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ABSTRACT. The heat kernel measure p; is constructed on GL(H), the group
of invertible operators on a complex Hilbert space H. This measure is deter-
mined by an infinite dimensional Lie algebra g and a Hermitian inner product
on it. The Cameron-Martin subgroup Gcas is defined and its properties are
discussed. In particular, there is an isometry from the Lit -closure of holomor-
phic polynomials into a space H*(Gc ) of functions holomorphic on G-
This means that any element from this th -closure of holomorphic polynomi-
als has a version holomorphic on G . In addition, there is an isometry from
J(*(Goar) into a Hilbert space associated with the tensor algebra over g. The
latter isometry is an infinite dimensional analog of the Taylor expansion. As
examples we discuss a complex orthogonal group and a complex symplectic

group.
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1. INTRODUCTION

Our goal is to study Hilbert spaces of holomorphic functions on a group asso-
ciated with an infinite dimensional Lie algebra g which is itself equipped with a
Hermitian inner product (-,-) and corresponding norm | - |. We assume that g is a
Lie subalgebra of B(H), the space of bounded linear operators on a complex sepa-
rable Hilbert space H. The group under consideration is a Lie subgroup of GL(H),
the group of invertible elements of B(H). Note that B(H) is the natural (infinite
dimensional) Lie algebra of GL(H) with the commutator as a Lie bracket.

One of the main ingredients in this work is the construction of the heat kernel
measure on GL(H) which is determined by g and the norm |- |. In some cases
it is possible to show that the heat kernel measure is supported in a subgroup of
GL(H) (see Section 9). The construction of the heat kernel measure requires the
use of stochastic differential equations in a Hilbert space. We will assume that g is
a subspace of the Hilbert-Schmidt operators on H.

It is well known that the Cameron-Martin subspace plays an important role for
an abstract Wiener space. Analogously, we define the Cameron-Martin subgroup,
Gcar, and discuss its properties. One of these properties is that functions in the L2-
closure of holomorphic polynomials have holomorphic versions on G¢js. Following
[15, 16] we call these versions skeletons. The map taking an L?-function to its
skeleton is an isometry to H'(Goar), a space of functions holomorphic on Gy
with a direct limit-type norm derived from finite dimensional approximations to
Geon- We also show that the Taylor map, from holomorphic functions on Geas
into a dual of the universal enveloping algebra of g, is isometric on H*(G¢ps). This
isomtery is a noncommutative version of one of the isomorphisms between different
representations of a bosonic Fock space.

An outline of the history of the subject has been given in [7, 8. We should
mention here works by Sugita [15, 16] for an abstract complex Wiener space, in
particular, his results on skeletons of L2-functions on the Cameron-Martin subspace.

Acknowledgement. I thank Professor B. Driver, Professor L. Gross and Pro-
fessor B. Hall for their help throughout the process of preparation of this work.

2. NOTATION AND MAIN RESULTS

To describe results of this paper in more detail we need to use finite dimensional
approximations to g. Let G; € Gy C ... € G,, C ... € B(H) be a sequence
of complex connected (finite dimensional) Lie subgroups of GL(H). We assume
that their Lie algebras g, C B(H) are equipped with consistent Hermitian inner
products, that is, (-, *)n+mlg, = (-, *)n, where (-, -),, is the inner product on g,,. The
corresponding norm is denoted by | - |,.

Let g = |J gy with the Hermitian inner product (§,1) = (£,7), for any £,n € g,,.

n=1
We assume that |z| > ||z|| for any = € g, where || - || is the operator norm. Denote
by goo the closure of g in the norm |- |, that is, all elements of finite norm. We
also assume that the closure coincides with the completion of g with respect to the
norm |- |. Note that ge is a subset of B(H).

1 .
Let d denote the Riemannian metric d(y,z) = inf,{[ ‘fflhlds}7 where h :
0

(0,1 — GL(H) is a piecewise differentiable path, h(0) = y,h(1) = z, h = dh
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. oo

h' = h™'h € goo. Let G4 be the closure of |J G, in the Riemannian metric
n=1

doo = inf, d,, where d,, is the Riemannian metric on G,,. Again we assume that

the closure coincides with the completion. By H!(G4,) we denote a space of holo-
morphic functions on G with a certain direct limit-type norm ||-||+,co. The precise
definition is given in Section 4.

Let (1 — D)x'f = 332 ,(D*f)(X) be the series of all derivatives of a function
f on Goo. Then the Taylor map (1 — D); ! is an isometry from H*(G) into a
subspace, J?, of the dual of the tensor algebra of g, equipped with the norm

la|? = Z E|ak|2,a = Zak,ak € (g k=0,1,2,..,t >0
k=0 k=0
See Notation 3.2 and Notation 4.2 for more detailed definitions. The following
theorem will be proved in Section 4.
Theorem. H'(G) is a Hilbert space and (1—D); ' is an isometry from H'(Goo)
into Jp.

Moreover, in case the G, are simply connected Theorem 4.5 gives the image
of (1 — D); ', which can be informally described as a completion of the universal
enveloping algebra.

The heat kernel measure is constructed in Section 5 using stochastic differential
equations on Hilbert spaces, in this case on the space of Hilbert-Schmidt operators.
Denote by HS the space of Hilbert-Schmidt operators on H with the Hilbert-
Schmidt (Hermitian) inner product (-,-)gs and corresponding real inner product
(-,Yus = Re(:,)us. In most of the results of this paper we assume that G, C
I+ HS g, C HS. The following is a summary of results contained in Theorem 5.1
and Theorem 5.4
Theorem. Let Wy be the Wiener process in HS with covariance determined by
the morm on goo. Then the stochastic differential equation

dX, = X, dW,,
Xo=1

has a unique solution in (I + HS) N GL(H).
The transition probability of the process X; determines the fundamental solution
of the heat equation with the following informal Laplacian

oo

n=1
where {£,}22 is an orthonormal basis of g, as a real space with the real inner
product (£,1) = Re(€,n) and (&,v)(X) = 4,y v(Xe'n) for a function v :
I+ HS — R. The corresponding measure is called the heat kernel measure and
the space of functions square integrable with respect to this measure is denoted by
L2(I + HS, pi) and the norm by || - ||

In addition to G we consider the Cameron-Martin subgroup.

Definition 2.1. Goy = {z € B(H) : d(x,I) < oo} is called the Cameron-Martin
subgroup.

Proposition 7.1 proves that Goyps is a group. Note that G C G and the
following theorem shows that under a condition on the Lie bracket they are actually
equal. The next theorem will be proved in Section 7.
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Theorem. If |[z,y]| < C|z||y| for all z,y € goo, then

1. Goy = G-

2. The exponential map is a diffeomorphism from a neighborhood of 0 onto a
neighborhood of I in Gopy-

Note that under the condition of this theorem g, is a Lie algebra.

Naturally defined holomorphic polynomials on I + HS play an important role
in several results. One of them is that there is a natural isometry from the space
of holomorphic polynomials HP to H!(G ). To prove this we use approximations
to the process Y; + I discussed in Section 6. In addition, this isometry defines
holomorphic skeletons on Gy for the elements of the closure of HP in L2(I +
HS, uy). This closure is denoted by HL2?(I + HS, u;). The following results are
contained in Theorem 8.7 and Theorem 8.5.

Theorem.

1. HP C L*(I + HS, ).

2. The identity || fllt,co = | fll¢ for any f € HP extends to an isometry Ja_, from
HLA(I + HS, j1y) into H(Goo)-

L2(I+HS, )
_—

3. Suppose py, f, pn € HP. Then there is a holomorphic function f,

n—oo
a skeleton of f, on Gon such that p,(z) — f(a:) for any x € Goypy -

We will denote the skeleton map by Jg.,,. Note that elements of HL?*(I +
HS, 1) are defined up to a set of us;-measure zero. Still the map Jg,,, gives a
holomorphic version on G¢ys of any element from HL?(I + HS, i), even though
Ge itself might be of p-measure zero. In addition, Jg.,, fla., is actually the
isometry Jg,, from part 2 of the last theorem. This means that for holomorphic
polynomials the skeleton map is the restriction map (to Goar).

Finally, Section 9 provides several examples to this abstract setting. One of
the examples is the Hilbert-Schmidt complex orthogonal group which has been
discussed in [7]. In addition we consider the Hilbert-Schmidt complex symplectic
group and a group of infinite diagonal matrices.

For some g and natural norms | - | on it, the Taylor map is an isometry between
trivial spaces (see Section 9). But we show that for the natural condition on the
norm | - | considered in this paper, there are non-constant functions in H*(Gy).
Namely, this space contains all holomorphic polynomials. Indeed, Theorem 8.7
proves that the holomorphic polynomials are square integrable with respect to the
heat kernel measure. Then in the same theorem we show that the L?-norm of a
polynomial is equal to the H!(G )-norm.

