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a b s t r a c t

The main purpose of this paper is three-fold. First of all, we are concerned with the limited
smoothness conditions in the spirit of Hörmander on themulti-linear andmulti-parameter
Coifman–Meyer type Fourier multipliers studied by C. Muscalu, J. Pipher, T. Tao, C. Thiele
(2004, 2006)where they established the Lr estimates for themultiplier operators under the
assumption that the multiplier has smoothness of sufficiently large order. Under our lim-
ited smoothness assumption,wewill prove the Lp1 ×· · ·×Lpn → Lr boundednesswith 1

p1
+

· · · +
1
pn

=
1
r for 1 < p1, . . . , pn < ∞ and 0 < r < ∞. Second, our proof of Lr estimates

also offers a different and more direct approach than the one given in Muscalu et al. (2004,
2006) where they use the deep analysis of multi-linear andmulti-parameter paraproducts.
Third,we also prove aHörmander typemultiplier theorem in theweighted Lebesgue spaces
for such operators when the Fourier multiplier is only assumed with limited smoothness.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this paper is to consider the limited smoothness condition on the Fourier multipliers in the multi-parameter
and multi-linear setting. This is an analogue of the well-known Hörmander–Mihlin type theorem in the linear and multi-
linear cases.

Let S(Rd) denote the space of Schwartz functions, and S′(Rd) denote tempered distributions. The Fourier transform f̂
and the inverse Fourier transform f̌ of f ∈ S(Rd) are defined by

F f (ξ) = f̂ (ξ) =


Rd

e−ix·ξ f (x)dx and F −1f (ξ) = f̌ (x) =
1

(2π)d


Rd

eix·ξ f (ξ)dξ . (1.1)

In the linear case, we first recall the following Mihlin theorem (see, e.g., [1, Corollary 8.11]):
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Theorem 1.1. If a multiplier m ∈ C[
n
2 ]+1(Rn

\ {0}) satisfies the following condition

|∂αm(ξ)| ≤ Cα|ξ |−|α| for all |α| ≤

n
2


+ 1 (1.2)

then the Fourier multiplier operator m(D)f = F −1
[mf̂ ] defined with the symbol m(ξ) is bounded from Lp(Rn) to Lp(Rn) for all

1 < p < ∞.

On the other hand, Hörmander reformulated and improved Mihlin’s theorem using the Sobolev regularity of the multi-
plier [2]. To describe Hörmander’s theorem, we let Ψ ∈ S(Rd) be a Schwartz function satisfying

suppΨ ⊂


ξ ∈ Rd

:
1
2

≤ |ξ | ≤ 2

,


j∈Z

Ψ


ξ

2j


= 1, for all ξ ∈ Rd

\ {0}. (1.3)

For s ∈ R, the Sobolev space Hs(Rn) consists of all f ∈ S′(Rn) such that

∥f ∥Hs , ∥(I − △)s/2f ∥L2 < ∞, (1.4)

where (I − △)s/2f = F −1
[(1 + |ξ |2)s/2 f̂ (ξ)]. Then the Hörmander multiplier theorem says

Theorem 1.2. If m ∈ L∞(Rn) satisfies

sup
j∈Z

∥m(2j
·)Ψ ∥Hs(Rn) < ∞, for all s >

n
2
,

where Ψ is the same as in (1.3) when d = n and Hs(Rn) is the Sobolev space, then the Fourier multiplier operator m(D) defined
with the symbol m is bounded from Lp(Rn) to Lp(Rn) for all 1 < p < ∞.

Clearly, Hörmander’s theorem is stronger than Mihlin’s and the number n
2 cannot be improved in Hörmander’s theorem.

We now turn to the weighted estimates for Fourier multipliers. We first introduce the notion of Muckenhoupt’s Ap
weights [3]. Let 1 < p < ∞ and denote p′

=
p

p−1 . We say that a weightw ≥ 0 belongs to the Muckenhoupt class Ap(Rn), if

sup
R


1
|R|


R
w(x)dx


1
|R|


R
w(x)1−p′

dx
p−1

< ∞ (1.5)

where the supremum is taken over all cubes R in Rn. We also use the notation ∥f ∥Lpw(Rn) =


Rn |f (x)|pw(x)dx
 1

p .
Then, Kurtz and Wheeden [4] extended Hörmander’s theorem to weighted Lebesgue spaces and proved the following:

Theorem 1.3. Let n
2 < s ≤ n and 1 < p < ∞. Assume n

s < p < ∞ andw ∈ A ps
n
. If m ∈ L∞(Rn) satisfies

sup
j∈Z

∥m(2j
·)Ψ ∥Hs(Rn) < ∞,

then the Fourier multiplier operator m(D) defined with the symbol m is bounded from Lpw(R
n) to Lpw(R

n) for all 1 < p < ∞.

We now turn to the discussion of multi-linear Coifman–Meyer Fourier multiplier operators. We only state the bilinear
case as an example for simplicity of its presentation. For m ∈ L∞(R2n), the bilinear Coifman–Meyer Fourier multiplier op-
erator Tm is defined by

Tm(f , g)(x) =
1

(2π)(2n)


R2n

m(ξ , η)eix(ξ+η) f̂ (ξ)ĝ(η)dξdη (1.6)

for all f , g ∈ S(Rn).
Coifman and Meyer [5–7] first proved that ifm ∈ C L(R2n

\ {0}) satisfies

|∂αξ ∂
β
ηm(ξ , η)| ≤ Cαβ(|ξ | + |η|)−(|α|+|β|) (1.7)

for all |α| + |β| ≤ L, where L is a sufficiently large natural number, then Tm is bounded from Lp(Rn) × Lq(Rn)
to Lr(Rn) for all 1 < p, q, r < ∞ satisfying 1/p + 1/q = 1/r . Results in [5–7] have been extended to multi-
linear Calderón–Zygmund operators by Kenig and Stein [8], Grafakos and Kalton [9], Grafakos and Torres [10], [11]
to include 0 < r ≤ 1 (see also recent work of generalizations to bilinear square functions and vector-valued
Calderón–Zygmund operators of Hart [12]). However, in many cases where m has only limited smoothness, we can-
not use this result since L is not an explicit number. Finding the best possible number of L thus becomes an inter-
esting problem. By reducing the bilinear Fourier multiplier operators to linear Calderón–Zygmund operators, Coifman–
Meyer obtained the Lr estimates under the assumption L = 2n + 1. In [10], the authors also proved the condition (1.7)
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with L = 2n + 1 assures the boundedness of Tm by using the bilinear T1 theorem. However this number seems to be too
large in view of the linear case.

Recently, Tomita [13] improved this theorem for multipliers with limited smoothness in terms of the Sobolev regularity.
To state the result in [13], form ∈ L∞(R2n), we setmk(ξ , η) = m(2kξ, 2kη)Ψ (ξ1, η1), where Ψ is the same as the (1.3) with
d = 2n.

Theorem 1.4. Let s > n, 1 < p, q, r < ∞ and 1/p + 1/q = 1/r. If m ∈ L∞(R2n) satisfies

sup
k∈Z

∥mk∥Hs(R2n) < ∞

then Tm is bounded from Lp(Rn)× Lq(Rn) to Lr(Rn).

For further improvement in this direction in the case 0 < r ≤ 1 or the case where p or q can be smaller than or equal to
1, see the works in Grafakos, Miyachi and Tomita [14], Miyachi and Tomita [15] and Grafakos and Si [16].

Fujita and Tomita [17] considered the weighted norm inequalities for multilinear Fourier multiplier operators, for sim-
plicity we only state their result in the bilinear case.

Theorem 1.5. Let 1 < p, q < ∞, 1/p + 1/q = 1/r and n < s ≤ 2n. Assume

(i) min{p, q} > 2n/s andw ∈ Amin{ps/2n,qs/2n} or

(ii) min{p, q} < (2n/s)′, 1 < r < ∞ andw1−r ′
∈ Ar ′s/2n.

