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REVERSE STEIN–WEISS INEQUALITIES AND EXISTENCE

OF THEIR EXTREMAL FUNCTIONS

LU CHEN, ZHAO LIU, GUOZHEN LU, AND CHUNXIA TAO

Abstract. In this paper, we establish the following reverse Stein–Weiss in-
equality, namely the reversed weighted Hardy–Littlewood–Sobolev inequality,
in Rn:∫

Rn

∫
Rn

|x|α|x− y|λf(x)g(y)|y|βdxdy ≥ Cn,α,β,p,q′‖f‖Lq′ ‖g‖Lp

for any nonnegative functions f ∈ Lq′(Rn), g ∈ Lp(Rn), and p, q′ ∈ (0, 1),

α, β, λ > 0 such that 1
p
+ 1

q′ − α+β+λ
n

= 2. We derive the existence of

extremal functions for the above inequality. Moreover, some asymptotic be-
haviors are obtained for the corresponding Euler–Lagrange system. For an
analogous weighted system, we prove necessary conditions of existence for any
positive solutions by using the Pohozaev identity. Finally, we also obtain
the corresponding Stein–Weiss and reverse Stein–Weiss inequalities on the n-
dimensional sphere Sn by using the stereographic projections. Our proof of
the reverse Stein–Weiss inequalities relies on techniques in harmonic analysis
and differs from those used in the proof of the reverse (non-weighted) Hardy–
Littlewood–Sobolev inequalities.

1. Introduction

The classical Hardy–Littlewood–Sobolev inequality that was obtained by Hardy
and Littlewood [29] for n = 1 and by Sobolev [34] for general n states that

(1)

∫
Rn

∫
Rn

|x− y|−λf(x)g(y)dxdy ≤ Cn,p,q′‖f‖Lq′ ‖g‖Lp

with 1 < q′, p < ∞, 0 < λ < n, and 1
q′ +

1
p + λ

n = 2, where q′ = q
q−1 .

Lieb [31] showed that the sharp constant Cn,p,q′ satisfies the following estimate:

Cn,p,q′ ≤
n

n− λ
(

π
λ
2

Γ(1 + n
2 )

)
λ
n

1

q′p

(
(

λq′

n(q′ − 1)
)

λ
n + (

λp

n(p− 1)
)

λ
n

)
.

In the diagonal case q′ = p = 2n
2n−λ , Lieb [30] obtained the best constant

Cn,p,q′ = π
λ
2
Γ(n2 − λ

2 )

Γ(n− λ
2 )

( Γ(n)
Γ(n2 )

)1− λ
n .
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Lieb [30] employed the symmetric rearrangement argument to obtain the existence
of the extremal functions of (1). Recently, the sharp Hardy–Littlewood–Sobolev
inequality was also obtained by Frank and Lieb (including on the Heisenberg group),
and by Carlen et al, without using symmetric rearrangement argument; see, e.g.,
[7, 19, 22, 23] and the references therein. It is also known that the sharp Hardy–
Littlewood–Sobolev inequality in Euclidean spaces is closely related to the Moser–
Onofri–Beckner type inequalities on the spheres (see [2, 3, 8, 31]). For more results
about Hardy–Littlewood–Sobolev inequality and Hardy–Sobolev equations, we refer
the reader to [2,6,13–15,32,36] and the references therein. For Hardy–Littlewood–
Sobolev inequalities on the Riemannian manifolds, the upper half space R

n
+, see,

e.g, [16, 17, 19, 27].
In the 1950s, Stein and Weiss [35] proved the following doubly weighted Hardy–

Littlewood–Sobolev inequality,

(2)

∫
Rn

∫
Rn

|x|−α|x− y|−λf(x)g(y)|y|−βdxdy ≤ Cn,α,β,p,q′‖f‖Lq′ ‖g‖Lp ,

where p, q′, α, β, and λ satisfy the following conditions:

1

q′
+

1

p
+

α+ β + λ

n
= 2,

1

q′
+

1

p
≥ 1,

α+ β ≥ 0, α <
n

q
, β <

n

p′
, 0 < λ < n.

Concerning the best constants for the Stein–Weiss inequality, Lieb [30] obtained the
sharp constants only when one of p and q′ equals 2 or p = q′. The best constants
are also obtained by Beckner when p = q in [3, 4]. Stein–Weiss inequalities on the
Heisenberg group were also obtained in Beckner [5] and Han, Lu, and Zhu [26].

Sharp reverse Hardy-Littlewood-Sobolev inequalities were studied by Beckner
[1] and [7]) and Dou and Zhu [20]. The result of Beckner [1] was used by Carneiro
[7] to establish the sharp inequality for the Strichartz norm. The reversed Hardy-
Littlewood-Sobolev inequality can be seen as an extension of (1:

(3)

∫
Rn

∫
Rn

|x− y|λf(x)g(y)dxdy ≥ Cn,p,q′‖f‖Lq′ ‖g‖Lp

for any nonnegative functions f ∈ Lq′(Rn), g ∈ Lp(Rn) and p, q′ ∈ (0, 1), λ > 0
such that 1

p +
1
q′ −

λ
n = 2. They ([1] and [26]) also derived the existence of extremal

functions of (1) for the case q′ = p = 2n
2n+λ . Subsequently, Ngô and Nguyen [33]

extended the results of existence of extremal functions to general p and q′. We note
that the range of the exponents in the reversed Hardy-Littlewood-Sobolev inequality
3 are quite different from those in the Hardy-Littlewood-Sobolev inequality 1. They
are mainly reflected in the difference that the power of the kernel |x−y| is negative
in 1 and positive in 3 and p, q′ > 1 in 1 and p, q′ < 1 in 3

Motivated by the work of Beckner [1] and Dou and Zhu [20], thus a natural ques-
tion arises: Does there exist a reversed type Stein-Weiss inequality 2? Furthermore,
does such an inequality have an extremal function for all the indices?

To answer these questions, we consider the following reversed Stein–Weiss in-
equality. Our first main result is the following theorem.
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REVERSE STEIN–WEISS INEQUALITIES 8431

Theorem 1. For n ≥ 1, p, q′ ∈ (0, 1), λ > 0, 0 ≤ α < −n
q , and 0 ≤ β < − n

p′

satisfying
1

p
+

1

q′
− α+ β + λ

n
= 2,

there is a constant Cn,α,β,p,q′ > 0 such that for any nonnegative functions f ∈
Lq′(Rn) and g ∈ Lp(Rn),

(4)

∫
Rn

∫
Rn

|x|α|x− y|λf(x)g(y)|y|βdxdy ≥ Cn,α,β,p,q′‖f‖Lq′‖g‖Lp ,

where 1
q + 1

q′ = 1 and 1
p + 1

p′ = 1.