The following commutative diagram illustrates all the isometries described in
this paper:

HLA(I+ HS, )
skeleton map

JGem

restriction map Taylor map

H(Gemr) - JP
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3. ESTIMATES OF DERIVATIVES OF HOLOMORPHIC FUNCTIONS

Let u' be the heat kernel measure on G,; let HL?(G,,u}) be the space of
holomorphic functions square integrable with respect to uy.

Notation 3.1. ||f| 2, ur) = | £,
Notation 3.2. Suppose f is a function from Gear to C. Let (Df)(X) denote the
unique element of g%, (as a complex space) such that
d
(DAHXE = ENX) = 5| FXE®), €€ ga, X € Goe(Gonr),
t=0

if the derivative exists. Similarly (D¥ f)(X) denotes the unique element of (g2F)*
such that

(DENX)B) = (BN(X), B g, X € Gon
and (D £)(X) denotes a unique element of (g)®* = (g2%)* such that
(DLNX)(B) = (BN(X),  Begi™ X €

We will use the following notation:
(L=-Dx'f=) (DHX)  and  (1-Du)x'f=) (Dif)(X
k=0 k=0

The following estimate was proved by Driver and Gross in [5] for f € HL?(G,,, ul):

(BN ery < IFIEn 6'9‘"/8 for g€ Gp,r>0,s+1<tBegd"

where |(Bf)(g)|(g§k)»« is ((Tan)*)®k—norm (which can be identified with (g )®*)
and |g|, = dn(I,g9). We will need a slight modification of this estimate. Taking
supremum over all 8 € g% |3, = 1, we get

(3.1) (D5 ) (9)[Fgsyer <

where D is defined for G,, and g,, by Notation 3.2. Note that if || f||;., are uniformly
bounded, then (3.1) gives a uniform bound, i.e. a bound independent of n. The
following estimates can be proved for DF:

|
2 K jg12/s
k )
.

Lemma 3.3. Letr > 0,q+7r <t,X,Y € G, f € HL*(Gp, u2). Then
[(DR)X) = (DR /YY) goryr < IF e K 1.ndn(X,Y),

where Ky , = Ki,,(X,Y) = (%)1/26(\X|i+dn(X,Y)2)/q'

Proof. Take h:[0,1] — G, such that h(0) = X, h(1) =Y. Then by (3.1)

’Dﬁf( ) ‘(an) ’/ ds kf ))

kA *
(a3")

1
/ n
0

d .
4 / ’D (Dkf) (h*lh)’ ds
ds ( ®k: (g®k)
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1

< / | D(DE ) (h(5))] oo,

0

ds

1 1/2
((k+ ) sup e\h(u\ /q /)h dS

k+1 wel0.1]

k4 1)1\1/2
”f”tn(( ,_:rl)> sup (PO +dn(R(0),h(w) )/q/ ‘h ds

u€[0,1]

Taking infimum over all such h we see that

(k + 1)! 1/2 2,4 2
| D5 f(X) = DRf(Y)] gor)- < |\f||t7n( e ) XA (X)) g (XY,
O
Lemma 3.4. Let X € G,,, f,g € HL*(G,,, u3),t > 0. Then
IDEF(X) = Dig(X)] gory < Micallf — gl
b\
where My, = My n(X,t) = (W) eltIn/t,
Proof. From (3.1) we have that for r > 0,qg+r <t
K b ’f (X127
IDEF(X) = Dig(X) 00 < “
Now take ¢ = r = t/2 to get what we claimed. O

Lemma 3.5. Let X € Gp,& € gn, [ € HL*(Gy, ult). Then there is a constant
C=C(X,¢&t,n) > 0 such that

eu£ _
SXEDID (01 (x)(@)] < Ilncn

for small enough u > 0.

Proof. Let h(s) = Xe®,0< s < u.

LI ppyeoyie =+ [ sinonds - (DHXE)
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Thus by Lemma 3.3 for any » > 0,q+r <t

eué) — [
IS pypya| < L [ 10nmen© - 0xiends

<o 18l Ean(b(5), X)da (1(5), X) ]
0

1 ! \@ 2 2 2
S */ £ l[en 2 IX B HIER S /a5 2 g5
U Jo r

\/§ 2 1 u 5 2
:”f”t,nTe‘X‘"/qEﬁa/O G2 /052 4

2 2
oL L 1

V2r

for small u. O

< [ fllenCu

Theorem 3.6. Let f be a function on U, G,,. Suppose that f|q, is holomorphic for
any n and sup || flle,n < 00. Then f and all its derivatives have unique continuous

n
extensions from U, G, to G .

Proof. Take X € G. We would like to define the extensions by

DFf(X) = lim D*f(X,),  Xn€ Gpn, Xn —= X.

n—oo n—oo

Let us check that the limit exists. Assume that [ < n. By Lemma 3.3 for
Xna Xl S Gn

‘Dkf(Xn) - Dkf(Xl”(gjn)@k < ||f||t,nKk+1,n(Xn7Xl)dn(Xanl)

Note that d,,(X,Y) converges to d(X,Y) as m — oco. Now take the limit as
m — 00, and then as n,! — oo. Thus D* f(X,,) is a Cauchy sequence and therefore
the limit exists. The uniqueness of the extension is easy to verify. O

Remark 3.7. The estimates in this section hold for the continuous extensions of
DF from U, G,, to G if one takes the limit as n — co. In general, the extensions
of derivatives might not be derivatives of the extensions.

4. ISOMETRIES

Lemma 4.1. Suppose flg, € HL*(Gy,uy) for all n. Then || fllin < || fllens1 for
any n.

Proof. First of all, ||f||7, = (1 — Dn);1f||fn by the Driver-Gross isomorphism
(see [5]), where ||(1 — Dn)I_lfom = > [(DEf)U)Z,, Take an orthonormal basis
k=0
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{m}ﬁf of the complex inner product space g,+1 such that {m}ld;l is an orthonor-
mal basis of g,,. Then

|(DZ+1f)(I) ?,nJrl = Z |,’7’Llﬁzkf(‘[)|2

1§7‘m gdn«#l

2
t,n-

1<im <dn,

Therefore ||(1 — Dn)I_linn < (1 - Dn+1)1_1f||§,n+1’ so the claim holds. O

Notation 4.2. Let hh be a complex Lie algebra with a Hermitian inner product on
it. Then T(h) will denote the algebraic tensor algebra over § as a complex vector
space and T'(h) will denote the algebraic dual of T(h). Define a norm on T(h) by

n ' n
(A1) = B2 0= B B € 575 k= 0,1,2,. > 0.

k=0 k=0

Here |By| is the cross norm on hF arising from the inner product on h®* determined
by the norm | - | on . Ti(h) will denote the completion of T(h) in this norm. The
topological dual of Ty (h) may be identified with the subspace T;(h) of T'(h) consisting
of such o € T'(h) that the norm

oo

tk -
(4.2) lo|? = Z E|ak|2,a = Zak,ak e (%) k=0,1,2,...t >0
k=0 " k=0

is finite. Here |ay| is the norm on (h®*)* dual to the cross norm on h®F.
There is a natural pairing for any « € T'(y) and 8 € T(h) denoted by
<a75> = Z<ak75k>aa = Zaknﬂ = Zﬁ]ﬁak S (h®k)*7/8k S b®k7k = 07 172a
k=0 k=0 k=0
Denote by J(b) the two-sided ideal in T(h) generated by {{@n—nE—[€,n],&,n € b}.
Let J°(h) = {a € T'(h) : a(J) = 0}. Finally, let J)(h) = T;(h) N JO(h). We will
denote J{(g) by J7, J}(gn) by Ji-

The coefficients f—k' in the norm on the tensor algebra T'(h) are related to the
heat kernel.

By Theorem 3.6 all DfL have continuous extensions from U, G, to G, which
allows us to introduce the following definition.

Definition 4.3. H'(G) is a space of continuous functions on G such that
their restrictions to G,, are holomorphic for every n and || f||¢,00 = sup{||fllen} =
n

tim [ fle,n < 0.
n—oo

Theorem 4.4. H'(Gw) is a Hilbert space and (1 — D);* is an isometry from
H!(Gwo) into Jp.

Proof. First let us show that (1 —D);1 is an isometry. T, is a subalgebra of T'. Note
that T can be easily identified with a subspace of 7. Namely, for any o, € T), we

can define « as follows:
a, on T,
o =
0 on Tir.
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Therefore T, = (T;+)°. Define II,, to be an orthogonal projection from T to T),. Let
IT/, denote the following map from 7" to T),: (I, a)(z) = a(Il,2),a0 € T',z € T.
Then I, o (1 — D); ' : HL?*(G ) — T, is equal to (1 — D,,);*. Indeed, note that
if we choose an orthonormal basis of the complex inner product space g such that

{m )% is an orthonormal basis of gy, then II,, can be described explicitly

0 if ks >d, for some 1< s<!