If m ∈ L∞(R2n) satisfies

sup
k∈Z

∥mk∥Hs(R2n) < ∞.

Then Tm is bounded from Lp(w)× Lq(w) to Lr(w).

This theorem can be understood as bilinear version of the results by Kurtz and Wheeden [4].
Next, we discuss the Lr estimates for the multi-linear and multi-parameter Fourier multiplier operators. In the bilinear

and bi-parameter case, Muscalu, Pipher, Tao, and Thiele [18] proved the following

Theorem 1.6. Let 1 < p, q < ∞, 1/r = 1/p + 1/q, 0 < r < ∞ and m ∈ L∞(R4n) satisfy

|∂
α1
ξ1
∂
α2
ξ2
∂β1η1 ∂

β2
η2

m(ξ1, ξ2, η1, η2)| ≤ Cα1α2β1β2(|ξ1| + |η1|)
−(|α1|+|β1|)(|ξ2| + |η2|)

−(|α2|+|β2|) (1.8)

for |α1| + |β1| ≤ M, and |α2| + |β2| ≤ N, where M,N are sufficiently large natural numbers.
Then Tm is bounded from Lp(R2n)× Lq(R2n) → Lr(R2n), where Tm is defined by

Tm1(f , g)(x1, x2) =
1

(2π)(4n)


R4n

m(ξ1, ξ2, η1, η2)eix1(ξ1+η1)+ix2(ξ2+η2) f̂ (ξ1, ξ2)ĝ(η1, η2)dξ1dξ2dη1dη2. (1.9)

This theorem was extended to the case of multi-linear and multi-parameter setting in [19]. The method of proof of the
above theorem in [18,19] is to decompose themulti-linear andmulti-parameter Fourier multiplier operator into discretized
multi-linear andmulti-parameter paraproducts. By proving the Lr estimates for the discretized paraproducts, they establish
the Lr estimates for the Fouriermultipliers. The difficult part of their proof is in the quasi-Banach casewhen 0 < r ≤ 1where
the standard duality argument for the paraproducts does not work (see also [20]). Therefore, the authors of [18,19] establish
the desired result by using a new duality lemma of Lr,∞ for (0 < r ≤ 1), the stopping-time decompositions arguments and
multi-linear interpolation. We mention in passing that the endpoint estimates of results in [18,19] were obtained by Lacey
and Metcalfe [21] and Lr estimates in the above Theorem 1.6 have also been established recently in the case of multi-linear
and multi-parameter pseudo-differential operators by W. Dai and the second author [22]. Furthermore, symbolic calculus
has been carried out and boundedness of multi-parameter andmulti-linear pseudo-differential operators in the Hörmander
classes have been established by Q. Hong and the second author [23]. More recently, Lp estimates for modified bilinear and
multi-parameter Hilbert transforms have also been established by W. Dai and the second author in [24], where we address
the open question raised in [18].

It is worth noting that the smoothness condition for the Fourier multiplier m(ξ1, ξ2, η1, η2) in [18,19] requires M and
N to be sufficiently large. Thus, it is interesting to know what the limited smoothness assumption is on m to assure the Lr
estimates. This is one of the main purposes of this paper.

To establish the Lr estimates of the multi-linear and multi-parameter Fourier multipliers with limited smoothness, we
need to introduce the two-parameter Sobolev spaces. For s1, s2 ∈ R, the two-parameter Sobolev space Hs1,s2(R4n) consists
of all f ∈ S′(R4n) such that

∥f ∥Hs1,s2 = ∥(I − △)s1/2,s2/2f ∥L2 < ∞, (1.10)
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where

(I − △)s1/2,s2/2f = F −1
[(1 + |ξ1|

2
+ |η1|

2)s1/2(1 + |ξ2| + |η2|
2)s2/2 f̂ (ξ1, ξ2, η1, η2)]

where ξ1, ξ2, η1, η2 ∈ Rn.
In this paper, we first establish a Hörmander’s type theorem in the bilinear and bi-parameter setting. One of our main

theorems states that:

Theorem 1.7. Let m ∈ L∞(R4n). Set

mj,k(ξ1, ξ2, η1, η2) = m(2jξ1, 2kξ2, 2jη1, 2kη2)Ψ1(ξ1, η1)Ψ2(ξ2, η2), (1.11)

where Ψ1,Ψ2 are the same as (1.3) with d = 2n. Let s1, s2 > n, s = min(s1, s2), 1 < p, q < ∞, p > 2n
s , q >

2n
s and

1/p + 1/q = 1/r with 0 < r < ∞. If m ∈ L∞(R4n) satisfies

sup
j,k∈Z

∥mj,k∥Hs1,s2 (R4n) < ∞ (1.12)

then Tm is bounded from Lp(R2n)× Lq(R2n) to Lr(R2n).

Remark. If we allow the smoothness exponents s1, s2 to be close to 2n, then p, q are allowed to be taken in the whole range
of 1 < p, q < ∞. Consequently, r is allowed to be taken all 1

2 < r < ∞. Therefore, our theorem indeed improves the
theorem of Muscalu, Pipher, Tao and Thiele [18] by requiring only limited smoothness and our proof given here provides an
alternative one different than that in [18,19].

From the theorem above, we have

Theorem 1.8. Let 1 < p, q < ∞ and 1/p + 1/q = 1/r. If m ∈ C2n+1(R2n
\ {0} × R2n

\ {0}) satisfies

|∂
α1
ξ1
∂
α2
ξ2
∂β1η1 ∂

β2
η2

m(ξ1, ξ2, η1, η2)| ≤ Cα1α2β1β2(|ξ1| + |η1|)
(−|α1|+|β1|)(|ξ2| + |η2|)

(−|α2|+|β2|) (1.13)

for all |α1| + |β1| ≤ n+ 1, |α2| + |β2| ≤ n+ 1 and (ξ1, η1, ξ2, η2) ∈ R2n
\ {0} × R2n

\ {0}, then Tm is bounded from Lp(R2n)×
Lq(R2n) to Lr(R2n).

Finally, we consider the weighted norm inequalities for the bilinear and bi-parameter Fourier multipliers. To this end,
we first introduce the notion of product Ap weights (see [25]).

Let 1 < p < ∞. We say that a weightw ≥ 0 belongs to the product Muckenhoupt class Ap(Rn
× Rn), if

sup
R


1
|R|


R
w(x, y)dxdy


1
|R|


R
w(x, y)1−p′

dxdy
p−1

< ∞ (1.14)

where the supremum is taken over all rectangles R = I × J , I and J are both cubes in Rn.
We define A∞(Rn

× Rn) = ∪p>1 Ap(Rn
× Rn) as usual.

Then we can establish the following

Theorem 1.9. Let 1 < p, q < ∞, 1/p + 1/q = 1/r and n < s1, s2 ≤ 2n, s = min{s1, s2}. Assume

(i) p > 2n/s1 w1 ∈ Aps1/2n (1.15)

q > 2n/s2 w2 ∈ Aps2/2n or (1.16)

(ii) min{p, q} < (2n/s)′, 1 < r < ∞ (1.17)

w1−r ′
1 ∈ Ar ′s/(2n), w1−r ′

2 ∈ Ar ′s/(2n). (1.18)

If m ∈ L∞(R4n) satisfies

sup
j,k∈Z

∥mj,k∥Hs1,s2 (R4n) < ∞, (1.19)

then Tm is bounded from Lp(w1)× Lq(w2) to Lr(w), wherew = w
r/p
1 w

r/q
2 .

The statements and their proofs of Theorems 1.7 and 1.9 can be easily generalized to multi-linear and multi-parameter
settings. We also remark that the proofs of our main theorems can be viewed as alternative ones different from those given
in [18,19]. Moreover, we provide weighted estimates for the multi-linear and multi-parameter Coifman–Meyer multiplier
operators considered in [18,19]. We only state these results here and leave the details to the reader.

