2 satisfying 2n/s < t < min{2, p, q}. Arguing in the same way as deriving (3.5), we can prove

Al S 12 s (MBI . x2)) ' (M9 (D)g1) (1, x2)) " (3.12)

Moreover we can assume f (&1, &) = f1(£1)f2(£2), where f, f, € $(R"), since f; ® f, is dense in [P(R*"), 1 < p < 0.
Then we have

1Akl < Im2 s (M (g DM @GO ¢)) " (MA% D)g 1) )M (EZ D)1 (x2)) " . (3.13)
Then from (3.10) and (3.13), we have
W (D/2) Ty (F. ) x| S D M2 llss (Mgt )M (DY) x1) "
k
x (M@ (D)2 ()M (D)) (%))
< sup [ s (M(Ig11) )M (F D)) )"
J.ke
x :Z [M(1% (D)g2]) ()M (W (D)) (x2)] } : (3.14)
k

Then

J

1/2

<Z |W<D/2f)ré(f,g><x1,xz)|2) S sup Imjylhes 3 [MAgi ) MDD x|
J ke

1/2

2
x [Z(M(Wf,}(D)gz|f)<xz>M(|vf,3<D)fz|‘><><2>)”f]
k

J

1/2
= sup I s {Z [M(1g11) MDD xn) ] f}
J,ke

x {Z [M(w, (D)gz|t)(X2)M(|‘1’;<2(D)f2|t)(xz)]1/t} : (3.15)

k
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Since p/t, q/t, 2/t > 1, by Holder’s inequality, Lemmas 2.2, 2.3 and (3.15)

1/2
IT3(F, &) (1, %)l S (Z|W<D/2f)T;(f,g>(x1,x2)|2)
J

r

1/2
< Sup flmj s {Z [M<|g1|f><x1)M(|(@(D)for)(xo]z”}
Jj.ke

! 17 (R

X

{Z (M(19 (D)gal") x2)M (1 (D)) (x2)) t}

k ' (RM)

]

1/2
< sup [yl [Z [M(I(U%(D)fl)lf)(xo]z/t} 1M (1ga1) g
Jj,ke

P
1/2 1/2
x (Z(M(M(D)gzv)(xz))z/f) (Z(Muwk(n)fz|f>(x2>)2/f>
k k )
< sup [[m? lluss [1fillow 1€ lles
j.kez
1/2 1/2
x (Z(Muw,:(D)g2|f)(><z))2/f) (Z(M(W,J(D)fzv)(xZ))Z/f)
k 14 k »
< sup [ llass i llow 12 llew N1 lla 1182 1o (3.16)
J.keZ
Using supp mj%k e {1/a < /I&12+ ml? <a,1/b < {/|&]|? + |n2|*> < b} for some a, b > 1, by Lemma 2.7 we have
sup [[m?lliss S sup llmlses. (3.17)
j,kez j.kez
Consequently
T2 lp x19—1r < sup ||m k|lpss. (3.18)
j.kez

By changing the roles of £&; and n; or (¢1, 1) and (&;, 12), we can prove other situations in Group 2.
Estimates for Fourier multiplier with symbols in Group 3:
We write m? instead of m 5, the proof is similar to case 1 with necessary modification. Since |£; 4+ 71| &~ |5:| and

|&2 + n2| & |&,], we have
) 1 . )
W (D/2)W (D/2)T,3(f, 8) (%1, X)) = ———— / m* (&1, &, 1, pp)e™1 ErFITREAR)
(2.7'[)( ) R4n
X (&1 + n)f €1, E)W(E + 12)8 (01, 12)dEdExdndny
1 3 ix1 (E1+n1)+ixa (E2+12)
:me"ﬂm (&1, &2, mq, mp)erisITIITIEZTR
X Wi(& + n)F)F E1, E2)W(E + 12)¥(E2)E (11, n2)dEdExdnidn,
_ 1 3 i1 1) Hixa (Ba-Hn2)
—W/R‘mm(éuéz,m,nz)e‘ TRt
X W& + m) (&S (&1, £)W(E1 + 1) F()E (1, n2)dErdExdndi,
= / 2@ (F 1 md ) (2 (%1 — y1), 2 (%2 — ¥2). (%1 — 21), 25 (02 — 22))
R4” ’

x (T(D)f) (1, ¥2) ¥ (D)g (21, 22)dy1dy,dz1dz;
Sa (3.19)

where ¥, ¥ are defined the same way as we deal with symbols in Group 1 and

my = m3 (281, 246, 2y, 2 W (&1 + )W (& + o). (3.20)
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As we did in dealing with symbols in Group 1, we can easily prove

Ajil < I llass (Ms ([ (B (D)) (1 %))V (M ([(E (D)) ) (x1 %)) (321)
where max{1, 2n/s} <t < 2.