We remark that the constant Cn,α,β,p,q′ above can be considered as the least one

such that the above inequality holds for all nonnegative functions f ∈ Lq′(Rn) and
g ∈ Lp(Rn). This constant Cn,α,β,p,q′ is often referred to as the best constant for
the reversed Stein–Weiss inequality. We also note that the range of the exponents
in the reversed Stein–Weiss inequality (4) are quite different from those in the
Stein–Weiss inequality (2). They are reflected in the difference that the power of
the kernel |x − y| is negative in (2) and positive in (4) and that p, q′ > 1 in (2)
and p, q′ < 1 in (4). Moreover, we have power weights |x|−α and |y|−β in (2) with
α+β ≥ 0, α < n

q , β < n
p′ , but with power weights |x|α and |y|β with both α and

β nonnegative in (4).
Once we establish the reversed Stein–Weiss inequality, it is natural to ask whether

the extremal functions for the above inequality actually exist. To answer this
question, we first observe that the constant Cn,α,β,p,q′ above is the same as the
infimum of the minimizing problem

(5) Cn,α,β,p,q′ := inf{‖Vλ(g)‖Lq : g ≥ 0, ‖g‖Lp = 1},
where 1

q + 1
q′ = 1 and 1

p + 1
q′ −

α+β+λ
n = 2.

To understand whether this Cn,α,β,p,q′ can be achieved, we define the following
weighted operator:

(6) Vλ(g)(x) =

∫
Rn

|x|α|x− y|λg(y)|y|βdy.

Then we can prove that the constant Cn,α,β,p,q′ could actually be achieved. This
is stated in the following theorem.

Theorem 2. For n ≥ 1, p, q′ ∈ (0, 1), λ > 0, 0 ≤ α < −n
q , and 0 ≤ β < − n

p′

satisfying

(7)
1

p
+

1

q′
− α+ β + λ

n
= 2,

there exists some nonnegative function g ∈ Lp(Rn) such that ‖g‖Lp = 1 and
‖Vλ(g)‖Lq = Cn,α,β,p,q′ .

Once we have obtained the reversed Stein–Weiss inequality and established the
existence of extremal functions of this inequality, it is natural to consider the corre-
sponding Euler–Lagrange system. Namely, we are interested in the equations that
the extremal functions f and g of the reversed Stein–Weiss inequality satisfy. To
do this, one can minimize the functional

(8) J(f, g) =

∫
Rn

∫
Rn

|x|α|x− y|λf(x)g(y)|y|βdxdy
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under the constraint ‖f‖Lq′ = ‖g‖Lp = 1. The Euler–Lagrange system correspond-
ing to (8) is the following integral system:

(9)

{
J(f, g)f(x)q

′−1 =
∫
Rn |x|α|x− y|λg(y)|y|βdy,

J(f, g)g(x)p−1 =
∫
Rn |x|β|x− y|λf(y)|y|αdy.

Set u = c1f
q′−1, v = c2g

p−1, 1
q′−1 = −p1, and

1
p−1 = −p2. Then for a proper

choice of constants c1 and c2, system (9) becomes

(10)

{
u(x) =

∫
Rn |x|α|x− y|λv−p2(y)|y|βdy,

v(x) =
∫
Rn |x|β |x− y|λu−p1(y)|y|αdy,

where 1
p1−1 + 1

p2−1 = α+β+λ
n .

Next, we consider the integral system (10) and establish the asymptotic behavior
of solutions to the system (10).

Theorem 3. Let (u, v) be a pair of positive Lebesgue measurable solutions of (10).
Then u(x) and v(x) satisfy the following asymptotic behavior around the origin and
near infinity:

lim
|x|→∞

u(x)

|x|λ+α
=

∫
Rn

v−p2(y)|y|βdy, lim
|x|→∞

v(x)

|x|λ+β
=

∫
Rn

u−p1(y)|y|αdy,

lim
|x|→0

u(x)

|x|α =

∫
Rn

v−p2(y)|y|β+λdy, lim
|x|→0

v(x)

|x|β =

∫
Rn

u−p1(y)|y|α+λdy.

Finally, it is interesting to study the following equations:

(11)

{
u(x) =

∫
Rn |x− y|λ|y|ν2v−p2(y)dy,

v(x) =
∫
Rn |x− y|λ|y|ν1u−p1(y)dy.

Then, using the Pohozaev identity we can prove the following theorem.

Theorem 4. Given λ, ν1, ν2, p1, p2 > 0. Suppose that there exists a pair of
positive solutions (u, v) ∈ C1(Rn) × C1(Rn) of (11). Then the following balance
condition must hold:

n+ ν1
p1 − 1

+
n+ ν2
p2 − 1

= λ.

As a corollary, we immediately conclude the following nonexistence result of any
pair of positive solutions to the above integral system (11).

Corollary 5. Given λ, ν1, ν2, p1, p2 > 0. If

n+ ν1
p1 − 1

+
n+ ν2
p2 − 1

�= λ,

then there does not exist any pair of positive solutions (u, v) ∈ C1(Rn) × C1(Rn)
satisfying (11).
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In the special case ν1 = ν2 = 0, the system (11) is reduced to

(12)

{
u(x) =

∫
Rn |x− y|λv−p2(y)dy,

v(x) =
∫
Rn |x− y|λu−p1(y)dy.

It is clear that the system (12) corresponds to the Euler-Lagrange equations of
the extremal functions of the Hardy–Littlewood–Sobolev inequality

(13)

∫
Rn

∫
Rn

|x− y|λf(x)g(y)dxdy ≥ Cn,p,q′‖f‖Lq′ ‖g‖Lp

for any nonnegative functions f ∈ Lq′(Rn), g ∈ Lp(Rn), and p, q′ ∈ (0, 1), λ > 0
such that 1

p + 1
q′ −

λ
n = 2 with 1

q′−1 = −p1 and 1
p−1 = −p2. Therefore, we can

conclude from Theorems 2 and 4 the following sufficient and necessary conditions.

Theorem 6. Given λ, p1, p2 > 0. Then the sufficient and necessary condition for
the existence of a pair of positive solutions (u, v) ∈ C1(Rn)×C1(Rn) to the system
(12) is

n

p1 − 1
+

n

p2 − 1
= λ.

As an application of Theorem 1, we give an equivalent form of reversed Stein–
Weiss inequality (4) on the sphere S

n in the case of q′ = p.