In general, any collection of n generic vectors ξ1 = (ξ i1)
t
i=1, . . . , ξn = (ξ in)

t
i=1 in Rtℓ generates naturally the following

collection of t vectors in Rnℓ:

ξ̄1 = (ξ 1j )
n
j=1, ξ̄2 = (ξ 2j )

n
j=1, . . . , ξ̄t = (ξ tj )

n
j=1. (1.20)
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Letm = m(ξ) = m(ξ̄ ) be a bounded symbol in L∞(Rtnℓ) that is smooth away from the subspaces {ξ̄1 = 0} ∪ · · · ∪ {ξ̄t = 0}
and satisfying

|∂
α1
ξ̄1

· · · ∂
αt
ξ̄t
m(ξ̄ )| ≤ Cα1,...,αt

t
i=1

|ξ̄i|
−|αi| (1.21)

for sufficiently many multi-indices α1, . . . , αt . We will naturally want to investigate the Lr estimates of the n-linear multi-
plier operator T (t)m defined by

T (t)m (f1, . . . , fn)(x) :=


Rtn

m(ξ)f̂1(ξ1) · · · f̂n(ξn)e2π ix·(ξ1+···+ξn)dξ . (1.22)

Thus, we can prove the following Lr estimates for general n-linear, t-parameter multiplier operator T (t)m with limited
smoothness.

Theorem 1.10. Let m ∈ L∞(Rtnℓ). Set

mj1,...,jt (ξ̄1, . . . , ξ̄t) = m(2j1 ξ̄1, . . . , 2jt ξ̄t)Ψ (ξ̄1) · · ·Ψ (ξ̄t),

whereΨ1, . . . ,Ψt are the same as in (1.3)with d = nℓ there. For any n ≥ 1, t ≥ 2, the n-linear, t-parameter multiplier operator
T (t)m maps Lp1(Rtℓ)× · · · × Lpn(Rtℓ) to Lr(Rtℓ), provided that 1 < p1, . . . , pn < ∞, p1 > tℓ

s , . . . , pn >
tℓ
s , where s1 > tℓ

2 , . . . ,

st > tℓ
2 and s = min(s1, . . . , st) and 1

r =
1
p1

+ · · · +
1
pn
> 0 and the multiplier m satisfies

sup
j1,...,jt∈Z

∥mj1,...,jt ∥Hs1,...,st (Rnℓt ) < ∞.

We can also establish the following weighted estimates.

Theorem 1.11. Let 1 < p1, . . . , pn < ∞, 1
p1

+ · · · +
1
pn

=
1
r and tℓ

2 < s1, . . . , st ≤ tℓ, s = min{s1, . . . , st}. Assume one of
the following two conditions (i) and (ii) holds, namely,

(i) pj >
tℓ
s
, wj ∈ A pjs

tℓ
, j = 1, . . . , n, or (1.23)

(ii) min{p1, . . . , pn} <

tℓ
s

′

, 1 < r < ∞, w1−r ′
j ∈ A r′s

tℓ
. (1.24)

If m ∈ L∞(Rtnℓ) satisfies

sup
j1,...,jt∈Z

∥mj1,...,jt ∥Hs1,...,st (Rtnℓ) < ∞. (1.25)

Then Tm is bounded from Lp1(w1)× · · · × Lpn(wn) to Lr(w), wherew = w
r
p1
1 · · ·w

r
pn
n .

The organization of this paper is as follows: In Section 2 we recall some preliminary facts and give some relevant
definitions. In Section 3, we prove Theorem 1.7, namely, the Lr estimates for themulti-linear andmulti-parameter Coifman–
Meyermultiplier operatorswith limited smoothness. In Section 4,we give the proof of Theorem1.9, i.e., theweighted version
of Theorem 1.7.

2. Preliminary results

The strong maximal operatorMs for a function f on R2n is defined by

Msf (x, y) = sup
r1,r2>0

1
r1n

1
r2n


R
|f (u, v)|dudv, (2.1)

where R = {(u, v) ∈ R2n
| |u − x| < r1, |v − y| < r2} and f is a locally integrable function on R2n. It is well known that Ms

is bounded on Lp(R2n) for all 1 < p < ∞.

Lemma 2.1. Let ϵ1, ϵ2 > 0. Then there exists a constant C > 0 such that

sup
r1,r2>0


r1nr2n


R2n

|f (u, v)|
(1 + r1|x − u|)n+ϵ1(1 + r2|y − v|)n+ϵ2

dudv


≤ CMsf (x, y) (2.2)

for all locally integrable functions f on R2n.
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Proof. Note that

rn11 rn22


(u,v):|u−x|<r−1

1 ,|v−y|<r−1
2

|f (u, v)|
(1 + r1|x − u|)n+ϵ1(1 + r2|y − v|)n+ϵ2

dudv ≤ CMsf (x, y)

and 
(u,v):|u−x|≥r−1

1 ,|v−y|≥r−1
2

|f (u, v)|
(1 + r1|x − u|)n+ϵ1(1 + r2|y − v|)n+ϵ2

dudv

≤

∞
k=0


(u,v):2kr−1

1 ≤|u−x|<2k+1r−1
1 ,2kr−1

2 ≤|v−y|<2k+1r−1
2

|f (u, v)|
(1 + r1|x − u|)n+ϵ1(1 + r2|y − v|)n+ϵ2

dudv

≤

∞
k=0

1
(1 + 2k)n+ϵ(1 + 2k)n+ϵ


(u,v):|u−x|<2k+1r−1

1 ,|v−y|<2k+1r−1
2

|f (u, v)|dudv.

Then it follows immediately that

sup
r1,r2>0


r1nr2n


R2n

|f (u, v)|
(1 + r1|x − u|)n+ϵ1(1 + r2|y − v|)n+ϵ2

dudv


≤ CMsf (x, y). �

Using the inequality for vector-valued Hardy–Littlewood maximal functions of C. Fefferman and Stein [26], and the fact
that Msf (x, y) ≤ M1M2f (x, y), where M1 and M2 are the Hardy–Littlewood maximal functions with respect to the x and y
variables respectively, we have the following inequality for the vector-valued strong maximal functions:

Lemma 2.2. Let 1 < p, q < ∞. Then there exists a constant C > 0 such that


k∈Z

(Msfk)q
1/q


Lp

≤ C




k∈Z

|fk|q
1/q


Lp

(2.3)

for all sequences {fk}k∈Z of locally integrable functions on R2n.

Using the Littlewood–Paley inequality of Lp estimates in the product space of R. Fefferman and Stein [27], we can deduce
immediately the following

Lemma 2.3. Let 1 < p < ∞, and let Ψ1,Ψ2 ∈ S(Rn) be such that suppψ1 ⊂ {ξ ∈ Rn
: 1/a ≤ |ξ | ≤ a} for some a > 1,

suppψ2 ⊂ {η ∈ Rn
: 1/b ≤ |η| ≤ b} for some b > 1. Then there exists a constant C > 0 such that


j,k∈Z

|Ψ1(D/2j)Ψ2(D/2k)f |2
1/2


Lp

≤ C∥f ∥Lp for all f ∈ Lp(R2n), (2.4)

where [Ψ1(D/2j)Ψ2(D/2k)f ](ξ1, ξ2) = F −1

Ψ̂1(·/2j)Ψ̂2(·/2k)f̂ (·, ·)


(ξ1, ξ2). Moreover, if


j∈Z Ψi(ξi/2j) = 1 for all ξi ≠ 0,

for i = 1, 2, then


j,k∈Z

|Ψ1(D/2j)Ψ2(D/2k)f |2
1/2


Lp

≈ ∥f ∥Lp for all f ∈ Lp(R2n). (2.5)

Let φ0 be a C∞-function on [0,∞) satisfying

φ0(t) = 1 on [0, 1/8], suppφ0 ⊂ [0, 1/4] (2.6)

we set φ1(t) = 1 − φ0(t), and set for ξ, η ∈ Rn the following notations:

