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Abstract. In this paper, we establish the Lp estimates for the maximal functi-
ons associated with the multilinear pseudo-differential operators. Our main

result is Theorem 1.2. There are several major different ingredients and extra

difficulties in our proof from those in Grafakos, Honźık and Seeger [15] and
Honźık [22] for maximal functions generated by multipliers. First, in order to

eliminate the variable x in the symbols, we adapt a non-smooth modification

of the smooth localization method developed by Muscalu in [26, 30]. Then,
by applying the inhomogeneous Littlewood-Paley dyadic decomposition and a

discretization procedure, we can reduce the proof of Theorem 1.2 into proving

the localized estimates for localized maximal functions generated by discrete
paraproducts. The non-smooth cut-off functions in the localization procedure

will be essential in establishing localized estimates. Finally, by proving a key

localized square function estimate (Lemma 4.3) and applying the good-λ ine-
quality, we can derive the desired localized estimates.

1. Introduction. A n-linear Fourier multiplier Tm given by symbol m is defined
as follows:

Tm(f1, · · · , fn)(x) =

∫
Rnd

m(ξ)eix·(ξ1+···+ξn)f̂1(ξ1) · · · f̂n(ξn)dξ, (1)

where ξ = (ξ1, · · · , ξn) ∈ Rnd and f1, · · · , fn are Schwartz functions on Rd.
From classical Coifman-Meyer theorem (see [6, 9, 18, 23]), we know if m satisfy

Hörmander-Mikhlin conditions:

|∂αξm(ξ)| ≤ Cα|ξ|−|α| (2)
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for sufficiently many multi-indices α, then the operator Tm extends to a bounded
n-linear operator from Lp1(Rd) × · · · × Lpn(Rd) into Lp(Rd), provided that 1 <
p1, · · · , pn ≤ ∞ and 1

p = 1
p1

+ · · ·+ 1
pn

. Let Ta be the corresponding bilinear pseudo-

differential operators defined by replacing m with a in (1), where a ∈ BS0
1,0(R3d),

that is, a satisfies the following conditions:

|∂γx∂αξ ∂βη a(x, ξ, η)| ≤ Cd,α,β,γ(1 + |ξ|+ |η|)−|α|−|β| (3)

for sufficiently many multi-indices α, β, γ. Then by bilinear T1 theorem (see [6, 18]),
Ta is bounded from Lp(Rd)× Lq(Rd) into Lr(Rd), provided that 1 < p, q ≤ ∞ and
1
r = 1

p + 1
q (see [4], and see [2, 30] for d = 1 case). In the multi-parameter settings,

C. Muscalu, J. Pipher, T. Tao and C. Thiele [28, 29] proved the Lp boundedness for
general multi-linear and multi-parameter Coifman-Meyer multipliers by using time-
frequency analysis (see also [7]). The second and third author of the current paper
proved in [12] that the same Lp estimates as in [28, 29] also holds for multi-linear and
multi-parameter pseudo-differential operators. For more literature involving esti-
mates for multi-linear, multi-parameter multiplier operators and pseudo-differential
operators, see e.g. [1, 6, 8, 16, 18, 21, 19, 20, 23, 24, 25, 27, 30, 31] and references
therein.

M. Christ, L. Grafakos, P. Honźık and A. Seeger [5] constructed an example which
shows that a family of N Mikhlin-Hörmander multipliers on Rd that satisfy uniform

estimates forms a maximal operator M(f) := sup1≤i≤N |F−1[mif̂ ]| whose Lp norm

is at least O(
√

log(N + 1)). Given N Hörmander-Mikhlin multipliers m1, · · · ,mN

with uniform differential estimates, L. Grafakos, P. Honźık and A. Seeger [15] also

proved an optimal O(
√

log(N + 1)) upper bound in Lp for the maximal function
M. For more literature on the boundedness of maximal operators, please see e.g.
[11, 13, 14, 33] and references therein.

In the bilinear setting, P. Honźık [22] considered the maximal bilinear operator

M(f, g)(x) = sup
1≤j≤N

|Tmj
(f, g)(x)|, (4)

where Tmj are the bilinear Coifman-Meyer operators with symbolmj , andmj satisfy

|∂αξmj(ξ)| ≤ Cα|ξ|−|α| (5)

for sufficiently many multi-indices α and uniformly in j = 1, 2, · · · , N . He proved

Theorem 1.1 ([22]). Let 1 < p, q <∞ and 1
2 < r <∞ satisfy 1

r = 1
p + 1

q , then the

bilinear maximal operator M defined in (4) satisfies the estimate:

‖M(f, g)‖r ≤ C
√

log (N + 2)‖f‖p‖g‖q (6)

for all functions f ∈ Lp(Rd) and g ∈ Lq(Rd). Conversely, for any N ≥ 1 there is a
family of symbols mj satisfying (5) uniformly and two Schwartz functions f and g
such that

‖M(f, g)‖r ≥ C
√

log (N + 2)‖f‖p‖g‖q, (7)

where the constant C is independent of N .

The above Theorem 1.1 can also be extended to general n-linear case (n ≥ 3).
The purpose of this paper is to prove the pseudo-differential variant of the Lp

estimates for the maximal operator M. For simplicity, we will only consider the
case d = 1 and n = 2 in this paper. However, it will be clear from the proof that
we can extend the argument to the general n-linear settings straightforwardly.
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Suppose that aj(x, ξ, η) ∈ C∞(R3) is a symbol satisfying

|∂γx∂αξ ∂βη aj(x, ξ, η)| ≤ Cα,β,γ(1 + |ξ|+ |η|)−|α|−|β| (8)

uniformly in j, for j = 1, 2, · · · , N . LetM be the bilinear maximal operator defined
by

M(f, g)(x) = sup
1≤j≤N

|Taj (f, g)(x)|. (9)

Our main result in this article is the following theorem.