11, ® ®..Q& =
(77161 MNko nkl) {nkl ® My ®...& Mk, otherwise

and (I, o (1 — D)7 f, 1y @My @ oo @ty) = (1= D)7 T (kg @ ey @ e @701, ))

_J0 if ks >d, forsome 1<s<!

(1=D); f, 0k, @ Ny @ ... @ ) otherwise
SoTl/,o(1—D);* = (1—D,);". Driver and Gross proved in [5] that IT/, o (1— D)} *
is an isometry from HL?(Gp,p}) into JP,. Let us define a restriction map R,:
HLA(Goo) — HL*(Gp, u?) by f+— fla, - Thus we have a commutative diagram:

-1
HL?(GOO) &) JtO
(4.3) ® | [
_ —1
LA (G ) —— g0,

Driver-Gross
Now we can prove that (1 — D); " is an isometry. By Lemma 4.1
1Flleoe = T [[Fllen = lim [[Roflen
It is clear that |II) oy = |II}, |y, — ||y for any o € T”. In particular, |II, o
(1= D)7 flew —— (1 - D);lfT:OOAt the same time [II}, o (1 — D); ' flen =
|(1-Dy);to Rn;rtio =|Ruflltn — I fllt,00 by the Driver-Gross isomorphism.

Now let us check that H'(Go) is a Hilbert space. It is clear that || - [|¢,0c is a
seminorm. Suppose that || f]|1,co = 0. Then ||f||¢, = 0 for any n,t > 0. We know
that HL?(G,,, ut) is a Hilbert space, therefore f|g, = 0 for all n. By Lemma 3.6
we have that f|g. = 0. Thus || - ||;,« is a norm.

Let us now show that H'(G) is a complete space. Suppose {f,}5o_; is
a Cauchy sequence in H*(Go). Then {fm |g,}>_, is a Cauchy sequence in
HL?*(Gyp, u?) for all n. Therefore there exists g, from HL?*(G,,u?) such that
fm |, —— gn. Note that gniml|ae, = gn. In addition,

”gnHt,n < Hfm‘Gn”tn + ||fm|Gn - gn”t,n < ||fm||t,oo + ||fm|Gn - gn”t,w

Note that {|| fillt.c0 }20_; is again a Cauchy sequence, so it has a (finite) limit as
m — oo. Taking a limit in (4) as m — oo we get that {||gn|lt,n 22, are uniformly
bounded.
By Lemma 3.6 there exists a continuous function g on G, such that g|g, = gn.
Thus g € H'(G~). Now we need to prove that f,, —— ¢ in H'(Gw). Let
m—00

a=(1-D);'g, aym = (1—D);" fm. As we have shown (1 — D)7 ' is an isometry,
SO iy, is a Cauchy sequence in JP. Thus there exists o’ € Jp such that o, — o

m—00
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(in J?). The question is whether @ = /. Note that
Ma=(1-Dy);'g and  Ian =(1—Dn);" fm-

We know that HL?(G,,, u3) is a Hilbert space, therefore II/,a = II/,a’ for any n.
Thus o = o', which completes the proof. O

Theorem 4.5. Suppose connected (finite dimensional) Lie groups G, are simply
connected. Then the map (1 — D) is surjective onto J.

Proof. Indeed, for any o € JP, I, o € Jgn by the Driver-Gross isomorphism there
exists a unique f, € HL*(Gp,pu}) such that (1 — D)I_}Lfn = II',a. Moreover,
R, fn+1 = fn by the commutativity of diagram 4.3 and uniqueness of functions f,.
Indeed, from the diagram we have (1 — Dn)fl(Rnan) =1I, 0 (1 — D);lfn+1 =
(I, oI, 1) o(1=D); ' fos1 =, o (I, ;0 (1= D)} ") frs1 = I, by the definition
of fny1. Thus we can define f on U,G,, as follows: f|g, = fn. By Theorem

3.6 there is a unique continuous function g on G such that g|g.. = f. Note
that [|fllen = llfnlle,n = |ale, therefore by Proposition 4.1 ||g||scc < o0 and so
g€ HL*(Goo). O

Here we should note that sometimes (1 — D)If1 is an isometry onto a trivial
space. Indeed, in [7] we proved the following theorem

Theorem 4.6. Suppose g is a Lie algebra with an inner product (-,-). Assume that
there is an orthonormal basis {{x}52, of g such that for any k there are nonzero
ai € C and an infinite set of distinct pairs (im, jm) satisfying &, = &, &)
Then J? is isomorphic to C.

In particular, the conclusion of this theorem holds for a Lie algebra of the Hilbert-
Schmidt complex orthogonal group SOpg and a Lie algebra of the Hilbert-Schmidt
complex symplectic group Spgg with invariant inner product (see Section 9). One
of the ways to deal with this problem is to show that there are non constant func-
tions in H*(Gs). It will be done in Section 8, but before we can manage this we
need to construct the heat kernel measure.

5. THE HEAT KERNEL MEASURE

Suppose G,, CI+HS, g, C H§ and |-| > |- |ms. T}}en foo is embedded in HS.

There is a quadratic functional @ on go defined by Q(z) = ||z||% . Thus there
exists a positive operator @ : goo — goo such that

(#,Q)g.. = Qx) = |l2ll}is = (,2)ms.

Note that @ is a bounded complex linear operator. The operator @} will be
identified with its nonnegative extension to HS by Q|(gw)LH5 = 0. We assume
that @Q is a trace class operator on HS and that all g,, are its invariant subspaces.

We begin with the definition of the process Y;. Let W; be a goo.-valued Wiener
process with a covariance operator @ : HS — goo-

In what follows let {£,}52, denote an orthonormal basis of g, as a real space
such that {£,}2% is an orthonormal basis of g,. Here d,, = dimcg,, the com-
plex dimension of g,. Then {e,} = {Q~1/2¢,}22, is an orthonormal basis of the
Spanirs(geo)-
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Denote by LY = La(geo, HS) the space of the Hilbert-Schmidt operators from
0o to HS with the (Hilbert-Schmidt) norm H\IJH%EJ Let B: HS — LY, B(Y)U =
(Y + 1)U for U € goo; then the following theorem holds.

Theorem 5.1. 1. The stochastic differential equation
dY, = B(Y;)dW,,
Yo=0

has a unique solution, up to equivalence, among the processes satisfying

T
P (/ Vs |3 gds < oo) =1
0

2. For any p > 2 there exists a constant C, 7 > 0 such that

sup E|Vi|[55 < Cprr
te[0,T]

(5.1)

Proof of Theorem 5.1. To prove this theorem we will use Theorem 7.4 from the
book by DaPrato and Zabczyk [3], p.186. It is enough to check that

1. B(Y) is a measurable mapping from HS to L3.

2. [[B(Y1) — B(Y2)||g < C|Y1 — Y| s for any V1,Y> € HS.

3. B2y < K(1+ |Y3) for any Y € HS.

Proof of 1. We want to check that B(Y) is in LY for any Y from HS. First of all,
B(Y)U € HS, for any U € goo. Indeed, B(Y)U = (Y+ 1)U =YU+U € HS, since
U and Y are in HS.

Now let us verify that B(Y) € LY. Consider the Hilbert-Schmidt norm of B as
an operator from go, to HS. Then the Hilbert-Schmidt norm of B can be found
as follows

IBOY) 7y =D (B(Y)én, B Z (Y + D, (Y + Dén)us

n=1

SV 112 3o Eubirs = IV + 12 3 e Qends = 1Y+ TPTrQ < oo

n=1 n=1
since the operator norm ||Y + I|| is finite.

Proof of 2. Similarly to the previous proof we have
IB(Y1) — B(Y2)|lrg < Y1 — Yallus(TrQ)/2.

Proof of 3. Use the estimate in the proof of 1
IBY)lLy < (Tr@Q)2|IY + 11| < (Tr@Q)*(|Y ]| s + 1), so
IBY)II7g < 2(Tr@)(1+ Y [IFs)- O

Lemma 5.2. ) & =0.
n=1

Proof. First let us check that . ¢2 does not depend on the choice of the orthonor-
n=1

mal basis {£,}7° in go. Define a bilinear real form on HS x HS by L(f,g) =

A(QY2fQ'?g), where A is a real bounded linear functional on HS. Then f —

L(f,g) is a bounded linear functional on HS and so L(f,g) = (f,§)us for some

g € HS. There exists a linear operator B on HS such that L(f,g) = (f, Bg)us-
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We can actually compute B. Indeed, there exists an element h € HS such that
A(z) = (z,h)gs. Then
L(f,9) = (QV2Q"2g. h)us

and so
L(f.9) = Tr (Q21QY2gh") = (Q'21,h(Q"29) ) us = (£, Q2 (h(Q"/9)")) us.