Φ(1)(ξ , η) = φ0(|ξ |/|η|) Φ(2)(ξ , η) = φ1(|η|/|ξ |) (2.7)

Φ(3)(ξ , η) = (1 − φ0(|ξ |/|η|))(1 − φ1(|η|/|ξ |)). (2.8)

Lemma 2.4 ([17]).
(1) For (ξ , η) ∈ Rn

× Rn
\ {(0, 0)},

Φ(1)(ξ , η)+ Φ(2)(ξ , η)+ Φ(3)(ξ , η) = 1. (2.9)
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(2) EachΦ(i) satisfies

|∂
α1
ξ ∂

α2
η Φ(i)(ξ , η)| ≤ Cα1,α2(|ξ | + |η|)−(|α1|+|α2|) (2.10)

for all multi-indices α1, α2.
(3) suppΦ(3) ⊂ {|ξ |/8 ≤ |η| ≤ 8|ξ |}, suppΦ(1) ⊂ {|ξ | ≤ |η|/2} and suppΦ(2) ⊂ {|η| ≤ |ξ |/2}.

With a similar proof to that of Lemma 3.2 in [13] with a little modification, we can obtain the following:

Lemma 2.5. Assume that m ∈ CN+M(R2n
\ {0} × R2n

\ {0}) satisfies

|∂
α1
ξ1
∂
α2
ξ2
∂β1η1 ∂

β2
η2

m(ξ1, ξ2, η1, η2)| ≤ Cα1α2β1β2(|ξ1| + |η1|)
(−|α1|+|β1|)(|ξ2| + |η2|)

(−|α2|+|β2|) (2.11)

for all |α1| + |β1| ≤ N, |α2| + |β2| ≤ M and (ξ1, η1, ξ2, η2) ∈ R2n
\ {0} × R2n

\ {0}, where N,M are non-negative integers. Let
Φ1 andΦ2 ∈ S(R2n) be such that none of suppΦ1, suppΦ2 contains the origin, and set

m̃s,t(ξ1, ξ2, η1, η2) = m(sξ1, tξ2, sη1, tη2)Φ1(ξ1, η1)Φ2(ξ2, η2). (2.12)

Then sups,t>0 ∥m̃s,t∥HN,M (R4n) < ∞.

Lemma 2.6 ([14]). Let 2 ≤ q < ∞, r > 0 and s ≥ 0. Then there exists a constant C > 0 such that

∥f̂ ∥Lq(ws,q) ,


R4n

|f (x, y)|q(1 + x2)s(1 + y2)sdxdy
1/q

≤ C∥f ∥Hs,s(R2n×R2n). (2.13)

Next, we need to establish the following

Lemma 2.7. Let s1, s2 ∈ R, and let Ψ1,Ψ2 ∈ S(R2n) be such that suppΨ1, suppΨ2 are compact and none of them contains the
origin. Assume that Φ ∈ C∞(R2n

\ {0} × R2n
\ {0}) satisfies

|∂
α1
ξ1
∂
α2
ξ2
∂β1η1 ∂

β2
η2
Φ(ξ1, ξ2, η1, η2)| ≤ Cα1α2β1β2(|ξ1| + |η1|)

−(|α1|+|β1|)(|ξ2| + |η2|)
−(|α2|+|β2|)

for all α1, α2, α3, α4 ∈ Nn
0. Then there exists a constant C > 0 such that

sup
t,s>0

∥m(tξ1, sξ2, tη1, sη2)Φ(tξ1, sξ2, tη1, sη2)Ψ1(ξ1, η1),Ψ2(ξ2, η2)∥Hs1,s2 ≤ C sup
j,k∈Z

∥mj,k∥Hs1,s2

for allm ∈ L∞(R4n) satisfies supj,k∈Z ∥mj,k∥Hs1,s2 (R4n) < ∞, wheremj,k is defined by (1.11).

Proof. Wemimic theproof of Lemma (3.4) in [14]. First,we assume that suppΨ1 ⊂ {1/2j0 ≤ |(ξ1, η1)| ≤ 2j0} and suppΨ2 ⊂

{1/2k0 ≤ |(ξ2, η2)| ≤ 2k0} for some j0, k0 ∈ N. Given t, s > 0, take j, k ∈ Z satisfying 2j−1
≤ t ≤ 2j, 2k−1

≤ s ≤ 2k. Then,
since 1 < 2j/t ≤ 2, 1 < 2k/t ≤ 2, by change of variables,

∥m(t·, s·)Φ(t·, s·)Ψ1(·)Ψ2(·)∥Hs1,s2 ≤ C∥m(2j
·, 2k

·)Φ(2j
·, 2k

·)Ψ1(2jt−1
·)Ψ2(2ks−1

·)∥Hs1,s2 .

Let Ψ (ξ1, η1),Ψ (ξ2, η2) be as in (1.3) with d = 2n. Using suppΨ1(2jt−1
·) ⊂ {1/2j0+1

≤ |(ξ1, η1)| ≤ 2j0} and suppΨ2
(2ks−1

·) ⊂ {1/2k0+1
≤ |(ξ2, η2)| ≤ 2k0}, we have

∥m(2j
·, 2k

·)Φ(2j
·, 2k

·)Ψ1(2jt−1
·)Ψ2(2ks−1

·)∥Hs1,s2

≤ C
j0

j1=−(j0+1)

k0
k1=−(k0+1)

∥m(2j
·, 2k

·)Φ(2j
·, 2k

·)Ψ1(2jt−1
·)Ψ2(2ks−1

·)Ψ (·/2j1)Ψ (·/2k1)∥Hs1,s2

≤ C
j0

j1=−(j0+1)

k0
k1=−(k0+1)

∥m(2j
·, 2k

·)Ψ (·/2j1)Ψ (·/2k1)∥Hs1,s2 ∥Φ(2j
·, 2k

·)Ψ1(2jt−1
·)Ψ2(2ks−1

·)∥Hs1,s2

≤ C
j0

j1=−(j0+1)

k0
k1=−(k0+1)

∥m(2j+j1 ·, 2k+k1 ·)Ψ (·)Ψ (·)∥Hs1,s2 ∥Φ(t·, s·)Ψ1Ψ2∥Hs1,s2

≤ C

sup
j,k∈Z

∥m(2j+j1 ·, 2k+k1 ·)ΨΨ ∥Hs1,s2


sup
j,s>0

∥Φ(t·, s·)Ψ1Ψ2∥Hs1,s2


.

By Lemma 2.5, supj,s>0 ∥Φ(t·, s·)Ψ1Ψ2∥Hs1,s2 < ∞.
The proof is then complete. �
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3. Proof of Theorem 1.7

The main effort of this section is to establish the first main theorem of this paper on Lr estimates for the multi-linear
andmulti-parameter Fourier multipliers with limited smoothness, namely, Theorem 1.7. The proof is quite complicated and
involved due to the multi-parameter structure of the Fourier multiplier m. Therefore, we will divide the proof into several
steps. The main idea is to decompose the multiplier into different pieces and handle them separately in each piece.

Proof. Let s1, s2 > n andm ∈ L∞(R4n) satisfy supj,k∈Z ∥mj,k∥Hs1,s2 < ∞, wheremj,k is defined by (1.11). SinceHs1,s2(R4n) ↩→

Hmin{s1,s2},min{s1,s2}(R4n), it is sufficient to consider Hs,s(R4n), where s = min{s1, s2} > n. We rewritem as follows:

m(ξ1, ξ2, η1, η2) = m(ξ1, ξ2, η1, η2)


3

i=1

Φ(i)(ξ1, η1)


3

j=1

Φ(j)(ξ2, η2)



=

3
i,j=1

m(ξ1, ξ2, η1, η2)Φ(i)(ξ1, η1)Φ(j)(ξ2, η2)

=

3
i,j=1

mi,j(ξ1, ξ2, η1, η2) (3.1)

whereΦi,Φj (1 ≤ i, j ≤ 3) are defined by (2.7) and (2.8).
By Lemma 2.4, we divide these mj,k into four groups and estimate the bilinear and bi-parameter Fourier multiplier

operator defined by each symbolmj,k. Since the Fourier multiplier operator corresponding to every symbolmj,k in the same
group can be estimated in the similar way, we just choose one to handle in each group.