Theorem 7. Let n ≥ 1, λ > 0, 0 ≤ α < −n
q , 0 ≤ β < − n

p′ , and q′ = p =
2n

2n+λ+α+β . There exists a constant Cn,α,β,p,q′ > 0 such that for any nonnegative

functions f ∈ Lq′(Rn) and g ∈ Lp(Rn),
(14)∫
Sn

∫
Sn

|ξ−S(0)|α|ξ−η|λF1(ξ)G1(η)|η−S(0)|βdξdη≥Cn,α,β,p,q′‖F‖Lq′ (Sn)‖G‖Lp(Sn),

where

F (ξ)=
( 2

1 + |x|2
)− 2n+λ+α+β

2

f(x), F1(ξ) =
( 2

1 + |x|2
)− 2n+λ+α+β

2
( 1

1 + |x|2
) β

2

f(x),

G(η) =
( 2

1 + |y|2
)− 2n+λ+α+β

2

g(y), G1(η) =
( 2

1 + |y|2
)− 2n+λ+α+β

2
( 1

1 + |y|2
)α

2

g(y),

|ξ− η| is denoted as the chordal distance from ξ to η in R
n+1, and S is the inverse

of stereographic projection S
n \ {(0, 0, . . . ,−1)} → R

n.

Remark 8. The best constant of reversed Stein–Weiss inequality on the sphere S
n

(15) can be attained with the help of Theorem 2.

In view of the Stein–Weiss inequality (2) in R
n, we can also obtain the following

Stein–Weiss inequality on the sphere S
n with the help of the stereographic pro-

jection. This does not seem to be in the literature and so we include this for the
interested reader.

Theorem 9. Let n ≥ 1, 0 < λ < n, α < n
q , β < n

p′ , α + β ≥ 0, and q′ =

p = 2n
2n−λ−α−β . There exists a constant Cn,α,β,p,q′ > 0 such that for any functions

f ∈ Lq′(Rn) and g ∈ Lp(Rn),∫
Sn

∫
Sn

|ξ − S(0)|−α|ξ − η|−λH1(ξ)T1(η)|η − S(0)|−βdξdη(15)

≤ Cn,α,β,p,q′‖H‖Lq′ (Sn)‖T‖Lp(Sn),
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where

H(ξ)=
( 2

1 + |x|2
)− 2n−λ−α−β

2

f(x),H1(ξ)=
( 2

1 + |x|2
)− 2n−λ−α−β

2
( 1

1 + |x|2
)− β

2

f(x),

T (η) =
( 2

1 + |y|2
)− 2n−λ−α−β

2

g(y), T1(η) =
( 2

1 + |y|2
)− 2n−λ−α−β

2
( 1

1 + |y|2
)−α

2

g(y).

We end this introduction with the following remarks. First, three of the authors
have recently proved the reversed Stein-Weiss inequalities on upper half space using
weighted reverse Hardy’s inequality on upper half spaces and harmonic analysis
techniques [11]. They are stated as follows.

Theorem A. For n > 1, 0 < p, q′ < 1, β < 1−n
p′ , λ > 0 satisfying

n− 1

np
+

1

q′
− α+ β + λ− 1

n
= 2,

there exists some constant Cn,α,β,p,q′ > 0 such that for any nonnegative functions

f ∈ Lq′(Rn
+), g ∈ Lp(∂Rn

+), there holds∫
Rn

+

∫
∂Rn

+

|x|α|x− y|λf(x)g(y)|y|βdydx ≥ Cn,α,β,p,q′‖f‖Lq′ (Rn
+)‖g‖Lp(∂Rn

+).

By considering the following minimizing problem

Cn,α,β,p,q′ := inf{‖Vλ(g)‖Lq(Rn
+) : g ≥ 0, ‖g‖Lp(∂Rn

+) = 1},
where the double weighted operator Vλ(g)(x) is given by

Vλ(g)(x) =

∫
∂Rn

+

|x|α|x− y|λg(y)|y|βdy,

we further proved in [11] the following.

Theorem B. For n > 1, p, q′ ∈ (0, 1), λ > 0, 0 ≤ α < −n−1
q and 0 ≤ β < 1−n

p′

satisfying
n− 1

np
+

1

q′
− α+ β + λ− 1

n
= 2,

there exists some nonnegative function g ∈ Lp(∂Rn
+) satisfying ‖g‖Lp(∂Rn

+) = 1 and

‖Vλ(g)‖Lq(Rn
+) = Cn,α,β,p,q′ .

Asymptotic estimates for solutions to the Euler-Lagrange equations associated
with the reverse Stein-Weiss inequality on the half space and sufficient and necessary
conditions for the existence of solutions to such integral systems were established in
[11]. Moreover, corresponding Stein-Weiss inequality on the sphere and its reversed
version were also obtained in [11].

More recently, the authors have also proved some relevant works (see [10] and
[12]) on the Hardy-Littlewood-Sobolev inequality and the Stein-Weiss inequality
with fractional Poisson kernel on the upper half space, which was motivated by the
work [28].

This paper is organized as follows. In Sections 2 and 3, we prove the reversed
Stein–Weiss inequality, namely, the weighted reversed Hardy–Littlewood–Sobolev
inequality and the existence of extremal functions for the inequality. In Section
4, we obtain some asymptotic behaviors of solutions to the corresponding Euler–
Lagrange system. In Section 5, we use the Pohozaev identity to obtain necessary
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conditions of the existence of any positive solutions of (11). In Sections 6 and 7,
we establish the reversed Stein–Weiss inequality and Stein–Weiss inequality on the
sphere S

n by stereographic projection.

2. The proof of Theorem 1

Let G be a locally compact group. It is known that G possesses a positive
measure μ on the Borel set that is nonzero on all nonempty open sets and is left
invariant, i.e.,

μ(tA) = μ(A),

for any t ∈ G and A ⊆ G. Such a measure μ is called a left Haar measure on G.
The convolution of two functions g, h ∈ L1(G) is defined as

(g ∗ h)(x) =
∫
G

g(y)h(y−1x)dμ(y),

where y−1 denotes the inverse of y in the group G.
To prove Theorem 1, we need the following reversed Young’s inequality.

Lemma 10. Let G be a locally compact group with left Haar measure μ that satisfies
μ(A) = μ(A−1) for all measurable sets A ⊆ G. Assume that p, q, and s satisfy

0 < p < 1, q, s < 0,
1

q
+ 1 =

1

p
+

1

s
.

Then for any nonnegative g ∈ Lp(G,μ) and h ∈ Ls(G,μ), we have

‖g ∗ h‖Lq(G,μ) ≥ ‖g‖Lp(G,μ)‖h‖Ls(G,μ).