Thus Bg = QY/2(h(Q/?g)*). for some h € HS. Therefore B is trace class and
since trace is independent of a basis

TrB = Z<6n7Ben>HS = Z A(Q1/2BH/Q1/2€n) =A (Z 53)
n=1

n=1 n:ien€Poo

does not depend on the choice of {£,}22; for any A. Now choose {&,}°2; so that

€op = i€on_1 for n =1,2,.... Here i = v/—1. Then (&,1)% + (£2,)% = 0. O

Remark 5.3. In case when g, is a real space without complex structure, the
process is a solution of the equation

dY; = B(Y;)dW, + Y &Yy + I)dt,
n=1

Yo=0
The dt term is necessary to ensure that the generator of Y; is the Laplacian.
Theorem 5.4. V; +1 € GL(H) for any t > 0 with probability 1. The inverse of
Y, +1isY, + I, whereY; is a solution to the stochastic differential equation
dY; = B(Y;)dW,,

5.2 ~
(5-2) -0,

where B(Y)(U) = -U(Y +1),U € HS.

Proof of Theorem, 5.4. First we will check that (Y; +1)(Y;+1) = I with probability
1 for any t > 0. To do this we will apply Itd’s formula to G(Y;,Y;), where G is
defined as follows: G(Y) = A((Y1 +I)(Y2 + 1)), where Y = (Y1,Y2) € HS x HS
and A is a nonzero linear real bounded functional from HS x HS to R. Here we
view G as a function on a Hilbert space HS x HS and consider G(Y,) = G(Y;,Y).
Then (Y; + I)(Y; + I) = I if and only if A((Y; + I)(Y; + 1) —I) = 0 for any A. In
order to use Itd’s formula we must verify several properties of the process Y; and
the mapping G:

1. B(Y,) is an Ly-valued process stochastically integrable on [0, 7]

2. G and the derivatives G, Gy, Gyy are uniformly continuous on bounded

subsets of [0,T] x HS x HS.

Proof of 1. See 1 in the proof of Theorem 5.1.
Proof of 2. Let us calculate Gy, Gy,Gyvy. First, G; =0. Forany S € HS x HS

Gy(Y)(S) = A(S1(Y2 + 1) + (Y1 + I)S2),
For any S, T € HS x HS
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Gyy(Y)(S®T) = A(S1Te + T155).

Thus condition 2 is satisfied.
‘We will use the notation:

Gy (Y)(S) = (Gy(Y),S)us,
GYY(Y)(S ® T) = <GYY(Y)Sv T>HS’

where Gv is an element of HS x HS and Gvyvy is an operator on HS x HS
corresponding to the functionals Gy € (HS x HS)* and Gyy € ((HS x HS) ®
(HS x HS))*.

Now we can apply 1to’s formula to G(Y):

G(Y)) = / (G (Y.), (B(Y2)dW,, BV.)AW,)) s
(5.3) 0

t
1 e », / *
b [ 3 Trus Gy (Y (BIQY, (BT)Q?))ds
0
Let us calculate the two integrands in (5.3) separately. The first integrand is

(Gy(Y.), (B(Y,)dW,, B(V,)dW,)) us
— Gy (Y. (Y, + D)Wy, —dW, (Y, + 1))
= A((Ya + DAW,(Ys + I) — (Y + AW, (Y, + 1)) = 0.

The second integrand is
5 TrslGyy (V) (BODQV2 BT.IQY) (BY)Q BTQY2) )
:;;GYY (( QY 2e,, B(Y,)QY?e ) (B(K)Ql/zen,g(?s)@l/?en))

i ( (Ys +1)¢ (?;H)—(Y;H)fi(?;ﬂ))

i ( (Vs + 1)EX(Y, +I)) -0

by Lemma 5.2. This shows that the stochastic differential of G is zero, so G(Y:) = I
for any ¢t > 0. By the Fredholm alternative Y; + I has an inverse; therefore it has
to be (Y; +I). O

In some cases we can prove that the process Y; + I lives in a smaller group. For
example, it can be shown if the group is defined by a relatively simple relation (see
Section 9).

Let us define p; as

/ F(X) e (dX) = EF(X,(1)) = Prof (1)
I+HS

for any bounded Borel function f on I + HS.
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Definition 5.5. py is called the heat kernel measure on G ,. The space of all square
integrable functions on I + H S is denoted by L?(I+ H S, ;) and the corresponding
norm by | fllr2(r+ms,u0) = I1f]le-

A motivation for such a name for y, is the fact that Kolmogorov’s backward equa-
tion corresponding to the process Y; + I is the heat equation in a sense. First of all,
the coefficient B depends only on Y € HS; therefore Py, f(Y) = Ef(Y(t,s;Y)) =
P,_sf(Y). According to Theorem 9.16 from [3] for any ¢ € CZ(HS) and Y € HS
the function v(¢,Y) = Pip(Y) is a unique strict solution from C;’Q(HS) for the
parabolic type equation (Kolmogorov’s backward equation)

(54) gt (t Y) *TT[’Uyy(LY)(B(Y)Ql/Q)(B(Y)Ql/Q)*]

v(0,Y) = @(Y),t >0,Y e HS.
Here C}'(HS) denotes the space of all functions from HS to R that are n-times
continuously Frechet differentiable with all derivatives up to order n bounded and
C’{f’"(HS) denotes the space of all functions from [0,7] x HS to R that are k-
times continuously Frechet differentiable with respect to ¢ and n-times continuously
Frechet differentiable with respect to Y with all partial derivatives continuous in

[0,T] x HS and bounded.
Let us rewrite Equation (5.4) as the heat equation. First

Trlvyy (£, Y)(B(Y)Q'?)(B(Y)Q'/?)"]
= Zvyy (t,Y)( )Q1/2e ® B(Y )Ql/Qen)

=S oy (Y)Y 4 1)@,  (V + 1QY2e)

n=1
- Z vyy (LY)((Y + D&, @ (Y +1)E,),

where vyy (¢,Y) is viewed as a functional on HS ® HS. Now change Y to X — 1.
Then for any smooth bounded function ¢(X) : I+ HS — R, the function v(t, X) =
Prp(X) satisfies this equation, which can be considered as the heat equation

(5.5) %v(t X)=Lv(t, X)

v(0,X)=9(X),t>0,X eI+ HS,

where the differential operator L; on the space C;’Z(I + HS) is defined by

Liv% % Z vyy (Y)Y + DEn @ (Y + 1)&n).

n=1
Our goal is to show that L is a Laplacian in a sense. More precisely, L is a half
of the sum of second derivatives in the directions of an orthonormal basis of go.
Define the Laplacian by

(5.6) % Z gngn
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where (£,0)(X) = 4 1,_o v(Xets) for a function v : I + HS — R and so &, is the
left-invariant vector field on GL(H) corresponding to &,.
Let us calculate derivatives of v: I + HS — R in the direction of &,

() (X) = ox (X) 5 limo (Xe'S) = ux (X) (X&)

and therefore

(€nn) (X) = vxx (X)(X&n © X&) + vx (XE7).
Thus the Laplacian is

(B0)00) = 5 Dl (VX6 & X6u) + v (XE1)] = 5 D v (X)X, © X62)
by Lemma 5.2.

Since &, is a left-invariant vector field, the Laplacian A is a left-invariant differ-
ential operator such that Liv = Av for any v € CZ(I + HS) .

Proposition 5.6. For any p > 2,t >0
1

ElYillhs < 7—(€'Cpa = 1),
Cpt
where Cpy = Cz 201 (TrQ) 5571, C), = (p(2p — 1))P(5227) %"
Proof. First of all, let us estimate E/| fo Y,)dWs||%, 5. From part 3 of the proof

of Theorem 5.1 we know that [|B(Y)||3, 19 2TrQ(HY||HS + 1). In addition we will
use Lemma 7.2 from the book by DaPrato and Zabczyk [3], p.182: for any r > 1
and for an arbitrary L3-valued predictable process ®(t),

S

t
(5.7) E( sup, | ; B(u)dW (u)||Fs) < CrE(/O 12 (s)ll7gds)", t € [0, T1,
se

where C, = (r(2r — 1))"(3255) 2 Thus

t t
58 Bl [ BO)aW. s < O3B (| ||B<Ys>||igds>f
t
D [Vl B

27

< C4QTIQEE( [ (I Ifys+1ds)f < C428(TrQ)

\

Now we can use inequality (z+1)? < 2971(29+1) for any x 2 0 for the estimate
(5.8)

t
EH/ V) dW, %6 cgzg(TTQ)%t%”ﬁ*lE/o (14 [1Ysl%5)ds

— ()b B (14 B / 1Y I ds).
Finally,
Bl E||/B AW, ptt+E/ 1Yall%gds),

where Cy 1 = Cp2P~ WTrQ)5t5~
Thus, E|Y;||%s < C%t(etc,,?t — 1) by Gronwall’s lemma. O
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Lemma 5.7. Let f : I+ HS — [0,00] be a continuous function in L*(I1+HS, p;).
If sup || f|le.n, < 00 for all n, then Ef(X,) —— Ef(X).