• Group 1:
– m1,1, where suppm1,1 ∈ {|ξ1| ≤ |η1|/2, |ξ2| ≤ |η2|/2}
– m2,2, where suppm1,1 ∈ {|η1| ≤ |ξ1|/2, |η2| ≤ |ξ2|/2}.

• Group 2:
– m1,3, where suppm1,3 ∈ {|ξ1| ≤ |η1|/2, |η2|/8 ≤ |ξ2| ≤ 8|η2|}
– m2,3, where suppm1,3 ∈ {|η1| ≤ |ξ1|/2, |η2|/8 ≤ |ξ2| ≤ 8|η2|}
– m3,1, where suppm1,3 ∈ {|η1|/8 ≤ |ξ1| ≤ 8|η1|, |ξ2| ≤ |η2|/2}
– m3,2, where suppm1,3 ∈ {|η1|/8 ≤ |ξ1| ≤ 8|η1|, |η2| ≤ |ξ2|/2}.

• Group 3:
– m1,2, where suppm1,2 ∈ {|ξ1| ≤ |η1|/2, |η2| ≤ |ξ2|/2}
– m2,1, where suppm2,1 ∈ {|η1| ≤ |ξ1|/2, |ξ2| ≤ |η2|/2}.

• Group 4:
– m3,3, where suppm3,3 ∈ {|η1|/8 ≤ |ξ1| ≤ 8|η1|, |η2|/8 ≤ |ξ2| ≤ 8|η2|}.

In the following proof, we assume 2n/s < p, q.
Estimates for Fourier multiplier corresponding to a symbol mj,k in Group 1.
First, we consider m2,2, for simplicity we denote it as m1 instead of m2,2. Using the fact that Lp norm is bounded by the

Hp norm in the multi-parameter setting established, e.g., in [28–30], and the equivalence of the definition of the multi-
parameter Hardy space, we have for all 0 < r < ∞

∥Tm(f , g)∥Lp ≤ ∥ sup
s,t>0

|Φs,t ∗ Tm(f , g)|∥Lr

≈




j,k∈Z

|ψ1(D/2j)ψ2(D/2k)Tm(f , g)|2
1/2


Lr

(3.2)

for 0 < p < ∞, where Φs,t(x, y) = 2snφ(2snx)2tnφ(2tny), φ ∈ S(Rn) and φ̂ does not contain the origin, Ψ is the same as
(1.3) with d = n.

Let f , g ∈ S(R2n), since


j∈Z Ψj(ξ) = 1, for all ξ ∈ Rn
\ {0}, we have

Aj,k , Ψ (D/2j)Ψ (D/2k)Tm1(f , g)(x1, x2)

=
1

(2π)(4n)


R4n

m1(ξ1, ξ2, η1, η2)eix1(ξ1+η1)+ix2(ξ2+η2)Ψj(ξ1 + η1)f̂ (ξ1, ξ2)Ψk(ξ2 + η2)ĝ(η1, η2)dξ1dξ2dη1dη2

=
1

(2π)(4n)


R4n

m1(ξ1, ξ2, η1, η2)eix1(ξ1+η1)+ix2(ξ2+η2)

×Ψj(ξ1 + η1)Ψ̃j(ξ1)f̂ (ξ1, ξ2)Ψk(ξ2 + η2)Ψ̃k(ξ2)ĝ(η1, η2)dξ1dξ2dη1dη2
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=
1

(2π)(4n)


R4n

m1(ξ1, ξ2, η1, η2)eix1(ξ1+η1)+ix2(ξ2+η2)

×Ψj(ξ1 + η1)Ψ̃j(ξ1)f̂ (ξ1, ξ2)Ψk(ξ2 + η2)Ψ̃k(ξ2)ĝ(η1, η2)dξ1dξ2dη1dη2

=


R4n

2(2jn+2kn)(F −1m1
j,k)(2

j(x1 − y1), 2k(x2 − y2), 2j(x1 − z1), 2k(x2 − z2))

× (Ψ̃j(D)Ψ̃k(D)f )(y1, y2)g(z1, z2)dy1dy2dz1dz2 (3.3)

whereΨk(ξ) = Ψ (ξ/2k) and Ψ̃ (ξ1) ∈ S(Rn) such that Ψ̃ (ξ1)Ψ (ξ1+η1) = Ψ (ξ1+η1), on the suppm1, since |ξ1+η1| ≈ |ξ1|.
The same is true for Ψ̃ (ξ2), i.e., Ψ̃ (ξ2)Ψ (ξ2 + η2) = Ψ (ξ2 + η2), on the suppm1, since |ξ2 + η2| ≈ |ξ2|.

m1
j,k = m1(2jξ1, 2kξ2, 2jη1, 2kη2)Ψ (ξ1 + η1)Ψ (ξ2 + η2). (3.4)

Take 1 < t < 2 satisfying 2n/s < t < min{2, p, q}.

|Aj,k| ≤ 22jn+2kn


R4n
(1 + 2j

|x1 − y1| + 2j
|x1 − z1|)s(1 + 2k

|x2 − y2| + 2k
|x2 − z2|)s

× (F −1m1
j,k)(2

j(x1 − y1), 2k(x2 − y2), 2j(x1 − z1), 2k(x2 − z2))

× (1 + 2j
|x1 − y1| + 2j

|x1 − z1|)−s(1 + 2k
|x2 − y2| + 2k

|x2 − z2|)−s

× (Ψ̃j(D)Ψ̃k(D)f )(y1, y2)g(z1, z2)dy1dy2dz1dz2

≤


R4n
(1 + |y1| + |z1|)t

′s(1 + |y2| + |z2|)t
′s
|(F −1m1

j,k)(y1, y2, z1, z2)|
t ′dy1dy2dz1dz2

1/t ′

×


R4n

22jn+2kn(1 + 2j
|x1 − y1| + 2j

|x1 − z1|)−ts(1 + 2k
|x2 − y2| + 2k

|x2 − z2|)−ts

× |(Ψ̃j(D)Ψ̃k(D)f )(y1, y2)g(z1, z2)|tdy1dy2dz1dz2

1/t

. ∥m1
j,k∥Lt′ (ws,t′ )


R2n

2jn+kn
|g(z1, z2)|t(1 + 2k

|x2 − z2|)−st/2(1 + 2j
|x1 − z1|)−st/2dz1dz2

1/t

×


R2n

2jn+kn
|(Ψ̃j(D)Ψ̃k(D)f )(y1, y2)|t(1 + 2j

|x1 − y1|)−st/2(1 + 2k
|x2 − y2|)−st/2dy1dy2

1/t

. ∥m1
j,k∥Hs,s


Ms(|(Ψ̃j(D)Ψ̃k(D)f )|t)(x1, x2)

1/t 
Ms(|g|t)(x1, x2)

1/t
. (3.5)

The last inequality is from Lemmas 2.1 and 2.7 since st/2 > n.
Then by Hölder’s inequality, (3.2) and (3.5), we have

∥T 1
m(f , g)(x1, x2)∥Lr . sup

j,k∈Z
∥m1

j,k∥Hs,s




j,k

(Ms(|(Ψ̃j(D)Ψ̃k(D)f )|t))2/t
1/2


Lp

∥{(Ms(|g|t))2/t}1/2∥Lq

. sup
j,k∈Z

∥m1
j,k∥Hs,s




j,k

(Ms(|(Ψ̃j(D)Ψ̃k(D)f )|t))2/t
t/2


1/t

Lp/t

∥{(Ms(|g|t))2/t}t/2∥
1/t
Lq/t

. sup
j,k∈Z

∥m1
j,k∥Hs,s∥f ∥Lp∥g∥Lq . (3.6)