Proof. One can check that

1

q
+

1

p′
+

1

s′
= 1,

p

q
+

p

s′
= 1,

s

q
+

s

p′
= 1.

Using the reversed Hölder inequality with respect to exponents q, p′, and s′, we
obtain

(g ∗ h)(x) =
∫
G

g(y)h(y−1x)dμ(y)

=

∫
G

g
p

s′ (y)g
p
q (y)h

s
q (y−1x)h

s
p′ (y−1x)dμ(y)

≥ ‖g‖
p

s′
Lp(G,μ)

( ∫
G

gp(y)hs(y−1x)dμ(y)
) 1

q
( ∫

G

hs(y−1x)dμ(y)
) 1

p′

= ‖g‖
p
s′
Lp(G,μ)‖h‖

s
p′

Ls(G,μ)

( ∫
G

gp(y)hs(y−1x)dμ(y)
) 1

q

.

Now take Lq norms in the variable x and apply Fubini’s theorem to deduce that

‖g ∗ h‖Lq(G,μ) ≥ ‖g‖
p

s′
Lp(G,μ)‖h‖

s
p′

Ls(G,μ)

(∫
G

∫
G

gp(y)hs(y−1x)dμ(x)dμ(y)
) 1

q

= ‖g‖
p
s′
Lp(G,μ)‖h‖

s
p′
Ls‖g‖

p
q

Lp(G,μ)‖h‖
s
q

Ls(G,μ)

= ‖g‖Lp(G,μ)‖h‖Ls(G,μ).

�
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It is easy to check that μ = dx
|x| is a left Haar measure and satisfies μ(A) = μ(A−1)

for all measurable sets A ⊆ G = R
∗ = R\{0} and that μ = dx

x is a left Haar measure

and satisfies μ(A) = μ(A−1) for all measurable sets A ⊆ G = R
+ = (0,∞).

Next, we will introduce some properties about the rearrangement which will be
used in the proof of the main theorem.

Let Ω ⊂ R
n be a bounded smooth domain, and let u be a nonnegative function.

Define a radially symmetric function u∗ : Ω∗ = BR(0) → R satisfying |BR(0)| = |Ω|,
and for any s > 0

|{x ∈ BR(0) : u
∗(x) > s}| = |{x ∈ Ω : u(x) > s}|.

Then u be a decreasing function and is called the rearrangement of u. Assume
F : R → R is a continuous increasing function. By construction∫

Ω

F (u)dx =

∫
BR(0)

F (u∗)dx.

When Ω = R
n, the rearrangement can be defined in a similar way. Let u be a

nonnegative function. The rearrangement of u is defined by

u∗ =

∫ ∞

0

χ{u>t}∗(x)dt,

where χ{u>t}∗ is the characteristic function of the set {u > t}∗ = Br(0) with
|Br(0)| = |{u > t}|. Then u∗ is radially decreasing and satisfies∫

Rn

F (u)dx =

∫
Rn

F (u∗)dx.

For λ > 0, let

(Tλg)(x) =

∫
Rn

g(y)|x− y|λdy.

In order to prove the reversed Stein–Weiss inequality, it is equivalent to prove

‖|x|αTλg‖Lq(Rn) ≥ Cn,α,β,p,q′‖|x|−βg‖Lp(Rn).

The following lemma is a direct result of [30, 33].

Lemma 11.
(i) For any nonnegative functions f(x) and g(x) defined on R

n, we have∫
Rn

∫
Rn

|x|α|x− y|λf(x)g(y)|y|βdxdy ≥
∫
Rn

∫
Rn

|x|α|x− y|λf∗(x)g∗(y)|y|βdxdy,

where f∗ and g∗ are rearrangements of f and g.
(ii) If g is radially decreasing, then Vλ(g) is radially increasing.
(iii) For any nonnegative function g ∈ Lp(Rn), there holds

‖Vλ(g)‖Lq(Rn) ≥ ‖Vλ(g
∗)‖|Lq(Rn).

We now begin the proof of Theorem 1.

Proof. We can distinguish two cases as follows.

Case 1. For n = 1, one only needs to prove

‖|x|α+ 1
q Tλg‖Lq(μ) ≥ Cn,α,β,p,q′‖|x|−β+ 1

p g‖Lp(μ),

where dμ(x) = dx
|x| .
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Since 1
p − 1

q − (α+ β + λ) = 1, we have

|x|α+ 1
q Tλg(x) =

∫ ∞

−∞

|x|α+ 1
q g(y)|y|−β+ 1

p

|y|α+ 1
q |1− x

y |−λ

dy

|y| = (ḡ ∗ h)(x),

where ḡ(x) = g(x)|x|−β+ 1
p and h(x) = |x|α+ 1

q |1− x|λ.
By Lemma 10, since s < 0, 0 < α < − 1

q and 0 < β < − 1
p′ , we conclude that

‖| · |α+ 1
q Tλg‖Lq(μ) ≥ ‖| · |−β+ 1

p g‖Lp(μ)‖h‖Ls(μ)

≥ Cn,α,β,p,q′‖| · |−β+ 1
p g‖Lp(μ),

(16)

where 1
p + 1

s = 1 + 1
q .

Case 2. According to Lemma 11, we may assume that g is radially symmetric and
decreasing. For n ≥ 2, it suffices to prove

(17) ‖|x|αTλg‖Lq(Rn) ≥ Cn,α,β,p,q′‖|x|−βg‖Lp(Rn).

To show this, we can write the fractional integral operator acting on a radial
function as a convolution in the group R

+ with Haar measure μ = dx
x . This is a

useful technique from harmonic analysis and has also been used in, e.g., [36], [18].
To this end, we will need the following lemma whose proof can be found on, e.g.,
p. 420 in [24].

Lemma 12. Let x ∈ Sn−1 = {x ∈ R
n : |x| = 1}, and denote

I(x) =

∫
Sn−1

ϕ(x · y)dy.

Then I(x) is a constant independent of x and

I(x) = ωn−2

∫ 1

−1

ϕ(t)(1− t2)
n−3
2 dt,

where ωn−2 denotes the area of Sn−2.