Theorem 1.2. Let 1 < p, q < ∞ and 1/p + 1/q = 1/r. If a family of bilinear
symbols {aj}Nj=1 satisfies (8) uniformly in j, then the associated maximal operator
M satisfies the estimate:

‖M(f, g)‖r ≤ C
√

log(N + 2)‖f‖p‖g‖q (10)

for all functions f ∈ Lp(R) and g ∈ Lq(R). Moreover, the constant O(
√

log(N + 2))
in the bound is optimal in the sense that we can find symbols {aj} satisfying (8)
uniformly such that

‖M(f, g)‖r ≥ C
√

log(N + 2)‖f‖p‖g‖q (11)

for some function f ∈ Lp(R) and g ∈ Lq(R).

Before starting the proof of our main result (Theorem 1.2), we would like to
give a brief overview of the ingredients in our proof strategy and indicate its ad-
ditional difficulties due to our variable coefficient settings compared with the Lp

boundedness proved by L. Grafakos, P. Honźık and A. Seeger [15] for maximal
functions of Mikhlin-Hörmander multipliers and P. Honźık [22] for maximal functi-
ons of multi-linear Coifman-Meyer multipliers. First, since the derivatives with
respect to variable x do not affect the uniform estimates (8) for symbols {aj}Nj=1,
by using the idea from C. Muscalu in [26, 30] (see also [12] in multi-parameter set-
tings), we can essentially reduce the proof of Theorem 1.2 for r > 1 into proving a

localized estimate (see (30)) for the localized maximal function M~0 generated by
bilinear Coifman-Meyer multipliers. What deserves to be mentioned is that, we use
non-smooth cut-off functions in the localization procedure, which is clearly different
from the localization used by C. Muscalu [26, 30] and will be essential in our subse-
quent proof (for instance, the localized square function estimate, see Lemma 4.3).
Then, by applying the inhomogeneous Littlewood-Paley dyadic decomposition, we

can bound the localized maximal function M~0 pointwisely by a summation of four

localized bilinear maximal functionsM~0
i (i = 1, · · · , 4, see (31)), in which the loca-

lized maximal functionsM~0
1 andM~0

3 can be reduced further into localized maximal

functions M̃~0
1 and M̃~0

3 generated by discrete bilinear paraproducts (see (37) and
(38)) by a standard discretization procedure (see [28, 30]). Therefore, the proof of
Theorem 1.2 can be finally reduced into proving the localized estimates (39) and
(40) consisting of a auxiliary bilinear operator Gs (see (21)) for the “high-high”

frequency part M̃~0
3, “low-low” frequency part M~0

4 and the “high-low” frequency

part M̃~0
1. Second, we apply the localized bilinear paraproduct estimates (Propo-

sition 1, for the proof, see [26, 30] and see also [12] for bi-parameter case) and its
variants (see Remark 1) to prove estimate (39) for the localized bilinear maximal

functions M̃~0
3 and M~0

4, moreover, we also use the nonnegativity assumption on
the non-lacunary family of L2-normalized bump functions (ϕ3

I)I∈I in the estimate
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of M̃~0
3. The third key ingredient in our proof is that, through a careful observa-

tion and analysis, we can establish a localized square function estimate (Lemma
4.3), which indicates that the martingale square functions (see (57)) of the localized
“high-low” frequency paraproducts Λj (see (53)) are monotone with respect to the
corresponding starting levels and can be controlled pointwisely (and also uniformly
in j) by the localized auxiliary operator Gs. Then, by using the key Lemma 4.3, the
good-λ inequality (69) (see [10]) and a refined estimate on the measure of the set
{x ∈ I0 : sup1≤j≤N |E−N (Λj(f, g)χI0)| > 21−Nλ} (see (71) and (72)), we can finally

derive the localized estimate (40) for M̃~0
1. Once the upper bounds in Theorem 1.2

have been established for r > 1, we can cover the 1
2 < r ≤ 1 cases by using the

endpoint weak type estimates (see Proposition 2) and multi-linear interpolations.
The rest of this paper is organized as follows. In Section 2 we give some useful

notations and preliminary knowledge, in particular, we reduce the proof of the main
Theorem 1.2 into proving a localized estimate for the localized maximal function

M~0 generated by bilinear Coifman-Meyer multipliers. In Section 3 we carry out

the proof of the localized estimates (39) for the “high-high” frequency part M̃~0
3 and

“low-low” frequency part M~0
4 in the decomposition (31). Section 4 is devoted to

proving the localized estimates (40) consisting of a auxiliary operator Gs for the

“high-low” frequency part M̃~0
1 in the decomposition (31). In Section 5 we will first

derive the upper bound by using the endpoint weak type estimates and multi-linear
interpolations, then we give a counter-example that indicates the upper bound
O(
√

log(N + 2)) is also optimal, which completes the proof of our main theorem,
Theorem 1.2.

2. Notations and preliminary results. Let S(R) denotes the space of Schwartz
functions, and S ′(R) denotes the space of tempered distributions. The Fourier

transform f̂ and the inverse Fourier transform f̌ of f ∈ S(R) are defined by

Ff(ξ) = f̂(ξ) =

∫
R
e−2πix·ξf(x)dx and F−1f(x) = f̌(x) =

∫
R
e2πix·ξf(ξ)dξ.

Let ϕ ∈ S(R) such that suppϕ̂ ⊆ [− 4
3 ,

4
3 ] and ϕ̂ = 1 on [− 3

4 ,
3
4 ], and define

ψ̂(ξ) = ϕ̂( ξ2 ) − ϕ̂(ξ). Then suppψ̂ ⊆ [− 8
3 ,−

3
4 ] ∪ [ 3

4 ,
8
3 ]. For every integer k ≥ 0, we

define ϕ̂k, ψ̂k by

ϕ̂k(ξ) := ϕ̂
( ξ

2k

)
, ψ̂k(ξ) := ψ̂

( ξ
2k

)
. (12)

We use the convention ψ̂−1(ξ) := ϕ̂(ξ), then it is easy to see∑
k≥−1

ψ̂k(ξ) = 1. (13)

Then we have the following inhomogeneous Littlewood-Paley dyadic decomposition
for arbitrary function f, g ∈ S ′(R):

f =
∑
k1≥−1

f ∗ ψk1 , g =
∑
k2≥−1

g ∗ ψk2 . (14)
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Furthermore, we have Bony’s paraproducts decomposition of the productf · g:

f · g =
∑

k1,k2≥−1

(f ∗ ψk1)(g ∗ ψk2) (15)