Proof. Note that there exists a subsequence {X,,} such that X,, —— X a.s.

k—oo

We will prove first that if sup || f||+,n, < o0, then Ef(X,,) —— Ef(X). Denote
k k—oo

gr(W) = [(Xn, (@), 9(w) = f(X(w)),w € Q.

Our goal is to prove that [, gx(w)dP — [, g(w)dP as k — oo. Define fi(X) =

min{ f(X), 1} for I > 0 and gi1(w) = fi(Xn, (@), g1(w) = fi(X(w)). Then g, <

Lg <1 for any w € Q, so [, gri(w)dP —— [, gi(w)dP by the Dominated
k—oo

Convergence Theorem since f is continuous. By Chebyshev’s inequality

/ (91(@) — gia(w))dP = / (f(Xp,) — )P

Q {wif(Xn, )21}

< / F X ) Wty 50ydP < o (Pl s F(Xo,) > 1)
Q

E|f(Xn,
< Il 2L

Thus

sup || f[17.,
0 < /(gk(w) _gk,l(w))dp < %
Q

Similarly
1
0< [ (9@) ~ a@)dP < JIFLEIFL
Q

Therefore Ef(X,,) — Ef(X) as k — oo.

To complete the proof suppose that the conclusion is not true. Then there is a
subsequence X,,, such that |Ef(X,, — Ff(X)| > ¢ for any k. However, we always
can choose a subsequence X,, ~such that X, ~——— X as. and therefore

Ef(X,, ) —— Ef(X). This is a contradiction. O
m—00

Nkm

6. APPROXIMATION OF THE PROCESS

Let P, be the projection onto g,. Note that since we assume that g,, are invariant
subspaces of @), the projection from g., onto g,, (defined in terms of the norm |- |)
is the restriction of the projection from HS onto g, (defined in terms of the norm
| - |ms). Note also that since g, N Ker@ = {0}, P,QP, is positive and invertible
on g, and (P,QP,) ' = P,Q ' P,.

Choose a real orthonormal basis {£,,}>°_; of g in the same way as it was done
in Section 5. Consider an equation

dYn,t = Bn(Yn,t)dWh Yn,t (0) =0,
where

B,(Y)U = (Y + I)(P,U).
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This equation has a unique solution by the same arguments as in Section 5.
Denote Q,, = P,QP,.
Lemma 6.1. Y, ; is a solution of the equation
ay, R Bn(Yn,t)de,ta
(6.1) "
Yn,t (0) - 0,

where W, = P, W;.

Proof. Check that P,,QP, is the covariance operator of W,, ;. By the definition of
a covariance operator we know that (f, Qg)us = E{f,W1)ns{g, W1)ns, therefore

(f,Qng)us = (Puf,QPng)us = E{Pyf,W1)us(Png, W1)us =
= E({f, PaWi)us{g, PaWi)ms.

Thus Equation 6.1 is actually the same as Equation 5.1 with the Wiener process
that has the covariance @,, instead of Q. O

We will use the following lemma from [7].

Lemma 6.2.

1. TrQ, <TrQ.
2. P Q —)Qv

n—oo

3. QP ‘)Qv
4. PQP —>Q,

where convergence is in the trace class norm.

Theorem 6.3. Denote by Hy the space of equivalence classes of HS-valued pre-
dictable processes with the norm:

IYlla = ( sup E[Y (£)]%s) ">
te[0,T)

Then
|||Yn - Ym2 E’ 0.

Proof of Theorem 6.3. We want to apply the local inversion theorem (see, for exam-
ple, Lemma 9.2, from the book by DaPrato and Zabczyk [3], p. 244) to K(y,Y) =

Y+ fo Y)dW;, where y is the initial value of Y and Y = Y (y, ) is an HS-valued
predlctable process. Analogously we define K, (y,Y) = y+ fo Y)dW;. To apply
this lemma we need to check that K and K, satisfy the followmg condltlons

1. For any Y3 (t) and Y3(t) from Ho

sup B K (y,Y1) — K(y,Y2)l[frs < @ sup E||Yi(t) — Ya ()|l
t€[0,T] te[0,T)

where 0 < a < 1
2. For any Y3(t) and Ya(t) from Hy

sup B[ K (y, Y1) — Kn(y, Y2)|Brs < o sup E|[Yi(t) - Ya(t)ll3s,
te[0,7] t€[0,T]

where 0 < a < 1
3. limy oo Kn(y,Y) = K(y,Y) in Hs.
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Proof of 1.
To estimate the part with the stochastic differential we will use Lemma 7.2 from
[3], p.182: for any r > 1 and for arbitrary L9-valued predictable process ®(t),

S

t
(6.2) B( s I ; @ (u)dW (u)|[77s) < CrE(/O 12 (s)[|7gds)". ¢ € [0, 71,

where C, = (r(2r — 1))"(5227)%". Thus

t
BIK @ Y:) - K, Y2)|4s = E| / B(Y:) — B(Ya)dW.|%s

t t
<4E [ [BM) - BY2)gds <4TrQE [ Vi - Yalfysds
0 0

<4TrQ sup E|Y; — Yz %s-
te[0,T]

Note that for small t we can make (2(TrQ)*t+8TrQ)t as small as we wish, therefore
1 holds.

Proof of 2.
Similarly to the proof of condition 2 in the proof of Theorem 5.1 and by Lemma
6.2 we have that

1Bn (Y1) = Bu(Y2)ll72 = [I1Pa() (Y1 = Y2) |l .~ a5
< Tr(QY*PQY?)|Vi — Yalls
= Tr(QP,) Y1 — Yollis < TrQ|Y1 — Yol
Now use the same estimates as in 1 to see that 2 holds.

Proof of 8. Here again we will use (6.2) to estimate the part with the stochastic
differential

15 (9,Y) — K. V)2 = | / (¥))dW, 2

t

t
S Bl | (Ba(Y) = B(Y)dWslls < 4E/ 1B (Y) = B(Y)|7gds —— 0.
te[0,T 0 0 n—0oo

Indeed, estimate | B(Y) — B,(Y)|?

||Lg, as

IB(Y) = Bu(Y)|Zg = Z (B (Y))émllis

= Z H(I_ Pn)fm(Y_FI)H%{S < ||Y+IH2 Z ”(I_ Pn)ém”%—.ls

m=1 m=1
<Y + 1IPTrQY2(1 = P)QY? = |V + I|PTr[(I — P,)QY?Q"?]
= |V + 1T ~ P)Q] —— 0

by Lemma 6.2.
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We know that there are unique elements Y, Y, in the space s such that ¥ =
K(y,Y), Y, = K,(y,Y,) and therefore lim, .. Y, = Y for any y by the local
inversion lemma. O

Denote P*f(Y) = Ef(Y,(t,Y)),Y € g, and v"(¢,Y) = P f(Y). Then similarly
to 5.4 the following holds for v"(¢,Y).

For any f € C2(g,) the function v"(t,Y’) is a unique strict solution from C}*(g,,)
for the parabolic type equation

%vn(t,y) = %TT[U?’Y(Bn(Y)Ql/z)(Bn(Y)Qlﬂ)*]

v™(0,Y) = f(Y),t>0,Y € g,.
We want to show that P;* corresponds to the heat kernel measure defined on G,

as on a Lie group (i. e. as in the finite dimensional case).
Note that for any Y € g,

Trlofy (1Y) (Ba(Y)QY?)(Ba(Y)QV?)"]
2d,
= > By (Y)Y + Dén @ (Y + 1)

m=1

Thus
Lyv = STy (6 V) (Ba(Y)Q'2) (Bu(V)Q?)'

is equal to the Laplacian A,, on G,, defined similarly to (5.6). Thus, the transition
probability P;* is equal to up(dX), where the latter is the heat kernel measure on
G, defined in the usual way.

7. CAMERON-MARTIN SUBGROUP

The definition of the Cameron-Martin subgroup G¢ps was given in Section 2.
Let C},,; denote the space of piecewise differentiable paths h : [0,1] — GL(H)
such that h’ = h~'h is in goo- The main purpose of this section is to prove that
Goym = Go under a condition on the Lie bracket. In doing so we also show that
under this condition the exponential map is a local diffeomorphism. This implies,
in particular, that the group GL(H) is closed in the Riemannian metric induced
by the operator norm.