Set |x| = ρ; by Lemma 12,

Tλg(x) =

∫
Rn

g(y)|x− y|λdy

=

∫ ∞

0

∫
Sn−1

g(r)|x− ry′|λrn−1drdy′

=

∫ ∞

0

∫
Sn−1

g(r)(r2 − 2rρx′y′ + ρ2)
λ
2 rn−1drdy′

= ωn−2

∫ ∞

0

∫ 1

−1

(1− t2)
n−3
2 (r2 − 2rρt+ ρ2)

λ
2 dtg(r)rn−1dr

= ωn−2

∫ ∞

0

∫ 1

−1

(1− t2)
n−3
2

(
1− 2(

ρ

r
)t+ (

ρ

r
)
2)λ

2

dtg(r)rn+λ−1dr

= ωn−2

∫ ∞

0

g(r)rn+λ−1Iλ(
ρ

r
)dr,

(18)

where

Iλ(a) =

∫ 1

−1

(1− t2)
n−3
2 (1− 2at+ a2)

λ
2 dt, a > 0.
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It is obvious that Iλ(a) is well defined and continuous for any a > 0. Then, we can
apply (18) to derive that

ρ
n
q +αTλg(x) = ωn−2

∫ ∞

0

g(r)rn+λ+n
q +α ρ

n
q +α

r
n
q +α

Iλ(
ρ

r
)
dr

r

= ωn−2

(
g(r)rn+λ+n

q +α
)
∗

(
r

n
q +αIλ(r)

)
(ρ).

Since n
p − n

q − (α+ β + λ) = n, one can calculate

ω
1
p

n−1‖g(r)rn+λ+n
q +α‖Lp(μ)

= ω
1
p

n−1

(∫ +∞

0

(g(r))pr(n+λ+n
q +α)p−nrn

dr

r

) 1
p

= ‖g(x)|x|n+λ+n
q +α−n

p ‖Lp(Rn)

= ‖g(x)|x|−β‖Lp(Rn).

By the dominated convergence theorem, one can obtain

Iλ(r)

rλ
∼

∫ 1

−1

(1− t2)
n−3
2 dt, as r → ∞.

Now we check that ‖r n
q +αIλ(r)‖Ls(μ) �= 0. Since s < 0, we only need to prove

(19)

∫ +∞

0

(
r

n
q +αIλ(r)

)s
r−1dr < +∞.

Note that
(
r

n
q +αIλ(r)

)s
r−1 ∼ Cr(

n
q +α)s−1 as λ → 0 and

(
r

n
q +αIλ(r)

)s
r−1 ∼

Cr(
n
q +α+λ)s−1 as λ → +∞. In order to guarantee that (19) is finite, we only

need to verify that

(
n

q
+ α)s− 1 > −1 and (

n

q
+ α+ λ)s− 1 < −1.

In fact, it is equivalent to check that

n

q
+ α < 0 and

n

q
+ α+ λ > 0.

Recall from the assumption of Theorem 2 that 0 ≤ α < −n
q , 0 ≤ β < − n

p′ , and
n
p − n

q − (α+ β + λ) = n. Thus n
q + α + λ = n

p − n− β = − n
p′ − β, which implies

that n
q + α < 0 and n

q + α + λ > 0. So we obtain (19). Therefore, we accomplish

the proof of Theorem 1. �

3. The proof of Theorem 2

In this section, we will prove Theorem 2. We can divide our proof into two steps.

Step 1. We will choose a suitable minimizing sequence {gj}j for (5) satisfying
gj(1) > c0.

Let {gj}j be a minimizing sequence for the problem (5). According to Lemma
11, we can assume that {gj}j is a nonnegative radially symmetric and decreasing
minimizing sequence.
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For any R > 0, we have

vng
p
j (R)Rn ≤ ωn−1

∫ R

0

gpj (r)r
n−1dr

≤ ωn−1

∫ +∞

0

gpj (r)r
n−1dr

=

∫
Rn

gpj (x)dx = 1.

We can apply the above estimate to conclude that

0 ≤ gj(R) ≤ CR−n
p

for any R > 0 and for some constant C independent of j. We also need the following
lemma proved in [20, 30].

Lemma 13. Suppose that g ∈ Lp(Rn) is nonnegative, radially symmetric, and

satisfies g(|x|) ≤ ε|x|−n
p for all |x| > 0. Then for any 0 < t < p, there exists a

constant C > 0, independent of g and ε such that

‖Vλ(g)‖Lq(Rn) ≥ Cε1−
p
t ‖g‖

p
t

Lp(Rn).

Let
aj = sup

r>0
r

n
p gj(r) ≤ C.

Since ‖gj‖Lp(Rn) = 1 and ‖Vλ(gj)‖Lq(Rn) → Cn,α,β,p,q′ < ∞, it follows from Lemma
13 that aj ≥ 2c0 for some c0 > 0. Therefore, we can choose λj > 0 such that

λ
n
p

j gj(λj) > c0. Then we set

g̃j(x) = λ
n
p

j gj(λjx).

It is easy to check that ‖g̃j‖Lp = ‖gj‖Lp = 1 and ‖Vλg̃j‖Lq = ‖Vλgj‖Lq . Then
{g̃j(x)}j is also a minimizing sequence. Consequently, replacing the sequence
{gj(x)}j with the new sequence {g̃j(x)}j , if necessary, one can further assume
that our sequence {gj(x)}j obeys gj(1) ≥ c0 for any j.

Similar to Lieb’s argument which is based on the Helly theorem, by passing to a
subsequence, we have gj → g a.e. in R

n. It is evident that g is nonnegative radially
symmetric and decreasing. The rest of our arguments is to show that g is indeed
the desired minimizer for (5).

Step 2. We will show that g is actually a minimizer of (5).
One can apply Lemma 11 to derive that (Vλgj)(x) is radially symmetric and

increasing for any j. Moreover, for all x ∈ R
n, we have

(20) (Vλgj)(x) ≥ c0|x|α
∫
|y|≤1

|x− y|λ|y|βdy ≥ C(1 + |x|λ+α)

for some constant C independent of j.
Since limj→+∞ ‖Vλgj‖Lq → Cn,α,β,p,q′ , there exists some constant C > 0 such

that ‖Vλgj‖qLq ≤ C for any j. Then for any R > 0, one can estimate

vn(Vλgj)
q(R)Rn ≤

∫
|x|≤R

(Vλgj)
q(x)dx

≤
∫
Rn

(Vλgj)
q(x)dx ≤ C.
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Consequently, we have

0 ≤
(
Vλgj(R)

)−1 ≤ C4R
n
q

for all R > 0. Since (Vλgj(x))
−1 is radially symmetric and decreasing, we can

use the Helly theorem to conclude that (Vλgj(x))
−1 → k(x) a.e. in R

n for some
function k(x). By (20) and the dominated convergence theorem, we derive that

lim
j→∞

( ∫
Rn

(Vλgj)
q(x)dx

) 1
q

=
( ∫

Rn

lim
j→∞

(Vλgj)
q(x)dx

) 1
q

.