=

{ ∑
−1≤k1≤k2−2

+
∑

−1≤k2≤k1−2

+
∑

k1,k2≥−1,|k1−k2|≤1

}
(f ∗ ψk1)(g ∗ ψk2)

=
∑
k≥1

(f ∗ ϕ̃k)(g ∗ ψk) +
∑
k≥1

(f ∗ ψk)(g ∗ ϕ̃k) +
∑
k≥0

(f ∗ ψk)(g ∗ ψ̃k)

+ {(f ∗ ϕ)(g ∗ ψ) + (f ∗ φ)(g ∗ ϕ) + (f ∗ ϕ)(g ∗ ϕ)}
=: Πlh(f, g) + Πhl(f, g) + Πhh(f, g) + Πll(f, g),

where ˆ̃ϕk(ξ) := ϕ̂k−1(ξ) = ˆ̃ϕ( ξ
2k ) for any k ≥ 1, ˆ̃ϕ(ξ) := ϕ̂(2ξ), and

ψ̃k :=
∑

|k−k′|≤1,k′≥0

ψk′ (16)

for any k ≥ 0.

Definition 2.1. For J ⊆ R an arbitrary interval, a smooth function ΦJ is called a
bump function adapted to J , if and only if the following inequalities hold1:

|Φ(l)
J (x)| .l,M

1

|J |l
· 1(

1 + dist(x,J)
|J|

)M (17)

for every integer M ∈ N and for sufficiently many derivatives l ∈ N. If ΦJ is a bump
adapted to J , we say that |J |− 1

2 ΦJ is an L2-normalized bump function adapted to
J .

Definition 2.2. A family of L2-normalized adapted bump functions (ϕI)I is said
to be nonlacunary if and only if for every I one has

suppϕ̂I ⊆ [−4|I|−1, 4|I|−1].

A family of L2-normalized adapted bump functions (ϕI)I is said to be lacunary if
and only if for every I one has

suppϕ̂I ⊆
[
− 4|I|−1,−1

4
|I|−1

]
∪
[1
4
|I|−1, 4|I|−1

]
.

Definition 2.3. Let I be a finite set of dyadic intervals. A bilinear expression of
the type

ΠI(f, g) =
∑
I∈I

cI
1

|I| 12
〈f, ϕ1

I〉〈g, ϕ2
I〉ϕ3

I (18)

is called a bilinear discretized paraproduct if and only if (cI)I is a bounded sequence
of complex numbers and at least two of the families of L2-normalized bump functions
(ϕiI)I for i = 1, 2, 3 are lacunary in the sense of Definition 2.2.

1Throughout this paper, A . B means that there exists a universal constant C > 0 such
that A 6 CB. If necessary, we use explicitly A .?,··· ,? B to indicate that there exists a positive

constant C?,··· ,? depending only on the quantities appearing in the subscript continuously such

that A ≤ C?,··· ,?B.
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Now we will use the idea from C. Muscalu in [26, 30] that the proof of Theorem 1.2
can be essentially reduced to establishing a localized variant of the Lp boundedness
for maximal function of bilinear Coifman-Meyer multipliers proved by P. Honźık
[22]. We will proceed as follows. First, pick a sequence of characteristic functions
{χIn}n∈Z with In = [n, n+1). Then one single bilinear pseudo-differential operator
Taj can be split as follows:

Taj =
∑
n∈Z

Tnaj , (19)

where

Tnaj (f, g)(x) := Taj (f, g)(x)χIn(x). (20)

We define the auxiliary operator (see [22])

Gs(f, g)(x) :=

(∑
k

(
MsM

(
(M(|ψ̃k ∗ f |))(Mg)

))2
)1/2

, (21)

whereM denotes the Hardy-Littlewood maximal function andMs(f) :=
(
M(|f |s)

) 1
s .

By the Littlewood-Paley theory and Fefferman-Stein inequality, we can derive
the following estimates for the bilinear operator Gs.

Lemma 2.4 ([22]). Assume that 1 < s < min{r, 2}. Then we have

‖Gs(f, g)‖Lr . ‖f‖Lp · ‖g‖Lq , (22)

where 1
r = 1

p + 1
q < 1 and p > 1, q > 1.

Now we define

Mn(f, g)(x) := sup
1≤j≤N

|Tnaj (f, g)(x)|

and claim that for every n ∈ Z, one has the following localized estimates:

‖Mn(f, g)‖Lr(R) . ‖fχ̃In‖Lp(R)‖gχ̃In‖Lq(R) +
√

logN‖Gs(f, g)χIn‖Lr(R), (23)

provided that 1 < p, q < ∞ and 1
r = 1

p + 1
q , where χ̃In(x) :=

(
1 + dist(x,In)

|In|

)−100

and constant C in the bounds are independent of N and n. Suppose that we have
proved the claim (23), then by Hölder inequality and Lemma 2.4, we have for r > 1,

‖M(f, g)‖Lr(R) .
(∑
n∈Z
‖Mn(f, g)‖rLr(R)

) 1
r

(24)

.
(∑
n∈Z
‖fχ̃In‖rLp‖gχ̃In‖rLq

) 1
r

+
√

logN
(∑
n∈Z
‖Gs(f, g)χIn‖rLr

) 1
r

.
(∑
n∈Z
‖fχ̃In‖

p
Lp

) 1
p
(∑
n∈Z
‖gχ̃In‖

q
Lq

) 1
q

+
√

logN‖Gs(f, g)‖Lr(R)

.
√

log(N + 2)‖f‖Lp(R)‖g‖Lq(R),

where we have used the convergence of series
∑
k≥1 k

−s for s > 1 to obtain the last

inequality. The estimate (24) yields the upper bound in our main Theorem 1.2 for
r > 1. Therefore, from now on, we only need to prove the claim (23).