Proposition 7.1. Goyy is a group.

Proof. Let z,y € Goy. Take f[0,1] — Geu, f(0) = z, f(1) = y. Define h(s) =
y~1f(s). Then ‘h_lﬁ’ = ‘f‘lyy_lf‘ = ’f‘lf‘. Therefore d(y~'z,1) < d(z,y) <
d(z,I)+d(y,I) < oo, thus zy~! € Gepr. O

Theorem 7.2. If |[x,y]| < C|z||y| for all ,y € goo, then

1. Goy = G-
2. The exponential map is a diffeomorphism from a neighborhood of 0 in g
onto a neighborhood of I in Goyy.

We will need several lemmas before we can prove Theorem 7.2.



20 MARIA GORDINA

Lemma 7.3. Take g(t) : [0,1] — Gewr, g € CLyy. Suppose that |g(t) —I|| < 1 for
any t € 10,1].

Define h(t) = logg(t) = Z (Gl ( (t) — I)™. Denote A(t) = g(t)~tg(t), then
h is a unique solution of the ordmary differential equation in goo
(7.1) h(t) = F(h.t), h(0) =0,
where
- P
7.2 F(x,t) = A(t) + Z A(t)], 7] ]
(7.2) (z,t) = 2p+2 [z N/ PR A 8

p=1
Proof. Indeed, h(t+ s) — h(t) = log g(t + s) — h(t) =log(g(t)g(t)'g(t + s)) — h(t).
Denote f(t,s) = log(g(t)~'g(t+s)). Then h(t+s)—h(t) = log(e"®ef(t:5)) —h(t) =
DCH(h(t), f(t,s)) — h(t), where DCH (z,y) is given by the Dynkin-Campbell-
Hausdorff formula for x,y € goo
(7.3) DCH(z,y) =log(expzexpy)

P1 q1 qm

) N ], Y] ] s -yl
—ZZ .. Jc,x,...,x,y,...,y,...,y,...y-
Zm+m

lgq! lg,!
o~ prlqrlplgm!

Thus

DCH(1), f(1,5)) = ht) + £(t,5) + 5 [0(0), 72, 5)]

e [I0(e), £t )], 78 5)] = 5 (Ih(E), £(5 )], ()] +

Let us find %hfo

flt,s+e)— f(t,s)

log(g(t)'g(t + s+ €)) —log(g(t) " 'g(t + s))

€
_ S (_l)nil (g(t)flg(t+ S+ E) — I)n — (g(t)*lg(t + 8) _ I)n
; n €
3 (-1 "y 1 k—1
=Y " EE:@“) glt+s+¢e)—1)
n=1 k=1
g g(t+s+2) = glt+5)(g(t) Mgt +5) = )" —
i (_1:_1 zn:(g(t) 19(15—1— s) — ])k—lg( )Lt + s)(g(t) gt + 5) I)n—k
n=1 k=1
Thus
dfﬁzt;s) 0 =2 SO D (a7 ) = DM () () (g() T gt) = )"
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h(t +s) — h(t) _ DCH(h(t), f(t,s)) — h(t)

A R A B R AT
T OO AL R R AUL )

Note that f(¢,0) = 0, therefore

1 d 1)1 h(t t)], h(t : h(t
h(t) = A(t) + 5 [h(0), A®)] + - > 25;32) ([ )’f(sl’u)!g;!m( PELIC
= A(t) + 3 h(1), AD)] - f m[...nhm, AW, RO, B,

Note that 7.1 has a unique solution. Indeed, we show later that F' satisfies local
Lipshitz conditions

|F'(2,t) = F(y, )] < Clz —y|

for |z| < R, |y| < R and according to Theorem 3.1 of [13] equation 7.1 has a unique
solution. Indeed, the local Lipshitz conditions are also satisfied for the operator
norm. To prove the existence and uniqueness of the solutions in g, we first apply
Theorem 3.1 of [13] in B(H), then in goo.

Now let us show that F satisfies the local Lipshitz conditions. Denote

/—/pg
G(p,x) = [...[[x, A(®)], z], ..., x].
Then
F.t) = Funt) < 5 Jo vl 1A+ 3 g 600 2) = Glp)]-

Let us estimate |G(p,z) — G(p, y)| using induction on p.
When p =1,

|G(1,£L’) - G(lay)‘ = |[[$,At] ,1‘} - [[yuAt] 7y]| =
[l Ae]x =yl + [, Ad] = [y, Ad] yll < o=yl A C(C'la] + Cly|) =
C? |z =yl |Ad] (|2] + ly])

Assume that for p = k we have the estimate

k
Gk, z) — Gk, y)| < CFT1 | —y| [A] Y [l [y*"
1=0
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Then for p =k + 1 we have
|Gk +1,2) — G(k+ 1,y)| = |[G(k, ), z]
=[Gk, z), 2] — [G(k, x),y] + [G(k, x),y]
< C|G(k2)| |z —y[+ C|G(k, z) — G(k,y)| |yl

k
k+1 yl
< CFP2 12" Ay |2 — y| + CF P2 o — y] | Ay <Z 2" [y] ) 1yl

=0

k41
_ ok+? A iy k41—i
= =yl | D |2 [yl :

=0
Thus if |z| < R, |Jy| < R
|G(p,z) = G(p.y)| < CP o —y| [ A R (p+ 1)

and therefore

1 > 1
_ < Zlp — - o+l D
|F(z,t) — F(y,t)] < 3 |z — y| [ A4 +pZ:1 2(p + 2)ng |z —y|[Ad| RP(p+ 1)

CPRP 1
!

1 1 >
<§\x—y||At|+§|$—y||At|Cz =3

p=1

| =yl [Ae] (1+ C(e7 ~1)).

Lemma 7.4. There are constants Cy, Cy and 0 < e <1n2/2C such that
Ci |z —y| < d(expz,expy) < Ca |z — y|
for any x,y € goo provided |z| < g, |y| < €.

Proof. Take a path g : [0,1] — exp(goo) such that g(0) = e*,¢g(1) = e¥. Let
h =logg. Then

DY (_(dh)k(h) S SO LY 0 Y Y Y01V
k=0

k+1)! 2! 3!

1. First prove that d(expz,expy) < Ca |z — y|:
oo
_1. ; C*|h|* ;
lg~gl < |h] Z T ||
k=0

1 1
= d(expz,expy) =inf/ g™ glds < i%f/ |hleCIMds.
g 0 0
Take h(s) =xzs+ (1 — s)y
1 1
d(exp, expy) < / = | Cllals+0=9)lsD gg = [z — | / (=13 . Clyl g
0 0

C(lz|—ly]) _ Clz| _ ,C|z
ec‘yle ‘ ly] 1 _ |x_y|e || e [yl
Clz| = lyl) Clz = [yl

b
since £=¢’  emax{lal[bl}  Thyg
a—b .

= |z —y| < |o — yleCmaxdlallyl}

d(expz,expy) < |z — yle@ ™ zb vl g — yle©e.
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2. Now let us prove that Cy |z — y| < d(exp z,expy):

1. —adh)® h|kC*
94l = \Z s |/|h|(1—2 | )
. k k .
— || (1 ‘h|kc +1> = |i| (Q—eclh‘).

k=0

Consider two cases.
2a. Suppose max |h(s)| < 2e. Then

1 1
/ lg~tg|ds > / |h (2 — ec‘h‘> ds
0 0
1 1
> (2 —e*Y) / |h|ds > (2 —e*°) |/ hds| = (2—e*9) |z —yl.
0 0

2b. Take a path h such that max |h(s)| > 2e. Denote t; = min{t : |h(t)| = €},
to = min{t : |h(¢)| = 2e}. Note that t; < 5 since h(0) = z and |z| < . Then

1 ta
[ laglas > [ lgalas
0 t1
t2 . t2 .
>/ |h| (Z—ec‘hl)ds> (2—6260)/ |h|ds = (2 — €*9) |h(t2) — h(t1)]
t1 t1

>E<2_6250) 2 |x;y| (2—6250).

2a and 2b imply that

1 J—
d(expx,expy) = inf/ lg~g|ds > w (2— 6250) .
9 Jo

O

Lemma 7.5. Take g(t) : [0,1] — Gemr, g € Chyy. Suppose that g(0) = e, ||g(t) —
el <1 for anyt € [0,1] and |logg(1)| < &, where € is the same as in Lemma 7.4.
Then g(1) € Geo

Proof. Let h = logg = >_ ((=1)""%/n)(g(t) — I)™. Then by Lemma 7.3 h is a
n=1

unique solution in gs, of the ordinary differential equation 7.1. In particular, it
implies that ¢g(t) € goo. Therefore, there are H,, € g,, (projections of k(1) onto g,)
such that |h(1) — H,,| —— 0.