For |x| > 2R, we can employ the reversed Hölder inequality to obtain that∫
Rn

|x|α|x− y|λgj(y)|y|βdy ≥ C(R)

∫
|y|≤R

gj(y)|y|βdy

≥ C(R)
(∫

|y|≤R

gτj (y)dy
) 1

τ
( ∫

|y|≤R

|y|τ ′βdy
) 1

τ′
,

where 0 < τ < 1 and 1
τ + 1

τ ′ = 1. Since 0 < β < − n
p′ , one can choose τ satisfying

τ > p and τ ′β > −n. Then, there exists some constant C(R) such that

(21)

∫
|y|≤R

gτj (y)dy < C(R).

Select x̄ satisfying that 1 < |x̄| < R
2 ; then we have∫

Rn

|x̄|α|x̄− y|λgj(y)|y|βdy

≥ (
R

4
)λ

∫
3
4R≤|y|≤R

gj(y)|y|βdy

≥ (
R

4
)λgj(R)

∫
3
4R≤|y|≤R

|y|βdy

≥ (
R

4
)λ+n+βgj(R).

Therefore, there exists some constant C such that gj(R) < CR−n−λ−β for suffi-
ciently large R. One can combine this fact with 0 < α < −n

q to conclude that

(22) lim
R→∞

lim
j→∞

∫
|y|≥R

gpj (y)dy = 0.

Combining (21) and (22), we derive that

lim
j→∞

∫
Rn

gpj (y)dy = lim
R→∞

lim
j→∞

∫
|y|≤R

gpj (y)dy + lim
R→∞

lim
j→∞

∫
|y|≥R

gpj (y)dy

= lim
R→∞

lim
j→∞

∫
|y|≤R

gpj (y)dy

= lim
R→∞

∫
|y|≤R

gp(y)dy

=

∫
Rn

gp(y)dy.

Therefore, ‖g‖Lq = 1. We can use Fatou’s lemma to obtain that

lim
j→∞

(
Vλgj(x)

)q
=

(
lim
j→∞

Vλgj(x)
)q ≤

(
Vλg(x)

)q
.
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Then

(23)

Cn,α,β,p,q′ = lim
j→∞

( ∫
Rn

(Vλgj)
q(x)dx

) 1
q

=
(

lim
j→∞

∫
Rn

(Vλgj)
q(x)dx

) 1
q

=
( ∫

Rn

lim
j→∞

(Vλgj)
q(x)dx

) 1
q

≥
( ∫

Rn

(Vλg)
q(x)dx

) 1
q

≥ Cn,α,β,p,q′‖g‖Lq = Cn,α,β,p,q′ .

Therefore, by ‖g‖Lq = 1 and (23), one concludes that g is actually a minimizer of
(5). This completes the proof of Theorem 2.

4. The proof of Theorem 3

In this section, we consider some asymptotic behavior of positive solutions for
the weighted integral system (10). We first prove the following lemma.

Lemma 14. For α, β, p1, p2, and λ > 0, let (u, v) be a pair of positive Lebesgue
measurable solutions of (10). Then

(24)

∫
Rn

(1 + |y|λ)v−p2(y)|y|βdy < ∞,

∫
Rn

(1 + |y|λ)u−p1(y)|y|αdy < ∞,

and for some constant C1, C2 ≥ 1,

(25)
1

C1
(1 + |x|λ) ≤ u(x)

|x|α ≤ C1(1 + |x|λ), 1

C2
(1 + |x|λ) ≤ v(x)

|x|β ≤ C2(1 + |x|λ).

Proof. We only deal with

(26)
1

C1
(1 + |x|λ) ≤ u(x)

|x|α ≤ C1(1 + |x|λ)

and

(27)

∫
Rn

(1 + |y|λ)v−p2(y)|y|βdy < ∞.

Since (u, v) is a pair of positive Lebesgue measurable solutions of (10), we have

meas{x ∈ R
n|u(x) < +∞} > 0, meas{x ∈ R

n|v(x) < +∞} > 0.

Moreover, there exists R > 1 and some measurable set E such that

E ⊂ {x ∈ R
n|u(x), v(x) < R} ∩BR

with |E| > 1
R .
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For |x| > 2R > 2,

u(x)

|x|α =

∫
Rn

|x− y|λv−p2(y)|y|βdy

≥ C

∫
E

(1 + |x|λ)v−p2(y)|y|βdy

≥ C(1 + |x|λ)R−p2

∫
E

|y|βdy

≥ CR(1 + |x|λ).

(28)

For 0 < |x| ≤ 2R,

u(x)

|x|α(1 + |x|λ) ≥ 1

1 + (2R)λ
R−p2

∫
E

|x− y|λ|y|βdy

≥ 1

1 + (2R)λ
R−p2

∫
E∩{|x−y|≤|y|}

|x− y|λ+βdy

+
1

1 + (2R)λ
R−p2

∫
E∩{|x−y|≥|y|}

|y|λ+βdy

≥ c

1 + (2R)λ
R−p2

(
|E ∩ {|x− y| ≤ |y|}|1+

λ+β
n

+ |E ∩ {|x− y| ≥ |y|}|1+
λ+β
n

)
≥ c0

1 + (2R)λ
R−p2−1−λ+β

n .

Then, for any x ∈ R
n \ {0},

u(x)

|x|α ≥ 1

C1
(1 + |x|λ).

Thus we obtain the left-hand side of the inequality in (26).
Similarly, for any x ∈ R

n \ {0}, we also have

(29)
v(x)

|x|β ≥ 1

C2
(1 + |x|λ).

Next, we show that ∫
Rn

(1 + |y|λ)v−p2(y)|y|βdy < ∞.

There exists some x̄ ∈ E \ {0} such that

u(x̄) =

∫
Rn

|x̄|α|x− y|λv−p2(y)|y|βdy < +∞.

Moreover,∫
Rn

(1 + |y|λ)v−p2(y)|y|βdy

≤ Cx̄

∫
|y|< 1

2 |x̄|
|x̄− y|λv−p2(y)|y|βdy + Cx̄

∫
|y|>2|x̄|

|x̄− y|λv−p2(y)|y|βdy

+

∫
1
2 |x̄|≤|y|≤2|x̄|

(1 + |y|λ)v−p2(y)|y|βdy,

which combines with (29), and we obtain (27).
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For x ∈ R
n \ {0},

u(x)

|x|α(1 + |x|λ) =

∫
Rn

|x− y|λ
(1 + |x|λ)v

−p2(y)|y|βdy

≤
∫
Rn

(1 + |y|λ)v−p2(y)|y|βdy < +∞.