Since the rest of the proof is similar to that of case 1, we omit the details. Thus we obtain

3
1Tl xra—rr S sup 1m7y llnss S sup [[mypllpss. (3.22)
j.kez J,keZ

By changing the roles of (&1, 1) and (&, n,), we can get the same conclusion for m; ;.

Estimates for Fourier multipliers with symbols in Group 4:

We write m* instead of mj 3. Since the proof is similar to the case dealing with symbols in Group 2, we will outline the
main estimates and omit the details here.

First, we can easily prove

1/2
[Tna (F, 8) (%1, %2)| < sup [l s { E (Ms(|(l1~/j(D)lpk(D)f)|t)(Xl,XZ))Z/t}
Jrke

J.k

1/2
x {Z(Ms(l(lf’j(D)!f’k(D)f)I[)(M,Xz))”z} (3.23)
Jj.k

where max{1, 2n/s} <t < 2.

m}, = m* (&1, 251, 28, 202 (&1 + )P EDW (& + m) P (&). (3.24)
Since p/t, q/t, 2/t > 1, by Holder’s inequality, Lemmas 2.2 and 2.3, we have

1/2
1T )1 x2)llr S sup i e (ZMs<|(ifj<D)@k<D>f>|f>2/f>
J,KE

j.k 1

1/2
x (ZM5<|(v7,-(D>Cvk(D)g>|f>2/f>
ik L

ik

t/2 1/t
< sup [[mj'y [lyss {ZMs<|<l17j<D>l1?k<D)f)|f)2/‘}
j.kez it
e2 |1/t
X {ZMs(|(@j(D>ifk<D>g>|f>2“}
Ik v/t
5 B 1/2 _ _ 1/2
S sup I s [Z I(@;(D)@k(D)f)lz} !Z |(&(D) & (D)g) [
ke ik .k L

< sup [[mllss 1 [l l1g]lss- (3.25)
j.kez

Since suppm* € {1/a < /|&112 + |m|?> < a, 1/b < {/|&|? + |n2|2 < b} for some a, b > 1, by Lemma 2.7 we have

3
ITpallpxra—rr S sup M7y llnss < sup [[myillpss. (3.26)
J.keZ j.kez

Next, we consider T,,1, T2, the dual operator of T;,;, which are defined by

/ Tm(f,g)hdx:/ Tm*l(h,g)fdx:/ T2 (f, h)gdx (3.27)
RZn RZn RZn

forallf, g, h € 8(R*").
If we have proved the same conclusion for T, 1, T2 as Ty, then using the same proof as in the bilinear case in [13], we
complete the proof of Theorem 1.7 by multi-linear and multi-parameter duality and interpolation. We omit the details here.
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To finish the proof of Theorem 1.7, we only need to show

1
5}:113 ”m;jk”HSLSZ(]R‘l”) < sup 11 k[l g2 am

J.keZ J.keZ

2
up ||mf.k||1-151~52(m4n) < sup [Im; k|l gsi.52 gan)
j.kezZ J.keZ

where m*! (&1, 1, &, n12) = m(— (1 + 1), m, —(&2+12), n2) and m(E, m1, &, m2) = m* (51, —(E1+m), &, — (&2 +m2)).
We only choose one case to prove, the remaining cases are the same.
By a change of variables,

Il = Im(=2/ &+ ), —2E +n2), 21, 202) Wi (&1, n) W &2, 1) w12

~ |m2&1, 2%, 21, 2°0) W1 (— &1 + m1), n) (=& + 12), 02) sz - (3.29)
Since /| + n|2 + [n]2 &~ /|| + |12, then we can obtain

(3.28)

sup [[myllgss: S sup M5 lgsrss - (3.30)
J.keZ j.kezZ

Therefore, we have finished the proof of Theorem 1.7. O

Remark 3.1. In the proof of Theorem 1.7, we only assume p, ¢ > 2n/s, s > n, it implies that the target space L" may be the
quasi Banach space, where r depends ons. O

4. Proof of Theorem 1.9

This section is devoted to establishing the second main theorem of this paper on weighted estimates for the multi-linear
and multi-parameter Fourier multipliers with limited smoothness, namely, Theorem 1.9. Before we prove Theorem 1.9, we
recall some useful facts about product A,(R" x R") weights.

Lemma4.1 ([31]).Let 1 < p < oo and w € Ap(R" x R"). Then

(1) w'? € Ay(R" x R")
(2) thereexists 1 < q < psuch that w € Ag(R" x R").

Lemma 4.2. Suppose that w; € Apj(R” x RM)with1 <j <mforsomel <pq,...,pmn <ocoandlet0 < 6,...,6, < 1be
such that 6; + - - - + 6, = 1. Then
wi - W™ € Amaxipy,..pm)- (4.1)

Proof. First note that w; € Amax(p,,....pm}» fOrj = 1, ..., m, then apply Hélder’s inequality, we can obtain the conclusion.