Using suppm1
∈ {1/a ≤


|ξ1|2 + |η1|2 ≤ a, 1/b ≤


|ξ2|2 + |η2|2 ≤ b} for some a, b > 1, by Lemma 2.7 we have

sup
j,k∈Z

∥m1
j,k∥Hs,s . sup

j,k∈Z
∥mj,k∥Hs,s . (3.7)

Consequently

∥Tm1∥Lp×Lq→Lr . sup
j,k∈Z

∥mj,k∥s1,s2 . (3.8)

Changing the roles ξ1, η1 and ξ2, η2, we can prove

∥Tm1∥Lp×Lq→Lr ≤ sup
j,k∈Z

∥mj,k∥Hs1,s2 (3.9)

where m1
= m1,1 this time.
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Estimates for the Fourier multiplier operators with a symbol in Group 2:
We write m2 instead of m1,3 for simplicity. Since supp m1,3 ∈ {|ξ1| ≤ |η1|/2, |η2|/8 ≤ |ξ2| ≤ 8|η2|}, then there exists

Ψ 1
∈ S(Rn), such thatΨ (ξ2)Ψ 1(η2) = Ψ (ξ2) on {|η2|/8 ≤ |ξ2| ≤ 8|η2|}, whereΨ is the function which is the same as case

1. Hence,

Ψ (D/2j)Tm2(f , g)(x1, x2)

=
1

(2π)(4n)


R4n

m2(ξ1, ξ2, η1, η2)eix1(ξ1+η1)+ix2(ξ2+η2)Ψj(ξ1 + η1)f̂ (ξ1, ξ2)ĝ(η1, η2)dξ1dξ2dη1dη2

=
1

(2π)(4n)

k


R4n

m2(ξ1, ξ2, η1, η2)eix1(ξ1+η1)+ix2(ξ2+η2)

×Ψj(ξ1 + η1)Ψ̃j(η1)Ψk(ξ2)f̂ (ξ1, ξ2)Ψ 1
k (η2)ĝ(η1, η2)dξ1dξ2dη1dη2

=
1

(2π)(4n)

k


R4n

m2(ξ1, ξ2, η1, η2)eix1(ξ1+η1)+ix2(ξ2+η2)Ψj(ξ1 + η1)

× Ψ̃j(ξ1)Ψk(ξ2)Ψ
2
k (ξ2)f̂ (ξ1, ξ2)Ψ

1
k (η2)ĝ(η1, η2)dξ1dξ2dη1dη2

=


k


R4n

2(2jn+2kn)(F −1m2
j,k)(2

j(x1 − y1), 2k(x2 − y2), 2j(x1 − z1), 2k(x2 − z2))

× (Ψ̃j(D)Ψ 2
k (D)f )(y1, y2)(Ψ

1
k (D)g)(z1, z2)dy1dy2dz1dz2

,

k

Aj,k (3.10)

where Ψ̃ is the same as we used in Estimates for symbols in Group 1 and Ψ (ξ2)Ψ 2(ξ2) = Ψ (ξ2).

m2
j,k = m2(2jξ1, 2kη1, 2jξ2, 2kη2)Ψ (ξ1 + η1)Ψ (ξ2). (3.11)

Take 1 < t < 2 satisfying 2n/s < t < min{2, p, q}. Arguing in the same way as deriving (3.5), we can prove

|Aj,k| . ∥m2
j,k∥Hs,s


Ms(|(Ψ̃j(D)Ψ 2

k (D)f )|
t)(x1, x2)

1/t 
Ms(|Ψ

1
k (D)g|

t)(x1, x2)
1/t

. (3.12)

Moreover we can assume f (ξ1, ξ2) = f1(ξ1)f2(ξ2), where f1, f2 ∈ S(Rn), since f1 ⊗ f2 is dense in Lp(R2n), 1 ≤ p < ∞.
Then we have

|Aj,k| . ∥m2
j,k∥Hs,s


M(|g1|t)(x1)M(|(Ψ̃j(D)f1)|t)(x1)

1/t 
M(|Ψ 1

k (D)g2|
t)(x2)M(|Ψ 2

k (D)f2|
t)(x2)

1/t
. (3.13)

Then from (3.10) and (3.13), we have

|Ψ (D/2j)Tm2(f , g)(x1, x2)| .

k

∥m2
j,k∥Hs,s


M(|g1|t)(x1)M(|(Ψ̃j(D)f1)|t)(x1)

1/t
×

M(|Ψ 1

k (D)g2|
t)(x2)M(|Ψ 2

k (D)f2|
t)(x2)

1/t
. sup

j,k∈Z
∥m2

j,k∥Hs,s

M(|g1|t)(x1)M(|(Ψ̃j(D)f1)|t)(x1)

1/t
×


k


M(|Ψ 1

k (D)g2|
t)(x2)M(|Ψ 2

k (D)f2|
t)(x2)

1/t
. (3.14)

Then 
j

Ψ (D/2j)T 2
m(f , g)(x1, x2)

21/2

. sup
j,k∈Z

∥m2
j,k∥Hs,s


j


M(|g1|t)(x1)M(|(Ψ̃j(D)f1)|t)(x1)

2/t
×


k

(M(|Ψ 1
k (D)g2|

t)(x2)M(|Ψ 2
k (D)f2|

t)(x2))1/t
2


1/2

= sup
j,k∈Z

∥m2
j,k∥Hs,s


j


M(|g1|t)(x1)M(|(Ψ̃j(D)f1)|t)(x1)

2/t1/2

×


k


M(|Ψ 1

k (D)g2|
t)(x2)M(|Ψ 2

k (D)f2|
t)(x2)

1/t
. (3.15)
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Since p/t, q/t, 2/t > 1, by Hölder’s inequality, Lemmas 2.2, 2.3 and (3.15)

∥T 2
m(f , g)(x1, x2)∥Lr .




j

|Ψ (D/2j)T 2
m(f , g)(x1, x2)|

2

1/2

Lr

. sup
j,k∈Z

∥m2
j,k∥Hs,s




j


M(|g1|t)(x1)M(|(Ψ̃j(D)f1)|t)(x1)

2/t1/2

Lr (Rn)

×




k


M(|Ψ 1

k (D)g2|
t)(x2)M(|Ψk(D)f2|t)(x2)

1/t
Lr (Rn)

. sup
j,k∈Z

∥m2
j,k∥Hs,s




j


M(|(Ψ̃j(D)f1)|t)(x1)

2/t1/2

Lp

∥(M(|g1|t))1/t∥Lq

×




k

(M(|Ψ 1
k (D)g2|

t)(x2))2/t
1/2 

k

(M(|Ψk(D)f2|t)(x2))2/t
1/2


Lr (Rn)

. sup
j,k∈Z

∥m2
j,k∥Hs,s∥f1∥Lp∥g1∥Lq

×




k

(M(|Ψ 1
k (D)g2|

t)(x2))2/t
1/2


Lq




k

(M(|Ψ 1
k (D)f2|

t)(x2))2/t
1/2


Lp

. sup
j,k∈Z

∥m2
j,k∥Hs,s∥f1∥Lp∥f2∥Lp∥g1∥Lq∥g2∥Lq . (3.16)

Using suppm2
j,k ∈ {1/a ≤


|ξ1|2 + |η1|2 ≤ a, 1/b ≤


|ξ2|2 + |η2|2 ≤ b} for some a, b > 1, by Lemma 2.7 we have

sup
j,k∈Z

∥m2
j,k∥Hs,s . sup

j,k∈Z
∥mj,k∥Hs,s . (3.17)