By Lemma 7.4
d(e"™, ety < Cy|h(1) — Hay|.
A similar estimate holds for d,, instead of d. By a direct calculation e™*) = g(t).

Thus g(1) € Gu, since efl» € G,,. O

Proof of Theorem 7.2. 1. Go, C Geyy since G, C Geoypy for all n and G, is
closed in the metric do
Now we will show that Goa € Goeo
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Take A € Goo, B € Gom, a path g : [0,1] = Genr,g € Clyyyg9(0) = A, g(1) =
B. We want to show that B € G.

Lemma 7.5 proves this in a neighborhood of I. Prove it for a neighborhood of
any element of G,. Suppose ||g(t) — A|| < 1, d(log B,log A) < ¢.

For any § > 0 there is C5 € | G,, such that d(A,Cs) < ¢. Thus

d(B,Cs) <d(B,A)+d(A,Cs) <e+4.

Therefore d(C; ' B, e) < e+, so by part 1 C; ' B € Go. This means that there
is D5 € |JG,, such that

d(C5'B, Ds) < 6.
Now d(C’é_lB,Da) =d(B,CsDs) < §,CsDs € | JG,,. This proves that B € Go.
Now take any A, B and a path g joining them. Divide log g into subpaths satis-
fying the conditions in the first part of the proof.

2. By Lemma 7.3 and Lemma 7.4 exp and log are well defined and differentiable in
neighborhoods of the identity and zero respectively. O

8. HOLOMORPHIC POLYNOMIALS AND SKELETONS

Definition 8.1. A function p: I + HS — C is called a holomorphic polynomial,
if p is a complex linear combination of finite products of monomials pg’l(X ) =
(X fm, fi))E, where {f,,}2°_; is an orthonormal basis of H. We will denote the
space of all such polynomials by HP.

These polynomials are holomorphic because the kth derivative (D%p)(83) exists
and is complex linear for any p € P, X € I + HS, 3 € g2*. Indeed, let ¢ be any
element of gu,, then the derivative of p/™ in the direction of £ is (Dp™")(X)(€) =
kpT ' (X €)py (X). From this formula we can see that Dp}"'(X)(€) is complex

linear in &.
Remark 8.2. Any polynomial p € HP can be written in the form p(X) = > [ Tr(AuX)
k=1
for some Ay; € HS. The converse is not true in general, but the closure in
L*(I + HS, jut) of all functions of the form Y [];" Tr(A;X) coincides with
k=1

the closure of holomorphic polynomials. Therefore the next definition is basis-
independent, though the definition of H{P depends on the choice of {f;}72 .

Definition 8.3. The closure of all holomorphic polynomials in L2(I + HS, ) is
called HL*(I + HS, j1).

Lemma 8.4. (B. Driver’s formula).
Let g be a smooth path in Goy such that g(0) =1 and g € CL,,. Then for any
p € HP

e =Y [ D) 0 cls)ds
=04 "(5)

where

An(s) ={(s1,..,8n) ER" : 0 < 51 < 89... < 85 < 8}, ¢(s) = g_l(s)g.
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Proof. Take a monomial p(x) = ((X f, fi))¥, degp = k. Similarly to Lemma 5.2
of [4]

N—
pos) =3 / (D) (1) (e(51) ® .. ® c(5))d5

"=0A 0 (s)

=

+ / (DVp)(g(s1))(c(51) ® ... ® c(sn))d5.

AN (9)

We want to estimate the remainder
| [ 0¥ es) @ o s
An(s)

< / ‘(DNp)(g(sl))(c(sl) Q.0 C(SN))| ds.

An(s)

Note that if Kk = degp < N then

(DVp)(X)(&1 @ e @ En) = 3 pr (X )pr (XE02) - o pr (XEP) - . py (XEX),

where a; = (aj,...,ay), aj = 0or 1, {% = EPLLEY, Y = (1., 1), ;(Y) =
i=1

(X fm, f1) and the sum is taken over all possible a = (ay, ..., ay).
Foré e HS, X e I+ HS

P (X < (I(X = DEllms + [I€llas) < €llas(I(X = Ilgs +1).

The number of all such « is &V therefore

|(DY¥p)(X) (&1 @ ... @ En)| < [all s [1Enlms (I(X = I[|as + 1)EY.

Denote

el = [ letolar

Thus

[(DYp)(g(s1))(c(51) @ ... @ c(sn))| dF
An(s)

< el sup ((g(t) - Ilms + 1)}EY / a3

RS
AN(S)

N
N kNS
= e su t)—1 + 1)k — — 0.
lelly 0<t28(||(9() s ) N N

Similarly we can prove this formula for any holomorphic polynomial. O
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Theorem 8.5. Suppose

L?(I+HS,
Pn M) fv Pn S j{{P

Then there is a holomorphic function f, a skeleton of f, on Gopy such that
pu(@) — f(x) for any @ € Gon.

Proof. As we know from Theorem 4.4 the map (1 — D);1 is an isometry from
HLA(I + HS, u1t) to J). Thus (1 — D);'p, converges in J? to some a = > ay,.
Define

fla)y=>" / an(c(s1) ® ... ® c(s,,))dS.
n:OAn(l)

Take a path g : [0,1] — Geowm, 9(0) = e,9(1) = X. By Lemma 8.4

P =3 [ (D) (Delsr) @ @ cls))ds
n_OAn(l)
()~ @I Y. [ D D)~ awlelon) & .l
":OAT,,(l)

<3 [ 100 = aullelsr) @ clsn)ds
"=0,(1)

oo

<UD o)D)~ ] [ fels2) @ (5|5
n=0

Ap (1)

Thus
P (X) = (@) < S 1(D"pm) (1) — H;I!?
n=0 .

_ i (D"pm)(I) — an|t™? le]lf i [(D"pm) (1) — an[*t" i e
n=0 m th/Q h n=0 n! n=0 nltn

— (D) (T) — | 2el<li/t g,

m—00

Now we will show that f is holomorphic. Take £ € g, g € Charr 9(0) =e,g(1) =
X. Define two paths in Gepy
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_ =1 dg. h
Let c(s) = g~ " (s)5%; then

(s), 0<s<1

_ dg1 C
01(8)2911(8)7 0’ 1<8<1+t

71

{c(s), 0<s«1

ex(s) = g7 M (5) 22

ds 3 I<s<1+t
Then by the definition of f
f(Xe) — f(X) :Z / an(c1(81) ® ... @ e1(sn) — 2(81) @ ... ® ca(sp))dSy,
"=0A, (1+41)
o 14t
-y / / n(c1(51) @ oo @ €1(8n) — €2(51) @ .. @ C2(80))d_1dsn
i QN
= Z / an(c(s1) ® ... @ ¢(sp—1) @ t&)dSp—_1
nZOAnfl(l)
50 1+t sp
+Z / an(c1(81)®...®c1(8n) —2(81) ® ... ® c2(8n) )dSn—2dSn—1dsy
n=0 1 1 Ap_o(sn_1)
=>t o (c(51) ® ... @ ¢(5p_1) ® €)dF_y
n=0 Ap—1(1)
00 1+t spn
+ Z / / / an(c(81) ® ... ® c(sp—2 ® € ® £)dS,—2dsn_1ds,.
n=0 11 An—Q(Sn—l)
Thus
f(Xe') — f(X
M - / an(¢(51) ® oo ® c(50-1) @ €)1 | <
Ap—1(1)
. 1+t
n /(sn -1) / an(c(81) ® ... ® c(Sp—2 @ E® E)dS,—ads,—1ds, ——: 0
1 An72(3n—1)
since 0 < s, — 1 < t. ~
This means that the derivative of f at X in the direction & is
€N = [ (el o clsioa) @ €)ds,
Ap_1(1)
and it is complex linear. O

Remark 8.6. The convergence is uniform on bounded sets. In fact, one can show
that the derivatives also converge uniformly on bounded sets.

Theorem 8.7. 1. HP C LP(I + HS, ), for any p > 1.
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2. 1fllen — I fll¢ for any f € HP.

3. The embedding of HP into H'(G) can be extended to an isometry from
HLA(I + HS, ) into HY(Goo)-

Proof. 1.

Iy (X Pre(dX) = Blpi' (Ve + DIP = EI(Ye)mt + 6yu) I
I+HS

< B2PR(|(Y) PR +1) S 27 E(| V2l + 1) < o0
by Lemma 5.7. Thus HP C LP(I + HS, u) for any p > 1.