(30)

Then the right-hand side of the inequality in (26) follows from (27) and (30). This
completes the proof of Lemma 14. �

Now, we start our proof of Theorem 3. The proof is carried out in two parts.

Part I. We show the asymptotic behavior of u, v around infinity.
For |x| > 1, by Lemma 14, we have

|x|−λ

∫
Rn

|x− y|λ|y|βv−p2(y)dy ≤ Cλ

∫
Rn

(1 + |y|λ)v−p2(y)|y|βdy < ∞

and

|x|−λ

∫
Rn

|x− y|λ|y|αu−p1(y)dy ≤ Cλ

∫
Rn

(1 + |y|λ)u−p1(y)|y|αdy < ∞.

Then, we can apply the dominated convergence theorem to obtain

lim
|x|→∞

u(x)

|x|λ+α
= lim

|x|→∞
|x|−λ−α

∫
Rn

|x|α|x− y|λ|y|βv−p2(y)dy

= lim
|x|→∞

|x|−λ

∫
Rn

|x− y|λ|y|βv−p2(y)dy

=

∫
Rn

v−p2(y)|y|βdy

and

lim
|x|→∞

v(x)

|x|λ+β
= lim

|x|→∞
|x|−λ−β

∫
Rn

|x|β |x− y|λ|y|αu−p1(y)dy

= lim
|x|→∞

|x|−λ

∫
Rn

|x− y|λ|y|αu−p1(y)dy

=

∫
Rn

u−p1(y)|y|αdy.

Then we accomplish the proof of Part I.

Part II. We show the asymptotic behavior of u, v around the origin.
For 0 < |x| < 1, by Lemma 14, we have∫

Rn

|x− y|λv−p2(y)|y|βdy ≤ Cλ

∫
Rn

(1 + |y|λ)v−p2(y)|y|βdy < ∞

and ∫
Rn

|x− y|λu−p1(y)|y|αdy ≤ Cλ

∫
Rn

(1 + |y|λ)u−p1(y)|y|αdy < ∞.

Then, we employ the dominated convergence theorem to obtain

lim
|x|→0

u(x)

|x|α = lim
|x|→0

∫
Rn

|x− y|λv−p2(y)|y|βdy

=

∫
Rn

v−p2(y)|y|λ+βdy
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and

lim
|x|→0

v(x)

|x|β = lim
|x|→0

∫
Rn

|x− y|λu−p1(y)|y|αdy

=

∫
Rn

u−p1(y)|y|λ+αdy.

This accomplishes the proof of Part II.

5. The proof of Theorem 4

In this section, we will prove Theorem 4. For λ, ν1, ν2, p1, p2 > 0, assume that
(u, v) is a pair of positive solutions of the following integral system:

(31)

{
u(x) =

∫
Rn |x− y|λ|y|ν2v−p2(y)dy,

v(x) =
∫
Rn |x− y|λ|y|ν1u−p1(y)dy.

We can apply the integration by parts to obtain∫
BR

|x|ν1u−p1(x)(x · ∇u(x))dx

=
1

1− p1

∫
BR

|x|ν1x · ∇(u1−p1(x))dx

=
1

1− p1

∫
∂BR

u1−p1(x)R1+ν1dσ − n+ ν1
1− p1

∫
BR

|x|ν1u1−p1(x)dx.

Similarly, one can also derive that∫
BR

|x|ν2v−p2(x)(x · ∇v(x))dx

=
1

1− p2

∫
∂BR

v1−p2(x)R1+ν2dσ − n+ ν2
1− p2

∫
BR

|x|ν2v1−p2(x)dx.

By Lemma 14, we have∫
Rn

|x|ν1u1−p1(x)dx < ∞,

∫
Rn

|x|ν2v1−p2(x)dx < ∞.

Then, there exists R = Rj → +∞ such that

R1+ν1

∫
∂BR

u1−p1(x)dσ → 0, R1+ν2

∫
∂BR

v1−p2(x)dσ → 0.

Therefore, we get∫
Rn

|x|ν1u−p1(x)(x · ∇u(x))dx+

∫
Rn

|x|ν2v−p2(x)(x · ∇v(x))dx

= −n+ ν1
1− p1

∫
Rn

|x|ν1u1−p1(x)dx− n+ ν2
1− p2

∫
Rn

|x|ν2v1−p2(x)dx.

(32)
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On the other hand,∫
Rn

|x|ν1u−p1(x)(x · ∇u(x))dx

= λ

∫
Rn

∫
Rn

x · (x− y)|x− y|λ−2|x|ν1 |y|ν2u−p1(x)v−p2(y)dydx

=
λ

2

∫
Rn

∫
Rn

x · (x− y)|x− y|λ−2|x|ν1 |y|ν2u−p1(x)v−p2(y)dydx

+
λ

2

∫
Rn

∫
Rn

y · (y − x)|x− y|λ−2|x|ν2 |y|ν1u−p1(y)v−p2(x)dxdy.

One can also derive∫
Rn

|x|ν2v−p2(x)(x · ∇v(x))dx

= λ

∫
Rn

∫
Rn

x · (x− y)|x− y|λ−2|x|ν2 |y|ν1v−p2(x)u−p1(y)dydx

=
λ

2

∫
Rn

∫
Rn

x · (x− y)|x− y|λ−2|x|ν2 |y|ν1v−p2(x)u−p1(y)dydx

+
λ

2

∫
Rn

∫
Rn

y · (y − x)|x− y|λ−2|x|ν1 |y|ν2v−p2(y)u−p1(x)dxdy.

Applying Fubini’s theorem, we have

∫
Rn

|x|ν1u−p1(x)(x · ∇u(x))dx+

∫
Rn

|x|ν2v−p2(x)(x · ∇v(x))dx

=
λ

2

∫
Rn

∫
Rn

|x− y|λ|x|ν2 |y|ν1v−p2(x)u−p1(y)dxdy

+
λ

2

∫
Rn

∫
Rn

|x− y|λ|x|ν1 |y|ν2v−p2(y)u−p1(x)dxdy

= λ

∫
Rn

|x|ν1u1−p1(x)dx

= λ

∫
Rn

|x|ν2v1−p2(x)dx.

Then by (32), we derive that n+ν1

p1−1 + n+ν2

p2−1 = λ.

6. The proof of Theorem 7

In this section, we use the stereographic projection to establish an equivalent
form of the reversed Stein–Weiss inequality (4) on the sphere S

n in the case of
q′ = p.

Let S : x ∈ R
n → ξ ∈ S

n \ {(0, 0, . . . ,−1)} be the inverse of a stereographic
projection, defined by

ξi =
2xi

1 + |x|2 for i = 1, 2, . . . , n; ξn+1 =
1− |x|2
1 + |x|2 .