Consequently

∥Tm2∥Lp×Lq→Lr ≤ sup
j,k∈Z

∥mj,k∥Hs,s . (3.18)

By changing the roles of ξ1 and η1 or (ξ1, η1) and (ξ2, η2), we can prove other situations in Group 2.
Estimates for Fourier multiplier with symbols in Group 3:
We write m3 instead of m1,2, the proof is similar to case 1 with necessary modification. Since |ξ1 + η1| ≈ |η1| and

|ξ2 + η2| ≈ |ξ2|, we have

Ψ (D/2j)Ψ (D/2k)Tm3(f , g)(x1, x2) =
1

(2π)(4n)


R4n

m3(ξ1, ξ2, η1, η2)eix1(ξ1+η1)+ix2(ξ2+η2)

×Ψj(ξ1 + η1)f̂ (ξ1, ξ2)Ψk(ξ2 + η2)ĝ(η1, η2)dξ1dξ2dη1dη2

=
1

(2π)(4n)


R4n

m3(ξ1, ξ2, η1, η2)eix1(ξ1+η1)+ix2(ξ2+η2)

×Ψj(ξ1 + η1)Ψ̃j(η1)f̂ (ξ1, ξ2)Ψk(ξ2 + η2)Ψ̃k(ξ2)ĝ(η1, η2)dξ1dξ2dη1dη2

=
1

(2π)(4n)


R4n

m3(ξ1, ξ2, η1, η2)eix1(ξ1+η1)+ix2(ξ2+η2)

×Ψk(ξ2 + η2)Ψ̃k(ξ2)f̂ (ξ1, ξ2)Ψj(ξ1 + η1)Ψ̃j(η1)ĝ(η1, η2)dξ1dξ2dη1dη2

=


R4n

2(2jn+2kn)(F −1m3
j,k)(2

j(x1 − y1), 2k(x2 − y2), 2j(x1 − z1), 2k(x2 − z2))

× (Ψ̃k(D)f )(y1, y2)Ψ̃j(D)g(z1, z2)dy1dy2dz1dz2

, Aj,k (3.19)

where Ψ , Ψ̃ are defined the same way as we deal with symbols in Group 1 and

m3
j,k = m3(2jξ1, 2kξ2, 2jη1, 2kη2)Ψ (ξ1 + η1)Ψ (ξ2 + η2). (3.20)
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As we did in dealing with symbols in Group 1, we can easily prove

|Aj,k| . ∥m3
j,k∥Hs,s(Ms(|(Ψ̃j(D)f )|t)(x1, x2))1/t(Ms(|(Ψ̃k(D)g)|t)(x1, x2))1/t (3.21)

where max{1, 2n/s} < t < 2.
Since the rest of the proof is similar to that of case 1, we omit the details. Thus we obtain

∥Tm3∥Lp×Lq→Lr . sup
j,k∈Z

∥m3
j,k∥Hs,s . sup

j,k∈Z
∥mj,k∥Hs,s . (3.22)

By changing the roles of (ξ1, η1) and (ξ2, η2), we can get the same conclusion form2,1.
Estimates for Fourier multipliers with symbols in Group 4:
We write m4 instead of m3,3. Since the proof is similar to the case dealing with symbols in Group 2, we will outline the

main estimates and omit the details here.
First, we can easily prove

|Tm4(f , g)(x1, x2)| . sup
j,k∈Z

∥m4
j,k∥Hs,s


j,k

(Ms(|(
˜̃
Ψ j(D) ˜̃

Ψ k(D)f )|t)(x1, x2))2/t
1/2

×


j,k

(Ms(|(
˜̃
Ψ j(D) ˜̃

Ψ k(D)f )|t)(x1, x2))t/2
1/2

(3.23)

where max{1, 2n/s} < t < 2.

m4
j,k = m4(2jξ1, 2kη1, 2jξ2, 2kη2)Ψ (ξ1 + η1)Ψ̃ (ξ1)Ψ (ξ2 + η2)Ψ̃ (ξ2). (3.24)

Since p/t, q/t, 2/t > 1, by Hölder’s inequality, Lemmas 2.2 and 2.3, we have

∥T 4
m(f , g)(x1, x2)∥Lr . sup

j,k∈Z
∥m4

j,k∥Hs,s




j,k

Ms(|(
˜̃
Ψ j(D) ˜̃

Ψ k(D)f )|t)2/t
1/2


Lp

×




j,k

Ms(|(
˜̃
Ψ j(D) ˜̃

Ψ k(D)g)|t)2/t
1/2


Lq

. sup
j,k∈Z

∥m4
j,k∥Hs,s




j,k

Ms(|(
˜̃
Ψ j(D) ˜̃

Ψ k(D)f )|t)2/t
t/2


1/t

Lp/t

×




j,k

Ms(|(
˜̃
Ψ j(D) ˜̃

Ψ k(D)g)|t)2/t
t/2


1/t

Lp/t

. sup
j,k∈Z

∥m4
j,k∥Hs,s




j,k

|( ˜̃
Ψ j(D) ˜̃

Ψ k(D)f )|2
1/2


Lp




j,k

|( ˜̃
Ψ j(D) ˜̃

Ψ k(D)g)|2
1/2


Lq

. sup
j,k∈Z

∥m4
j,k∥Hs,s∥f ∥Lp∥g∥Lq . (3.25)

Since suppm4
∈ {1/a ≤


|ξ1|2 + |η1|2 ≤ a, 1/b ≤


|ξ2|2 + |η2|2 ≤ b} for some a, b > 1, by Lemma 2.7 we have

∥Tm4∥Lp×Lq→Lr . sup
j,k∈Z

∥m3
j,k∥Hs,s . sup

j,k∈Z
∥mj,k∥Hs,s . (3.26)

Next, we consider Tm∗1 , Tm∗2 , the dual operator of Tm, which are defined by
R2n

Tm(f , g)hdx =


R2n

Tm∗1(h, g)fdx =


R2n

Tm∗2(f , h)gdx (3.27)

for all f , g, h ∈ S(R2n).
If we have proved the same conclusion for Tm∗1 , Tm∗2 as Tm, then using the same proof as in the bilinear case in [13], we

complete the proof of Theorem 1.7 bymulti-linear andmulti-parameter duality and interpolation.We omit the details here.
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To finish the proof of Theorem 1.7, we only need to show

sup
j,k∈Z

∥m∗1
j,k∥Hs1,s2 (R4n) . sup

j,k∈Z
∥mj,k∥Hs1,s2 (R4n)

sup
j,k∈Z

∥m∗2
j,k∥Hs1,s2 (R4n) . sup

j,k∈Z
∥mj,k∥Hs1,s2 (R4n)

(3.28)

wherem∗1(ξ1, η1, ξ2, η2) = m(−(ξ1 +η1), η1,−(ξ2 +η2), η2) andm(ξ1, η1, ξ2, η2) = m∗1(ξ1,−(ξ1 +η1), ξ2,−(ξ2 +η2)).
We only choose one case to prove, the remaining cases are the same.
By a change of variables,

∥m∗1
j,k∥Hs1,s2 = ∥m(−2j(ξ1 + η1),−2k(ξ2 + η2), 2jη1, 2kη2)Ψ1(ξ1, η1)Ψ2(ξ2, η2)∥Hs1,s2

≈ ∥m(2jξ1, 2kξ2, 2jη1, 2kη2)Ψ1(−(ξ1 + η1), η1)Ψ2(−(ξ2 + η2), η2)∥Hs1,s2 . (3.29)

Since


|ξ + η|2 + |η|2 ≈


|ξ |2 + |η|2, then we can obtain

sup
j,k∈Z

∥m∗1
j,k∥Hs1,s2 . sup

j,k∈Z
∥m∗1

j,k∥Hs1,s2 . (3.30)

Therefore, we have finished the proof of Theorem 1.7. �

Remark 3.1. In the proof of Theorem 1.7, we only assume p, q > 2n/s, s > n, it implies that the target space Lr may be the
quasi Banach space, where r depends on s. �

4. Proof of Theorem 1.9

This section is devoted to establishing the secondmain theorem of this paper on weighted estimates for the multi-linear
and multi-parameter Fourier multipliers with limited smoothness, namely, Theorem 1.9. Before we prove Theorem 1.9, we
recall some useful facts about product Ap(Rn

× Rn)weights.