To this end, fix some n0 ∈ Z, we have

Tn0
aj (f, g)(x) =

∫
R2

aj(x, ξ, η)ϕ̃n0(x)χIn0
(x)f̂(ξ)ĝ(η)e2πix(ξ+η)dξdη (25)
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for every j = 1, · · · , N , where ϕ̃n0 is a smooth function supported on the interval
[n0−1, n0+2] and equals 1 on In0 . Then we can rewrite the symbols aj(x, ξ, η)ϕ̃n0(x)
by using Fourier expansions with respect to the x variable:

aj(x, ξ, η)ϕ̃n0(x) =
∑
l∈Z

mj,l(ξ, η)e2πixl. (26)

By integration by parts, the condition (8) guarantees that

|∂αmj,l(ξ, η)| . 1

(1 + |l|)M
· 1

(1 + |ξ|+ |η|)|α|
(27)

for a sufficiently large number M and sufficiently many multi-indices α. Observe
that the rapid decay in l in the estimates (27) for Fourier coefficients is acceptable
for summation, thus we only need to treat the maximal operator corresponding to
l = 0, which is given by

Mn0
0 (f, g)(x) = sup

1≤j≤N
|Tn0
mj,0

(f, g)(x)| (28)

= sup
1≤j≤N

∣∣∣ ∫
R2

mj,0(ξ, η)f̂(ξ)ĝ(η)e2πix(ξ+η)dξdη · χIn0
(x)
∣∣∣,

where the multipliers mj,0 satisfy

|∂αmj,0(ξ, η)| . 1

(1 + |ξ|+ |η|)|α|
(29)

uniformly in j = 1, · · · , N .
The operator Mn0

0 is simply a localization of the maximal Coifman-Meyer bi-
linear operator investigated by P. Honźık in [22]. By translation invariance, we
can also assume that n0 = 0, that is, in order to prove our claim (23), we only
need to prove the following localized estimates for the localized maximal operator

M~0 :=M0
0:

‖M~0(f, g)‖Lr(R) . ‖fχ̃I0‖Lp(R)‖gχ̃I0‖Lq(R) +
√

logN‖Gs(f, g)χI0‖Lr(R), (30)

provided that 1 < p, q <∞ and 1
r = 1

p + 1
q .

Next, we will decompose the localized bilinear maximal function M~0(f, g) into
a finite summation of maximal functions of localized bilinear discrete paraproducts
(see Definition 2.3) by applying the inhomogeneous Littlewood-Paley decomposition
(see (14), (15)) and a standard discretization procedure (see [28, 30, 12]). We will
proceed this procedure as follows. First, by using the inhomogeneous Littlewood-
Paley decomposition, we can split one single symbol mj,0(ξ) into four terms:

mj,0(ξ, η) = mj,0(ξ, η)
∑
l≥1

ˆ̃ϕl(ξ)ψ̂l(η) +mj,0(ξ, η)
∑
l≥1

ψ̂l(ξ) ˆ̃ϕl(η)

+mj,0(ξ, η)
∑
l≥0

ψ̂l(ξ)
ˆ̃
ψl(η) +mj,0(ξ, η){ϕ̂(ξ)ψ̂(η) + ψ̂(ξ)ϕ̂(η) + ϕ̂(ξ)ϕ̂(η)}.

Therefore, by splitting the symbol mj,0 as above, we can decompose the localized
bilinear operator Tmj ,~0

:= T 0
mj,0

into a sum of four localized bilinear operators as
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follows:

Tmj ,~0
(f, g) =

∑
l≥1

∫
R2

(
mj,0(ξ, η)ψ̂l(ξ) ˆ̃ϕl(η)

)
f̂(ξ)ĝ(η)e2πix(ξ+η)dξdη · χI0(x)

+
∑
l≥1

∫
R2

(
mj,0(ξ, η) ˆ̃ϕl(ξ)ψ̂l(η)

)
f̂(ξ)ĝ(η)e2πix(ξ+η)dξdη · χI0(x)

+
∑
l≥0

∫
R2

(
mj,0(ξ, η)ψ̂l(ξ)

ˆ̃
ψl(η)

)
f̂(ξ)ĝ(η)e2πix(ξ+η)dξdη · χI0(x)

+

∫
R2

mj,0(ξ, η)
[
ϕ̂(ξ)ψ̂(η) + ψ̂(ξ)ϕ̂(η) + ϕ̂(ξ)ϕ̂(η)

]
f̂(ξ)ĝ(η)e2πix(ξ+η)dξdηχI0(x)

=: T 1
mj ,~0

(f, g) + T 2
mj ,~0

(f, g) + T 3
mj ,~0

(f, g) + T 4
mj ,~0

(f, g).

As a consequence,

M~0(f, g)(x) ≤ sup
1≤j≤N

|T 1
mj ,~0

(f, g)(x)|+ sup
1≤j≤N

|T 2
mj ,~0

(f, g)(x)|

+ sup
1≤j≤N

|T 3
mj ,~0

(f, g)(x)|+ sup
1≤j≤N

|T 4
mj ,~0

(f, g)(x)| (31)

=:M~0
1(f, g)(x) +M~0

2(f, g)(x) +M~0
3(f, g)(x) +M~0

4(f, g)(x).

Since the role of variables ξ and η are symmetric in the definition of M~0
1(f, g) and

M~0
2(f, g), by exchanging ξ and η, we can treat M~0

1(f, g) and M~0
2(f, g) similarly.

Therefore, we only need to deal with the localized maximal functions M~0
1(f, g),

M~0
3(f, g) and M~0

4(f, g) and prove localized estimates for them respectively.