Lemma 4.3 ([26]). Let 1 < p,q < oo and w € A,(R" x R"). Then there exists a constant C > 0 such that

1/q 1/q
[Z(Mw} <C [Z(fk)q] (4.2)

kezZ P (w) keZ 1P (w)
for all sequences {fi}kez of locally integrable functions on R".

Lemma 4.4 ([27]). Let 1 <p < cow € A,(R" xR"), and let ¥;, ¥, € $(R") besuch that supp¥; C {€ e R" : 1/a < |§] <
a} forsomea > 1,supp ¥, C {§ € R" : 1/b < |&| < b} for some b > 1. Then there exists a constant C > 0 such that

1/2
{Z 2 (D/zf)wz(D/zk»‘F} < Cllf ey forallf e 1B, (R"). (43)

jkeZ
Jske 1P (w)

Moreover, if ZjeZ Wi(£/2) = 1forallE # 0, fori= 1,2, then

1/2
[Z |lP1(D/21)lI/2(D/2k)f|2] ~ flpw forallf € LP(w). (4.4)

j,keZ
J P (w)
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Lemma 4.5 ([32]). If 0 < p < 00, w € A (R" x R"), f is a local integrable function in H? (R" x R"). Then

1/2
Il < {Z 2 (D/szz(D/z")ﬂz} : (45)

i keZ
hre P (w)

We first prove Theorem 1.9 under assumption (i) in Theorem 1.9. Since 2n/s; < min{2, p} and wi € A, /20, by
Lemma 4.1, we can take 2n/s; < p; < min{2, p} satisfying w; € Ap/p,, the same is for w,. Then

1/2
I Tt (F s @) vy < {Z |%<D/2”>%<D/2")Tm(f,g>|2}

<
j.kezZ P(w)
1/2
S sup Im) s {Z(Ms(l(ﬁ’j(D)J’k(D)f)It))z/t} M (g1 F 19
J.keZ Tk P
e/2 | 1/t
7, 7, 1
S Sup Imjfler2 { Z(M«K%(D)%(D)f)|f)>2/f} LM 21D Y e e
e ik 1P/t P/t
< sup 1mj lliss If e o) 18 19 ) (46)
j.kez

where we take t = max{ps, q;}, then w; € Ay, and w; € Ay;.

To conclude the weighted estimates for the Fourier multipliers m, we need to do estimates corresponding to other
symbols. Since the estimates for the remaining symbols in other groups are similar to that of m', we omit the details here.

Next, we give the proof of Theorem 1.9 under condition (ii) we consider case p = min{p, g}. Since p’ < (2n/s)’, then
max{1/r’,1/q} < 1/r' +1/q = 1/p < s/2n, thatis, 1, q > 2n/s. Hence 2n/s < min{2, r’, q}.

Since 1/2 < s/2n < 1and w!™ € Avsjany wi™ € Aysjan, by Lemma 4.1 we have

w}”/ € Avsjony C Av, thenw; € A, (4.7)
Wi € Avgjon C Ay, thenw, € A (48)
w' = wgkr )r/pwélfr e Arrsyam (4.9)

where (4.9) is from Lemma 4.2.
It is from the assumption that p < q, we also have r < q/2, then w, € A, C Agj2 C Ags/2n. Since wl™ e Ars/any, W2 €
Ar C Ags/an, by Lemma 4.2 we can take 2n/s < t < min{2, r’, q} such that

wi €Ay, wy € Ag. (4.10)

By duality and (3.29), it is enough to prove

[ Ty I < Csup [[mjllpsi . (4.11)
j.kezZ

Lr/(wl‘r/)qu(wz)eLp,(wifp/) -
From the proof of Theorem 1.7, we have

1/2
1T 6 &)y 19, = {Z |w1(D/2f>w2(D/2")Tm(f,g>|2}

j,keZ
hie P (w)

A

1/2
Sltllzllmj‘1,kIIH51=Sz {Z(MS(KJG(D)‘I’k(D)f)'t)(Xl»XZ))Z/t} w "
J,KE

j.k

x (Ms(1g1) (x1. %2)) *w,?

q

P

A

1/2
SUp (I ll1-2 {Z(M;(K%(D)%(D)f)|f>(x1,xz))”f}
J,Ke

Jik Lr’(wl—r’)
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< M5 (g1 1, %) 2 19y

AR
< sup mfllgsiss 1) (Mo(1(5(D) B (D)) |1) (%1, %2)) "
j.kez .k =
1
X M5 (Ig 1 G, %)X Y2000
< sup [Im] gt 1f e o) 1€ N1 - (4.12)
j.kez

The weighted estimates for the Fourier multiplier operators corresponding to the remaining symbols are the same as
with T,1, thus we finish the proof of Theorem 1.9.
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