Lemma 4.1 ([31]). Let 1 < p < ∞ andw ∈ Ap(Rn
× Rn). Then

(1) w1−p′

∈ Ap′(Rn
× Rn)

(2) there exists 1 < q < p such that w ∈ Aq(Rn
× Rn).

Lemma 4.2. Suppose that wj ∈ Apj(R
n
× Rn) with 1 ≤ j ≤ m for some 1 ≤ p1, . . . , pm ≤ ∞ and let 0 < θ1, . . . , θm < 1 be

such that θ1 + · · · + θm = 1. Then

w1
θ1 · · ·wm

θm ∈ Amax{p1,...,pm}. (4.1)

Proof. First note thatwj ∈ Amax{p1,...,pm}, for j = 1, . . . ,m, then apply Hölder’s inequality, we can obtain the conclusion.

Lemma 4.3 ([26]). Let 1 < p, q < ∞ andw ∈ Ap(Rn
× Rn). Then there exists a constant C > 0 such that


k∈Z

(Msfk)q
1/q


Lp(w)

≤ C




k∈Z

(fk)q
1/q


Lp(w)

(4.2)

for all sequences {fk}k∈Z of locally integrable functions on R2n.

Lemma 4.4 ([27]). Let 1 < p < ∞w ∈ Ap(Rn
× Rn), and let Ψ1,Ψ2 ∈ S(Rn) be such that suppΨ1 ⊂ {ξ ∈ Rn

: 1/a ≤ |ξ | ≤

a} for some a > 1, suppΨ2 ⊂ {ξ ∈ Rn
: 1/b ≤ |ξ | ≤ b} for some b > 1. Then there exists a constant C > 0 such that


j,k∈Z

|Ψ1(D/2j)Ψ2(D/2k)f |2
1/2


Lp(w)

≤ C∥f ∥Lp(w) for all f ∈ Lpw(R
n). (4.3)

Moreover, if


j∈Z Ψi(ξ/2j) = 1 for all ξ ≠ 0, for i = 1, 2, then


j,k∈Z

|Ψ1(D/2j)Ψ2(D/2k)f |2
1/2


Lp(w)

≈ ∥f ∥Lp(w) for all f ∈ Lp(w). (4.4)
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Lemma 4.5 ([32]). If 0 < p < ∞, w ∈ A∞(Rn
× Rn), f is a local integrable function in Hp

w(R
n
× Rn). Then

∥f ∥Lp(w) ≤




j,k∈Z

|Ψ1(D/2j)Ψ2(D/2k)f |2
1/2


Lp(w)

. (4.5)

We first prove Theorem 1.9 under assumption (i) in Theorem 1.9. Since 2n/s1 < min{2, p} and w1 ∈ Aps1/2n, by
Lemma 4.1, we can take 2n/s1 < p1 < min{2, p} satisfyingw1 ∈ Ap/p1 , the same is forw2. Then

∥Tm1(f , g)∥Lp(w) ≤




j,k∈Z

|Ψ1(D/2j)Ψ2(D/2k)Tm(f , g)|2
1/2


Lp(w)

. sup
j,k∈Z

∥m1
j,k∥Hs1,s2




j,k

(Ms(|(Ψ̃j(D)Ψ̃k(D)f )|t))2/t
1/2


Lp(w1)

∥{(Ms(|g|t))2/t}1/2∥Lq(w2)

. sup
j,k∈Z

∥m1
j,k∥Hs1,s2




j,k

(Ms(|(Ψ̃j(D)Ψ̃k(D)f )|t))2/t
t/2


1/t

Lp/t (w1p/t )

∥{(Ms(|g|t))2/t}t/2∥
1/t
Lq/t (w2q/t )

. sup
j,k∈Z

∥m1
j,k∥Hs,s∥f ∥Lp(w1)∥g∥Lq(w2) (4.6)

where we take t = max{p1, q1}, thenw1 ∈ Ap/t andw2 ∈ Aq/t .
To conclude the weighted estimates for the Fourier multipliers m, we need to do estimates corresponding to other

symbols. Since the estimates for the remaining symbols in other groups are similar to that ofm1, we omit the details here.
Next, we give the proof of Theorem 1.9 under condition (ii) we consider case p = min{p, q}. Since p′ < (2n/s)′, then

max{1/r ′, 1/q} < 1/r ′
+ 1/q = 1/p < s/2n, that is, r ′, q > 2n/s. Hence 2n/s < min{2, r ′, q}.

Since 1/2 < s/2n ≤ 1 andw1−r ′
1 ∈ Ar ′s/(2n), w

1−r ′
2 ∈ Ar ′s/(2n), by Lemma 4.1 we have

w1−r ′
1 ∈ Ar ′s/(2n) ⊂ Ar ′ , thenw1 ∈ Ar (4.7)

w1−r ′
2 ∈ Ar ′s/(2n) ⊂ Ar ′ , thenw2 ∈ Ar (4.8)

w1−r ′
= w

(1−r ′)r/p
1 w

(1−r ′)r/q
2 ∈ Ar ′s/(2n) (4.9)

where (4.9) is from Lemma 4.2.
It is from the assumption that p ≤ q, we also have r ≤ q/2, then w2 ∈ Ar ⊂ Aq/2 ⊂ Aqs/2n. Since w1−r ′

∈ Ar ′s/(2n), w2 ∈

Ar ⊂ Aqs/2n, by Lemma 4.2 we can take 2n/s < t < min{2, r ′, q} such that

w1−r ′
∈ Ar ′/t , w2 ∈ Aq/t . (4.10)

By duality and (3.29), it is enough to prove

∥Tm∗1∥
Lr′ (w1−r′ )×Lq(w2)→Lp′ (w1−p′

1 )
≤ C sup

j,k∈Z
∥m1

j,k∥Hs1,s2 . (4.11)

From the proof of Theorem 1.7, we have

∥Tm∗1(f , g)∥
Lp′ (w1−p′

1 )
≤




j,k∈Z

|Ψ1(D/2j)Ψ2(D/2k)Tm(f , g)|2
1/2


Lp(w)

. sup
j,k∈Z

∥m1
j,k∥Hs1,s2




j,k

(Ms(|(Ψ̃j(D)Ψ̃k(D)f )|t)(x1, x2))2/t
1/2

w−1/r

× (Ms(|g|t)(x1, x2))1/tw
1/q
2


Lp′

. sup
j,k∈Z

∥m1
j,k∥Hs1,s2




j,k

(Ms(|(
˜̃
Ψ j(D) ˜̃

Ψ k(D)f )|t)(x1, x2))2/t
1/2


Lr′ (w1−r′ )



112 J. Chen, G. Lu / Nonlinear Analysis 101 (2014) 98–112

× ∥{(Ms(|g|t)(x1, x2))2/t}1/2∥Lq(w2)

. sup
j,k∈Z

∥m1
j,k∥Hs1,s2




j,k

(Ms(|(Ψ̃j(D)Ψ̃k(D)f )|t)(x1, x2))2/t
t/2


1/t

Lr′/t (w1−r′ )

× ∥{(Ms(|g|t)(x1, x2))2/t}t/2∥
1/t
Lq/t (w2)

. sup
j,k∈Z

∥m1
j,k∥Hs1,s2 ∥f ∥Lp(w1)∥g∥Lq(w2). (4.12)

The weighted estimates for the Fourier multiplier operators corresponding to the remaining symbols are the same as
with Tm1 , thus we finish the proof of Theorem 1.9.
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