For x, y ∈ R
n and ξ ∈ S

n, one can refer to [30, 31] to obtain

|S(x)− S(y)| =
( 4|x− y|2
(1 + |x|2)(1 + |y|2)

) 1
2

, dξ =
( 2

1 + |x|2
)n

dx.

Licensed to Univ of Conn Libraries. Prepared on Thu Dec 12 18:35:49 EST 2019 for download from IP 137.99.37.73.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8446 LU CHEN, ZHAO LIU, GUOZHEN LU, AND CHUNXIA TAO

For λ, α, β > 0, q′ = p = 2n
2n+λ+α+β , ξ, η ∈ S

n, f ∈ Lq′(Rn), and g ∈ Lp(Rn),

define

F (ξ) =
( 2

1 + |x|2
)− 2n+λ+α+β

2

f(x),

F1(ξ) =
( 2

1 + |x|2
)− 2n+λ+α+β

2
( 1

1 + |x|2
) β

2

f(x),

G(η) =
( 2

1 + |y|2
)− 2n+λ+α+β

2

g(y),

G1(η) =
( 2

1 + |y|2
)− 2n+λ+α+β

2
( 1

1 + |y|2
)α

2

g(y),

where x = S−1(ξ), y = S−1(η). Direct computation leads to∫
Sn

|F (ξ)|q′dξ =

∫
Rn

|f(x)|q′
( 2

1 + |x|2
)−q′ 2n+λ+α+β

2
( 2

1 + |x|2
)n

dx

=

∫
Rn

|f(x)|q′dx

and ∫
Sn

|G(η)|pdη =

∫
Rn

|g(y)|p
( 2

1 + |y|2
)−p 2n+λ+α+β

2
( 2

1 + |y|2
)n

dy

=

∫
Rn

|g(y)|pdy.

Recall the reversed Stein–Weiss inequality in R
n:∫

Rn

∫
Rn

|x|α|x− y|λf(x)g(y)|y|βdxdy ≥ Cn,α,β,p,q′‖f‖Lq′‖g‖Lp ,

where p, q′ ∈ (0, 1), α, β, λ > 0 such that 1
p + 1

q′ −
α+β+λ

n = 2.

In the case of q′ = p, we can apply the stereographic projection to obtain∫
Sn

∫
Sn

|ξ − S(0)|α|ξ − η|λF1(ξ)G1(η)|η − S(0)|βdξdη

=

∫
Rn

∫
Rn

( 4|x|2
1 + |x|2

)α
2
( 4|x− y|2
(1 + |x|2)(1 + |y|2)

)λ
2
( 2

1 + |x|2
)−λ+α+β

2

f(x)

×
( 1

1 + |x|2
) β

2
( 2

1 + |y|2
)−λ+α+β

2

g(y)
( 1

1 + |y|2
)α

2
( 4|y|2
1 + |y|2

) β
2

dxdy

=

∫
Rn

∫
Rn

|x|α|x− y|λf(x)g(y)|y|βdxdy

≥ Cn,α,β,p,q′

( ∫
Rn

|f(x)|q′dx
) 1

q′
(∫

Rn

|g(y)|q′dy
) 1

p

= Cn,α,β,p,q′

( ∫
Sn

|F (ξ)|q′dξ
) 1

q′
(∫

Sn

|G(η)|pdη
) 1

p

.

(33)

This accomplishes the proof of Theorem 7.
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7. The proof of Theorem 9

In this section, we also give an equivalent form of Stein–Weiss inequality (4) on
the sphere S

n in the case of q′ = p as we did in Section 6.
Recall the classical Stein–Weiss inequality in the whole space R

n,

(34)

∫
Rn

∫
Rn

|x|−α|x− y|−λf(x)g(y)|y|−βdxdy ≤ Cn,α,β,p,q′‖f‖Lq′ ‖g‖Lp ,

where p, q′, α, β, and λ satisfy the following conditions:

1

q′
+

1

p
+

α+ β + λ

n
= 2,

1

q′
+

1

p
≥ 1,

α+ β ≥ 0, α <
n

q
, β <

n

p′
, 0 < λ < n.

In the case of q′ = p = 2n
2n−λ−α−β , for ξ, η ∈ S

n, f ∈ Lq′(Rn), and g ∈ Lp(Rn),

define

H(ξ) =
( 2

1 + |x|2
)− 2n−λ−α−β

2

f(x),

H1(ξ) =
( 2

1 + |x|2
)− 2n−λ−α−β

2
( 1

1 + |x|2
)−β

2

f(x),

T (η) =
( 2

1 + |y|2
)− 2n−λ−α−β

2

g(y),

T1(η) =
( 2

1 + |y|2
)− 2n−λ−α−β

2
( 1

1 + |y|2
)−α

2

g(y),

where x = S−1(ξ), y = S−1(η). Direct computation leads to

∫
Sn

|H(ξ)|q′dξ =

∫
Rn

|f(x)|q′
( 2

1 + |x|2
)−q′ 2n−λ−α−β

2
( 2

1 + |x|2
)n

dx

=

∫
Rn

|f(x)|q′dx

and

∫
Sn

|T (η)|pdη =

∫
Rn

|g(y)|p
( 2

1 + |y|2
)−p 2n−λ−α−β

2
( 2

1 + |y|2
)n

dy

=

∫
Rn

|g(y)|pdy.
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This together with Stein–Weiss inequality (34) and stereographic projection
yields

∫
Sn

∫
Sn

|ξ − S(0)|−α|ξ − η|−λH1(ξ)T1(η)|η − S(0)|−βdξdη

=

∫
Rn

∫
Rn

( 4|x|2
1 + |x|2

)−α
2
( 4|x− y|2
(1 + |x|2)(1 + |y|2)

)−λ
2
( 2

1 + |x|2
)λ+α+β

2

f(x)

×
( 1

1 + |x|2
)−β

2
( 2

1 + |y|2
)λ+α+β

2

g(y)
( 1

1 + |y|2
)−α

2
( 4|y|2
1 + |y|2

)− β
2

dxdy

=

∫
Rn

∫
Rn

|x|−α|x− y|−λf(x)g(y)|y|−βdxdy

≤ Cn,α,β,p,q′

( ∫
Rn

|f(x)|q′dx
) 1

q′
( ∫

Rn

|g(y)|pdy
) 1

p

= Cn,α,β,p,q′

( ∫
Sn

|H(ξ)|q′dξ
) 1

q′
( ∫

Sn

|T (η)|pdη
) 1

p

.

(35)

This completes the proof of Theorem 9.
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