Since suppψ̂l(ξ) ˆ̃ϕl(η) lies inside a cube of side length about 2l whose distance
to the origin is also of size 2l, the smooth restriction of the symbol mj,0(ξ, η)
to that cube (maybe supported on a slightly larger cube, and equals to mj,0 on

suppψ̂l(ξ) ˆ̃ϕl(η)), which is denoted by mj,0,l(ξ, η), can be decomposed as a double
Fourier series:

mj,0,l(ξ, η) =
∑

n1,n2∈Z
Cj,ln1,n2

e2πin1ξ/2
l

e2πin2η/2
l

, (32)

where the Fourier coefficient Cj,ln1,n2
are given by

Cj,ln1,n2
= 2−2l

∫
R2

mj,0,l(ξ, η)e−2πin1ξ/2
l

e−2πin2η/2
l

dξdη. (33)

By taking advantage of (29) and integrating by parts, one can see that

|Cj,ln1,n2
| . 1

(1 + |n1|+ |n2|)M
, (34)

where the constant is independent of j and M is sufficiently large.
If we apply the double Fourier expansions to the smoothly restricted symbols

mj,0,l(ξ, η) for every l ≥ 1, and insert the corresponding double Fourier series (32)
into the definition of T 1

mj ,~0
, we can obtain

T 1
mj ,~0

(f, g)(x) =
∑

n1,n2∈Z

∑
l≥1

Cj,ln1,n2

(
(f ∗ ψl,n1

)(g ∗ ϕ̃l,n2
)
)
∗ ψ′l · χI0(x), (35)
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where ψ̂l,n1(ξ) := ψ̂l(ξ)e
2πin1ξ/2

l

, ˆ̃ϕl,n2(η) := ˆ̃ϕl(η)e2πin2η/2
l

and ψ̂′l(γ) := ψ̂′( γ
2l ),

ψ
′

is a Schwartz function such that supp ψ̂′ ⊆ [−4,− 1
16 ] ∪ [ 1

16 , 4] and ψ̂′ = 1 on

[− 10
3 ,−

1
12 ] ∪ [ 1

12 ,
10
3 ]. We can deduce in a similar way that

T 3
mj ,~0

(f, g)(x) =
∑

n1,n2∈Z

∑
l≥0

Cj,ln1,n2

(
(f ∗ ψl,n1

)(g ∗ ψ̃l,n2
)
)
∗ ϕ′l · χI0(x), (36)

where
ˆ̃
ψl,n2

(η) :=
ˆ̃
ψl(η)e2πin2η/2

l

and ϕ̂′l(γ) := ϕ̂′( γ
2l ), ϕ̂′(γ) := ϕ̂( γ24 ).

Since by (34), the Fourier coefficients satisfy a rapid decay |Cj,ln1,n2
|. 1

(1+|n1|+|n2|)M
uniformly in j for sufficiently large integer M , which is acceptable for summa-
tion. Therefore, we can fix n1 = n2 = 0 from now on. Then, by inserting
(35) and (36) into (31), one can easily verify that localized maximal functions

M~0
1(f, g),M~0

3(f, g) can be reduced to the following localized bilinear discrete max-

imal function M̃~0
1(f, g) and M̃~0

3(f, g):

M̃~0
1(f, g)(x) := sup

1≤j≤N

∣∣∣∑
l≥1

Cj,l0,0

(
(f ∗ ψl)(g ∗ ϕ̃l)

)
∗ ψ′l · χI0(x)

∣∣∣, (37)

M̃~0
3(f, g)(x) := sup

1≤j≤N

∣∣∣∑
l≥0

Cj,l0,0

(
(f ∗ ψl)(g ∗ ψ̃l)

)
∗ ϕ′l · χI0(x)

∣∣∣. (38)

Finally, we can reduce the proof of the upper bound for r > 1 in our main The-
orem 1.2 (or equivalently, the proof of (30)) into proving the following localized

estimates for the localized bilinear maximal operators M̃~0
1, M̃~0

3 and M~0
4 respecti-

vely:

‖M̃~0
3(f, g)‖Lr(R) + ‖M~0

4(f, g)‖Lr(R) . ‖fχ̃I0‖Lp(R)‖gχ̃I0‖Lq(R), (39)

‖M̃~0
1(f, g)‖Lr(R) . ‖fχ̃I0‖Lp(R)‖gχ̃I0‖Lq(R) +

√
logN‖Gs(f, g)χI0‖Lr(R), (40)

provided that 1 < p, q <∞ and 1
r = 1

p + 1
q .

3. Estimates for M̃~0
3 and M~0

4. In this section, we will carry out the proof of

estimate (39) for the localized bilinear maximal operators M̃~0
3 and M~0

4.

For the estimate of M̃~0
3(f, g), we will use the following Proposition from [26, 30],

one can also see [12].

Proposition 1. For a bilinear discrete paraproduct

ΠI(f, g) :=
∑

I∈I,|I|≤1

1

|I| 12
〈f, ϕ1

I〉〈g, ϕ2
I〉ϕ3

I ,

pick a sequence of smooth functions (ϕn)n∈Z such that suppϕn ⊆ [n− 1, n+ 1] and∑
n∈Z

ϕn = 1, (41)

then we have the following localized estimates:

‖ΠI(f, g)ϕn‖Lr(R) . ‖fχ̃In‖Lp(R)‖gχ̃In‖Lq(R), (42)

where the constant in bound is independent of the cardinality of I and n.

Remark 1. From the proof of Proposition 1 (see [26, 30, 12]), one can easily verify
that the following localized estimates also hold for every n ∈ Z:∥∥∥{ ∑

I∈I,|I|≤1

1

|I| 12
|〈f, ϕ1

I〉||〈g, ϕ2
I〉|ϕ3

I

}
ϕn

∥∥∥
Lr(R)

. ‖fχ̃In‖Lp(R)‖gχ̃In‖Lq(R). (43)
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Remark 2. In fact, if we replace smooth functions ϕn by characteristic functions
χIn in (42) and (43) respectively, then the conclusions in Proposition 1 and Remark
1 still hold true.

By a standard discretization procedure (see [28, 30, 12]), we can discretize the

classical paraproduct
∑
l≥0 C

j,l
0,0

(
(f ∗ ψl)(g ∗ ψ̃l)

)
∗ ϕ′l further into a discrete para-

product:

Πj
I(f, g) =

∑
I∈I,|I|≤1

CjI
1

|I| 12
〈f, ϕ1

I〉〈g, ϕ2
I〉ϕ3

I , (44)

where {CjI}I∈I is uniformly bounded in j, (ϕiI)I is lacunary for i = 1, 2 and non-

lacunary for i = 3. Therefore, in order to obtain localized estimate for M̃~0
3(f, g),

it’s enough for us to investigate the following maximal function of localized bilinear
discrete paraproducts:

M
~0

3(f, g) := sup
1≤j≤N

∣∣∣∣ ∑
I∈I,|I|≤1

CjI
1

|I| 12
〈f, ϕ1

I〉〈g, ϕ2
I〉ϕ3

I · χI0
∣∣∣∣. (45)