2. From the estimate on E||Y||%, ¢ in Proposition 5.6 we can find C(p,t) such
that |||p|?||¢,nx) < C(p,t) for any k. Then apply Lemma 5.7 to f = |p|?.

3. By part 1 of Theorem 8.7 HP C L*(I + HS, u;). In addition, by part 2 of
Theorem 8.7

Ipllen —— llplle,  p e HP.
n—o0

Therefore ||p||¢,0o = ||p]|: and so the embedding is an isometry.
The space HL2(I + HS, j1;) is the closure of HP, therefore the isometry extends
to it from HP. O

Remark 8.8. If f is an element of HLA(I + HS, ), g is its image under the
isometry in this theorem and f is the skeleton of f, then f|a_ = g.

Corollary 8.9. The space H'(Gw) is an infinite dimensional Hilbert space.

9. EXAMPLES

Denote HSpxn = {A: (Afm, fr) =0 if max(m,k) > n}. Take a basis {e,}72,
of HS such that {ek}i’jl is a basis of HS,,xn. By BT we will denote the transpose
of the operator B, i. e. BT = (ReB)* + i(ImB)*.

Example 9.1. We begin with the definition of the Hilbert-Schmidt complex or-
thogonal group.

Definition 9.1. The Hilbert-Schmidt complex orthogonal group SOpg is the con-
nected component containing the identity I of the group Ogs = {B : B—1 €
HS,BTB = BBT = I}. The Lie algebra of skew-symmetric Hilbert-Schmidt oper-
ators will be denoted by soys = {A: A€ HS, AT = —A}.

Let @ be a symmetric positive trace class operator on soyg and let the inner
product be defined by (A, B) = (Q~/2A,Q~'/?2B) yrs. In [7] we showed that if Q is
the identity operator, then all Hilbert spaces we consider are isomorphic to C; that
is, there are no nonconstant holomorphic functions. As in Section 5 we identify Q
with its extension by 0 to the orthogonal complement of soyg.

Define groups G, = SO(n,C) = {B € SOgs,B — I € HS,,x»}. These groups
are isomorphic to the special complex orthogonal group of C™. Their Lie algebras
are Lie(SO(n,C)) = so(n,C) = {A € HS,xn, AT = —A} with an inner product
(A,B), = ((P,QP,)"Y?A, (P,QP,)"'?B) ys. Here P, = Pyy(nc). We assume
that all so(n,C) are invariant subspaces of Q. The groups SO(n,C) are not simply
connected, therefore we have isometries from (SO ) and HL?(I+ H S, p;) to JY,
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but not an isomorphism between H!(S04,) and J. In addition to the properties of
the heat kernel measure described in this paper, we showed in [7] that the process
Y; + I actually lives in the group SOpgg.

Example 9.2. The Hilbert-Schmidt complex symplectic group is defined similarly
to the Hilbert-Schmidt complex orthogonal group.

Definition 9.2. The Hilbert-Schmidt complex symplectic group Spyg is the group
of operators X = (A B) such that A —I,D — I,B,C € HS and XTJX = J,

C D
0 —I . . A B
where J = <I 0 > The Lie algebra is spys = {X = (C D

HS, XTJ+JX =0}.

> :A,B,C,D €

The corresponding finite dimensional groups are isomorphic to the classical sym-

é g) € Spys,A—1,D—1,B,C €
A B
& o)
HSpxn}. An inner product on spys and sp(n, C) is defined in the same way as in
Example 9.1. Similarly to soys if @ is the identity operator, the corresponding J{
is trivial by Theorem 4.6. The groups Sp(n, C) are simply connected; therefore the
isometry from H!(Sps) to JP is surjective. Similar to SOpg the process Y + I
lives in Spys.

plectic complex groups Sp(n,C) = {X = (

HSpxn } with Lie algebras sp(n,C) = {X = ( € spys : A, B,C,D €

Statement 9.3. Y; + I lies in Spys for any t > 0 with probability 1.

Proof. We need to check that (Y; + I)J(Y; + I)T = J with probability 1 for any
t > 0. To do this we will apply It6’s formula to G(Y;), where G is defined as follows:
GY)=AYJYT+YJ+JYT), Ais alinear real bounded functional from HS to
R.

In order to use It0’s formula we must verify several properties of the process Y;
and the mapping G:

1. B(Y;) is an L§-valued process stochastically integrable on [0, 7T].
2. G and the derivatives Gy, Gy,Gyy are uniformly continuous on bounded
subsets of [0,T] x HS.

Proof of 1. See 1 in the proof of Theorem 5.1.
Proof of 2. Let us calculate Gy, Gy, Gyy. First of all, G; = 0. For any S € HS

Gy(Y)(S) = A(STYT +YIST + ST+ J8T).
For any S,T € HS
Gyy(Y)(S®T)=ASJITT +TJST).

Thus condition 2 is satisfied.
‘We will use the notation:

Gy (Y)(S) = (Gy(Y),S)us,
Gyy(Y)(S®T) = (Gyy(Y)S,T)us,

where Gy is an element of HS and Gyvy is an operator on HS corresponding to
the functionals Gy € HS* and Gyy € (HS ® HS)*.
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Now we can apply 1t6’s formula to G(Y;):

61) = [ (G (¥, B s
(9.1) 0

+ / | %TT[GYYWS)<B<Y3>Q1/2><B<YS>Q1/2>*]dS
0

Let us calculate the two integrands in (9.1) separately.
The first integrand is

(Gy (Y5), B(Ys)dWe) s = (Gy (Ys), (Ys + 1)dWs) s

A((Ys+DdW) JY] + Y I (Y +DdW) T + (Y +1)dWy)J + J (Vs +1dW;)T)
= A(Ys + AW, JY] + Yo J(@WI (Y] + 1)) + (Yo + DdW,J + JaWI (Y] + 1))
= MY+ D)W Y =Y dW I (Y] + 1)+ (Yo +1)dWoJ —dW I (Y] +1)) = 0,

since W; is a sppg-valued process.
The second integrand is

%TT[GYY(Ys)(B(Ys)Ql/z)(B(Ye)Ql/z)*]

5 Z Gyy (Ya) B(Y.)Q?en, B(Y.)Q?en) s
n=1
1 o0
52 ((Ys + DENI((Ys + Dén)” ZA (Y + D&n €L (V) + 1))
n=1 n=1
o0
== M+ DEIE +1) =0
n=1
by Lemma 5.2. This shows that the stochastic differential of G is zero, so G(Y;) =0
for any ¢ > 0. [

Example 9.3. Let G be a group of diagonal (infinite) complex matrices diag(1l +

1+ a;,..), where Y |a;|* < 00,a; # —1. Then G = H C\{0}. This group
i=1
is abelian and is not simply connected The Lie algebra g is an algebra of diagonal

matrices diag(ay, ..., a;, ...), where Z la;|> < co. Note that if we take operator Q
i=1

as before to define a new inner product on g, this inner product is Adg,-invariant.

The process is a sum of processes in C

dY; = B (Y,)dW;.
We can also write this equation in terms of the real and imaginary parts of Y
dy;i,l _ (Y;i,l i 1)thi,1 _ Yti’2dWZ’2
dy;/i,z _ Y;i,Qthi,l i (Yti,2 I 1)de’2,
where Y;"' = ReY;{ and Y;"? = ImY}.

Example 9.4. The following example shows that there exist Lie algebras with non
trivial J§ for which the condition on the Lie bracket in Theorem 7.2 is satisfied.
Let g be equal to Q'/2H S, where the operator Q is defined as follows. We will view
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the elements of HS as infinite matrices. Denote by e;; an infinite matrix whose
entries are all zero except the one equal to 1 at the intersection of the ith row and
jth column. These matrices form an orthonormal basis of HS. We assume that @
is diagonal in this basis, namely, Qe;; = e~ ("T7)e;;. Note that this Q is a positive
trace class operator, so we can construct the corresponding heat kernel measure.
Thus the space H'(G) contains all holomorphic polynomials and therefore the
space J§ is not trivial. Now let us verify that the condition on the Lie bracket is
satisfied. For any x and y in g

|»’UZ/|2 = Z et Zfﬂi,jyj,m
i,m J

2 2

IR 1 1 1
_ Z Z e ]62(l+1)$i,j€2(]+m)yj,m < Z Zez(z-ﬁ-])mi’jeQ(J-i-m)yj’m
i,m j

J i,m J

i+j..2 k+m, 2 _ i+j..2 k+m_ 2 02012
< E E € Ty E € Yem | = § € "Xy E € Tk = |||y~
J k i, m,k

i,m

Thus |[z,y]| < 2]z||y|. A similar construction can be done for the algebras consid-
ered in Example 9.1 and Example 9.2.

n
2
3
4

5

6
[7

8

[10
[11

[12
(13

[14
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