Since (ϕ3
I)I are non-lacunary, we may assume that bump functions ϕ3

I are non-
negative for every I ∈ I, and hence we can deduce from Proposition 1, (43) in
Remark 1 and Remark 2 that

‖M
~0

3(f, g)‖Lr(R) ≤ sup
1≤j≤N

sup
I∈I

CjI ·
∥∥∥ ∑
I∈I,|I|≤1

1

|I| 12
|〈f, ϕ1

I〉||〈g, ϕ2
I〉|ϕ3

I · χI0
∥∥∥
Lr(R)

.‖fχ̃I0‖Lp(R)‖gχ̃I0‖Lq(R), (46)

where the constant in bound is independent of the cardinality of I and N . We can

infer from (46) immediately the following localized estimate for M̃~0
3:

‖M̃~0
3(f, g)‖Lr(R) . ‖fχ̃I0‖Lp(R)‖gχ̃I0‖Lq(R). (47)

Now we will prove localized estimate for the localized bilinear maximal function

M~0
4(f, g). For simplicity, we may consider w.l.g. only one term in the defini-

tion of the operator T 4
mj ,~0

(j = 1, · · · , N), for instance, the term with symbol

mj,0(ξ, η)ϕ̂(ξ)ψ̂(η), which will still be denoted by T 4
mj ,~0

, that is,

T 4
mj ,~0

(f, g)(x) =

∫
R2

mj,0(ξ, η)ϕ̂(ξ)ψ̂(η)f̂(ξ)ĝ(η)e2πix(ξ+η)dξdη · χI0(x). (48)

We can deal with the other two terms in definition of T 4
mj ,~0

(j = 1, · · · , N) in a

completely similar way.

We first decompose the symbol mj,0(ξ, η)ϕ̂(ξ)ψ̂(η) into double Fourier series:

mj,0(ξ, η)ϕ̂(ξ)ψ̂(η) =
∑

n1,n2∈Z
Cjn1,n2

e2πin1ξe2πin2ηϕ̂(ξ)ψ̂(η). (49)

By inserting the above (49) into (48), we get

T 4
mj ,~0

(f, g)(x) =
∑

n1,n2∈Z
Cjn1,n2

(f ∗ ϕn1
)(g ∗ ψn2

)χI0(x), (50)

where ϕ̂n1
(ξ) := ϕ̂(ξ)e2πin1ξ and ψ̂n2

(η) := ψ̂(η)e2πin2η.



Lp BOUNDEDNESS FOR MAXIMAL FUNCTIONS OF ΨDO 893

We will only consider the case n1 = n2 = 0, since the Fourier coefficients Cjn1,n2

have rapid decay in n1, n2 uniformly in j. The corresponding maximal operator
satisfies the following localized estimates:∥∥∥ sup

1≤j≤N
|Cj0,0(f ∗ ϕ)(g ∗ ψ)χI0 |

∥∥∥
Lr
≤ sup

1≤j≤N
|Cj0,0| ·

∥∥(f ∗ ϕ)(g ∗ ψ)ϕ0ϕ̃0

∥∥
Lr

. ‖(f ∗ ϕ)ϕ0‖Lp‖(g ∗ ψ)ϕ̃0‖Lq . ‖fχ̃I0‖Lp‖gχ̃I0‖Lq , (51)

where the last inequality is obtained by Minkowski’s inequality, ϕ0, ϕ̃0 are bump
functions adapted to [−1, 1], which are supported in a interval slightly larger than
[−1, 1] and equal to 1 on [−1, 1]. Estimate (51) yields that

‖M~0
4(f, g)‖Lr(R) . ‖fχ̃I0‖Lp(R)‖gχ̃I0‖Lq(R). (52)

Combining (52) with (47), we get (39) immediately.

4. Estimate for M̃~0
1. In this section, we will prove the localized estimate (40)

for the localized bilinear maximal operator M̃~0
1. To this end, we define bilinear

operators

Λj(f, g)(x) :=
∑
l≥1

Cj,l0,0

(
(f ∗ ψl)(g ∗ ϕ̃l)

)
∗ ψ′l(x). (53)

We have the following localized estimate for Λj(f, g) from [26, 30].

Lemma 4.1. The bilinear operators Λj(f, g) satisfy

‖Λj(f, g)χIn‖Lr(R) . ‖fχ̃In‖Lp(R)‖gχ̃In‖Lq(R), (54)

where the constant in bound is independent of n and j = 1, · · · , N , 1 < p, q < ∞
and 1

r = 1
p + 1

q .

For the proof of Lemma 4.1 in multi-parameter settings, please refer to [12].
Before carrying out the proof for estimate (40), let us first introduce some useful

definitions and lemmas.
We define the conditional expectation operator

Ekf(x) := 2k
∑
I∈Dk

χI(x)

∫
I

f(y)dy, (55)

the martingale difference operator

Dkf(x) := Ek+1f(x)− Ekf(x), (56)

and also define the family of martingale square functions with starting levels k0 ∈ Z:

Sk0(f)(x) :=
( ∑
k≥k0

|Dkf(x)|2
)1/2

, (57)

where Dk denotes the family of dyadic intervals with length 2−k. The martingale
square functions Sk0(f) are Lp bounded (see [3]). The maximal martingale operator
supk |Ekf | is pointwise bounded by Mf and thus it is bounded in Lp norm.

Following [15], we will introduce two convolution operators which have some

connection with the dyadic martingale difference (see [15, 22]). Suppose ψ̂ ∗ ϕ̃ is
supported in {ξ ∈ R : C0

−1 ≤ |ξ| ≤ C0}. Let b be a radial Schwartz function

supported in [− 1
4 ,

1
4 ] with b̂(ξ) 6= 0 for C0

−1 ≤ |ξ| ≤ C0 and
∫
R b(x)dx = 0 and

set b̂i(ξ) = b̂(2−iξ). Pick a function γ̂ ∈ C∞c (R) such that (b̂(ξ))2γ̂(ξ) = 1 for
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ξ ∈ {ξ ∈ R : C0
−1 ≤ |ξ| ≤ C0} and set γ̂i(ξ) = γ̂(2−iξ). We shall define the

notations:

Bif := f ∗ bi and Γif := f ∗ γi for i ∈ Z. (58)

The operators Bi and Γi satisfy the following pointwise estimates.

Lemma 4.2 ([15, 22]). For i, k ∈ Z, j ∈ N ∪ {0} and s > 1, we have

|(BiΓif)(x)| .Mf(x), (59)

|(DkBk+if)(x)| . 2−|i|/s
′
Ms(f)(x) (60)

and

|Ek+1Bk+jf(x)|+ |EkBk+jf(x)| . 2−j/s
′
Ms(f)(x). (61)

By using the estimates for Bi and Γi in Lemma 4.2, P. Honźık proved a pointwise
estimate for the square function in Lemma 6.2 [22], that is, the square function Sk0
of the “high-low” frequency part Λj can be controlled by the auxiliary operator Gs
globally in x ∈ R. Through a careful observation and analysis, we can establish the
following key estimate, i.e., a localized square function estimate.

Lemma 4.3 (Localized square function estimate). For any 1 < s < ∞ and for
1 ≤ j ≤ N , we have a localized pointwise estimate:

S0

(
Λj(f, g)χI0

)
(x) ≤ S−N

(
Λj(f, g)χJN

)
(x) .s Gs(f, g)(x)χJN (x), (62)

where the constant in bound is independent of j = 1, · · · , N and the interval JN :=
[0, 2N ].

Proof. Since k ≥ −N in the definition of the martingale square function (57), we
have I ∩JN = ∅ unless I ⊆ JN for any I ∈ Dk. By the definitions of the martingale
difference operator Dk and the conditional expectation operator Ek in (55) and (56),
we have for k ≥ −N ,

Dk(Λj(f, g)χJN ) = 2k

[(
2
∑

I∈Dk+1

−
∑
I∈Dk

)
χI(x)

∫
I

Λj(f, g)χJNdy

]
(63)

=2k+1
∑

I∈Dk+1, I⊆JN

χI(x)

∫
I

Λj(f, g)dy − 2k
∑

I∈Dk, I⊆JN

χI(x)

∫
I

Λj(f, g)dy

=Ek+1(Λj(f, g))χJN − Ek(Λj(f, g))χJN = Dk(Λj(f, g))χJN .

Thus we can infer from the definition of the martingale square function (57) and
(63) that

S−N (Λj(f, g)χJN )(x) = S−N (Λj(f, g))(x) · χJN (x), (64)

combining this with the pointwise estimate S−N (Λj(f, g))(x) .s Gs(f, g)(x) proved
in Lemma 6.2 [22], we get the second inequality in the localized pointwise estimate
(62):

S−N (Λj(f, g)χJN )(x) .s Gs(f, g)(x)χJN (x). (65)

In particular, for any x ∈ I0 ⊆ JN , we can deduce from (55) that for k ≥ 0,

Ek(Λj(f, g)χJN )(x) = 2k
∑

I∈Dk, I⊆JN , I∩I0 6=∅

χI(x)

∫
I

Λj(f, g)χJNdy (66)

= 2k
∑

I∈Dk, I⊆I0

χI(x)

∫
I

Λj(f, g)χI0dy = Ek(Λj(f, g)χI0)(x),
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and hence, (66) combining with definitions (56) and (57) yield that

S0(Λj(f, g)χI0)(x) = S0(Λj(f, g)χJN )(x) (67)

for every x ∈ I0. One can observe from the definition (57) that S0(Λj(f, g)χJN ) ≤
S−N (Λj(f, g)χJN ), so we can deduce from (65) and (67) that

S0

(
Λj(f, g)χI0

)
(x) ≤ S−N

(
Λj(f, g)χJN

)
(x) .s Gs(f, g)(x)χJN (x) (68)

for every x ∈ I0. Since one can also verify that S0(Λj(f, g)χI0)(x) ≡ 0 for any x ∈ Ic0 ,
combining this fact with (65) and (68) conclude the proof of Lemma 4.3.

Now we are ready to prove the localized estimate (40) for M̃~0
1(f, g) in the case

r > 1. For that purpose, we will make use of the following good-λ inequality from
[10], which states that

|{sup
k
|Ekf − Ek0f | > 2λ} ∩ {Sk0(f) < ελ}| ≤ Ce−Cd/ε

2

|{sup
k
|Ekf | > λ}| (69)

for any λ > 0 and 0 < ε < 1. The inequality is stated for a martingale inside unit
cube in Rd, but it is clear that it can be extended to one-sided martingale starting
at any level k0.

First, notice that for x ∈ I0,

E0(Λj(f, g)χI0)(x) = 2NE−N (Λj(f, g)χI0)(x), (70)

we can deduce from Lemma 4.3 the following estimate:∣∣{M̃~0
1(f, g) > 4λ}

∣∣ (71)

≤
N∑
j=1

∣∣∣{x ∈ I0 : |Λj(f, g)χI0 − 2NE−N (Λj(f, g)χI0)| > 2λ, Gs(f, g)(x) < ελ}
∣∣∣

+
∣∣{Gs(f, g)χI0 ≥ ελ}

∣∣+
∣∣∣{x ∈ I0 : sup

1≤j≤N
|E−N (Λj(f, g)χI0)| > 21−Nλ

}∣∣∣
≤

∑
1≤j≤N

∣∣∣∣{ sup
k≥0

∣∣∣ k−1∑
l=0

Dl(Λj(f, g)χI0)
∣∣∣ > 2λ

}
∩ {S−N (Λj(f, g)χJN ) < Csελ}

∣∣∣∣
+
∣∣{Gs(f, g)χI0 ≥ ελ}

∣∣+
∣∣∣{ sup

1≤j≤N
|E−N (Λj(f, g)χI0)χI0 | > 21−Nλ

}∣∣∣
≤

∑
1≤j≤N

∣∣∣∣{ sup
k≥0

∣∣∣ k−1∑
l=0

Dl(Λj(f, g)χI0)
∣∣∣ > 2λ

}
∩ {S0(Λj(f, g)χI0) < Csελ}

∣∣∣∣
+
∣∣{Gs(f, g)χI0 ≥ ελ}

∣∣+

∣∣∣∣{ sup
1≤j≤N

∣∣∣ ∫
I0

Λj(f, g)(y)dy · χI0
∣∣∣ > 2λ

}∣∣∣∣.
If we take ε =

√
Cd

Cs

√
r logN

, multiply r4rλr−1 and then integrate on λ in both sides

of (71), then we can deduce from the good-λ inequality (69) and Lemma 4.1 the
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following Lr norm estimate for r > 1:

‖M̃~0
1(f, g)‖Lr .

1

N

∑
1≤j≤N

‖M(Λj(f, g)χI0)‖Lr +
√

logN‖Gs(f, g)χI0‖Lr

+
∥∥∥ sup

1≤j≤N

∣∣∣ ∫
I0

Λj(f, g)(y)dy · χI0
∣∣∣∥∥∥
Lr

.
√

logN‖Gs(f, g)χI0‖Lr + sup
1≤j≤N

‖Λj(f, g)χI0‖Lr + sup
1≤j≤N

∣∣∣ ∫
I0

Λj(f, g)dy
∣∣∣

.
√

logN‖Gs(f, g)χI0‖Lr + ‖fχ̃I0‖Lp‖gχ̃I0‖Lq + sup
1≤j≤N

‖Λj(f, g)χI0‖Lr

.
√

logN‖Gs(f, g)χI0‖Lr + ‖fχ̃I0‖Lp‖gχ̃I0‖Lq , (72)

from which the localized estimate (40) follows.

5. End of the proof for Theorem 1.2.

5.1. Upper bound. Combining the estimates (39) and (40), we have proved the
upper bound part of Theorem 1.2 in the cases r > 1. In order to cover the cases
1
2 < r ≤ 1 in Theorem 1.2, we need to prove an endpoint weak type estimate

for L1 × L1 → L1/2,∞. Once such endpoint weak type estimate was obtained, by
standard multi-linear interpolation argument (see e.g. [17, 30, 32]), we can finish
the proof of the upper bound in Theorem 1.2 for general r > 1

2 .
The following proposition allows us to deduce the endpoint weak type estimate

with the same upper bound O(
√

log(N + 2)) from the Lr (r > 1) estimates derived
in Sections 2, 3 and 4.

Proposition 2. Assume that we have a countable family of bilinear smooth symbols
{aj} such that the condition (8) is satisfied uniformly for all aj and the associated
bilinear maximal operator M is bounded from Lp(R)×Lq(R) into Lr(R) by a con-
stant A for some 1 < p, q, r <∞ satisfying 1

r = 1
p + 1

q . Then, the maximal operator

M is bounded from L1(R)×L1(R) into L1/2,∞(R) with the norm at most a multiple
of A+ B, where B is a constant depends only on the constants from the condition
(8).

Proposition 2 has been proved in the case of maximal function given by a family
of bilinear Coifman-Meyer multipliers {mj} satisfying estimate (5) uniformly in [22]
(see Theorem 8.1 therein). The main tools of the proof in [22] are Caldrón-Zygmund
decomposition and the following estimates for distribution kernels Kj = F−1(mj),
that is,

|∂βKj(x1, x2)| . (|x1|+ |x2|)−2d+|β| (73)

for any j and multi-index |β| ≤ 1. Now, in the case d = 1, if we define distribution
kernels

K̃j = F−1(aj), (74)

where {aj} is the family of symbols of bilinear pseudo-differential operators sa-
tisfying (8) uniformly given by Proposition 2, then we can also obtain the same
estimate as (73), that is,

|∂βK̃j(x1, x2)| . (|x1|+ |x2|)−2+|β| (75)

for any j and multi-index |β| ≤ 1. For the proof of estimate (75) in details, please
refer to [1]. Therefore, the proof of Proposition 2 will be completely similar to the
proof of Theorem 8.1 in [22], so we omit the details here.
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5.2. An example with sharp lower bound. In [22], the author also provided
an example of a countable family {mj} of bilinear Coifman-Meyer multipliers, such
that the Lr norm of the corresponding maximal operator M larger than C

√
logN

with C independent on N . More precisely, fix a smooth function ψ, such that
suppψ ⊆ [− 1

4 ,
1
4 ] and ψ(ξ) ≡ 1 for every |ξ| ≤ 1/8, then one can verify the symbols

mj(ξ1, ξ2) :=

∞∑
k=1

j(k)ψ(2−kξ2)ψ(2−kξ1 − 1) (76)

satisfy the estimate (5) uniformly in j, where j(k) denotes the k-th digit of binary

representation of j. Then, one can take a smooth non-zero function φ with suppφ̂ ⊆
[− 1

8 ,
1
8 ] and f := F−1(

∑l
k=1 φ̂(ξ− 2k)) as test functions, where l is the integer such

that 2l ≤ N < 2l+1. For the maximal operator M associated with the first N
symbols of {mj} and text functions φ and f , the following sharp lower bounds
hold:

‖M(f, φ)‖Lr &
√

logN‖f‖Lp‖φ‖Lq . (77)

In our variable coefficient settings, if we simply consider a countable family {aj}
of smooth symbols that are independent of the variable x, more precisely, if we take
aj(x, ξ1, ξ2) = mj(ξ1, ξ2) (j = 1, 2, · · · ) and the test functions f , φ constructed as
above, then one can easily infer from (76) that such {aj} do not have singularity
at the origin of R2

ξ and hence satisfy the estimate (8) uniformly in j, and it follows

from (77) that the maximal functions M(f, φ) associated with the first N symbols
of {aj} also satisfy the following sharp lower bounds:

‖M(f, φ)‖Lr(R) :=
∥∥∥ sup

1≤j≤N
|Taj (f, φ)(x)|

∥∥∥
Lr(R)

&
√

logN‖f‖Lp(R)‖φ‖Lq(R). (78)

This concludes the proof of Theorem 1.2.

REFERENCES
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[7] J. Chen and G. Lu, Hörmander type theorems for multi-linear and multi-parameter Fourier

multiplier operators with limited smoothness, Nonlinear Anal., 101 (2014), 98–112.
[8] R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular inte-

grals, Trans. Amer. Math. Soc., 212 (1975), 315–331.
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