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Abstract 
This research has two main objectives: one, is to design, implement, and validate a support-

vector-machine (SVM)-based software tool for the automatic detection of onset time of seizure 

events in subjects with drug-resistant epilepsy (DRE) and second, is to present a systematic review 

of the scientific literature regarding the application of machine learning principles and algorithms in 

epilepsy.   

Regarding the first objective, the tool operates on time series of feature vectors computed from 

multichannel intracranial EEG (iEEG) recordings collected continuously across one week from 

DRE epilepsy patients.  This work builds upon mathematical and computational tools for 

interpreting iEEG signals to answer the question: given promising features, can seizures be detected 

at the initiation stage in real-time?   

Regarding the second objective, outlined is a comprehensive assessment of the algorithms 

proposed in the last 10 years to process intracranial electroencephalographic recordings (iEEGs) 

aiming to (i) detect an incumbent seizure episode or (ii) identify the brain region where seizures 

naturally initiate (i.e., the “epileptogenic zone”, EZ).  

Machine learning principles have been largely applied to epilepsy in recent years but, despite 

encouraging “proof-of- concept” preliminary results on small samples of data, very few methods have 

been translated into tools of practical use for clinicians.  This study is instrumental toward the 

identification of the limitations of the current approaches with respect to the specific nature of 

epilepsy, which is often associated non-stationary, heterogeneous, and abrupt temporal dynamics in 

the iEEG time series.   
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1 Introduction 
The first human electroencephalogram (EEG) recording is documented to have been 

administered by Hans Berger in 1929 [6].  EEG captures time-varying electrical potentials in the brain 

produced by groups of neurons [13].  Since this monumental historical event, EEG has become 

widespread in the recording of brain activity and analysis of neurological disorders, particularly 

epilepsy. Epilepsy affects over 60 million people worldwide with chronically recurring, abrupt, and 

severe seizures. Seizures are finite-time episodes of disturbed cerebral function induced by abnormal, 

synchronous, and excessive electrical discharges of large groups of cortical neurons.  Seizures lead to 

debilitating phenomena (convulsions) or remain clinically unapparent, last seconds to minutes, and 

can be followed by hours of confusion, psychosis, or sensory impairment.  Currently, about one in a 

hundred people are diagnosed with epilepsy, making it the second most common neurological disorder 

second only to stroke.  However, the origins of the disorder remain largely mysterious [22].  About 

66% of diagnosed patients achieve acceptable seizure control with medication and approximately 10% 

are cured through surgical resection, but there are no sufficient treatments for the remaining 25% of 

patients [22].  Despite the demand for answers, epilepsy is receiving minimal attention and funding 

compared to other neurological disorders.   

The unpredicted nature of epileptic seizures has a debilitating effect on patients’ everyday lives 

and carries an unimaginable psycho-social effect [8].  One of the most unbearable aspects of the 

disease is the unforeseen and unpredicted way seizures erupt.  Patients usually feel a sense of 

helplessness and failure, are forced to experience drastic lifestyle changes, and are in constant fear of 

serious injury [22].  Thus, there exists a critical demand to improve the quality of life for patients 

suffering from intractable drug-resistant epilepsy. 

The goal of detection of epileptic events is to extract information, i.e. features, on the onset 

time of the seizure event (i.e., the time after which the brain unequivocally transitions into a seizure 
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condition, see Figure 1) which is 

specific to a particular patient.  

Epilepsy is divided into two 

subcategories based on the initiation 

of seizures in the brain and how 

propagation occurs.  In one type, 

called primary generalized epilepsy, seizures begin with a pervasive electrical discharge that involves 

the whole brain.  The second type, known as partial seizures, begins as an electrical discharge in a 

segregated area of the brain.  Partial seizures can be further classified based on the brain region 

involved – frontal, temporal, parietal, or occipital lobe epilepsy [23].  However, such generalized 

classifications fail to accurately and completely define any particular case of epilepsy.  For example, 

research has shown that epilepsy classified as generalized does have focal onset points from which 

propagation begins spontaneously [24]. Thus, a central aim is detecting and localizing epileptogenic 

foci, which will aid in more accurately diagnosing particular cases of epilepsy and in better 

understanding the disorder as a whole.   

 There are two analytic descriptions of brain architecture: functional segregation views 

specialized anatomical brain regions in a segregated fashion; functional integration includes the 

functional interaction between the various areas of the brain [25].  The functional integration 

perspective is essential to the study of epilepsy and can be characterized by means of functional 

connectivity, which quantifies the statistical dependencies between spatially distinct 

neurophysiological events [23].  Formal mathematical definitions have been developed to define 

directed versus undirected and linear versus nonlinear correlations, giving valuable information about 

the degree of functional connectivity in the time or frequency domain.  The calculation of these 

measures is based on either amplitude or phase and can be bivariate or multivariate based on the 

number of signals, or variables, which are analyzed at a time.  Four main categories of functional 

Figure 1 – Displays starting point of clinical seizure onset 
with low frequency high amplitude spikes.  Image provided 
from the Brain journal of neurology [43]. 
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connectivity measures are as follows – correlation and coherence, phase synchronization, information-

based, and Granger causality measures [23].   

Applying these functional connectivity measures to a patient’s EEG signals will give 

information about brain connectivity before, during, and after a seizure.  This approach treats the 

brain of an epileptic patient as a complex system, or mathematical abstraction for a physical structure 

composed of various parts or subsystems; therefore, identifying transitions in the complexity of the 

internal states of the system over time becomes a tractable computational problem [26].  Changes in 

certain functional connectivity measures and behaviors, such as the synchronization and nonlinear 

dynamics of the system, may allow prediction of an upcoming seizure [23].   

To assist the subset of patients for whom antiepileptic drugs do not have a positive effect, 

many scientists and engineers are investigating techniques in the prediction of epileptic seizures [8].  

The goal of this current research is to implement diagnostic alerting systems capable of providing 

therapeutic measures [7].  At the core of such systems is a seizure detection algorithm that can detect 

imminent seizures early in an accurate way.  Identifying key events that occur close to seizure onset is 

crucial in accurately determining seizure behavior.  Understanding the role of seizure onset times can 

assist in assessing early changes with electrographic and neurophysiological data that may predict 

seizure and/or discern transitions from seizure to non-seizure states.  Furthermore, in therapeutic 

systems, a central question is choosing a time to administer therapy that will result in most effective 

treatment relative to clinically marked seizure onset [12].   

1.1 Clinical Need and Challenges 
The current gold standard for analyzing EEG signals and labeling seizure onset times is by a 

consensus of trained encephalographic clinicians.  Manually labeling onset times for multiple 

seizures from a large dataset can be a monotonous and highly inefficient task [12].  While it is 

essential to develop a diagnostic tool to aid clinicians in monitoring and localization of abnormal 

electrical brain activity, the utilization of such a tool offers several challenges.  First, in a clinical 
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setting, EEG recordings generate an extensive dataset that can only be analyzed by a human expert 

neurophysiologist.  With such a tremendous amount of data, the task is close to impossible.  Second, 

there is no standard reference for EEG recordings analyzed manually by clinicians [6].  Therefore, a 

consensus of three trained physicians is required to correctly annotate an EEG reading.  Qualified 

physicians often disagree on the analysis, culminating in an estimate in marking seizure onset.  In 

such cases, a trustworthy seizure detection algorithm is paramount to warn epilepsy patients and 

assist clinicians in diagnosis and earlier intervention [6].   

A topic of increasing interest is neurostimulation, an alternative to surgical resection. Still 

under clinical trials, neurostimulation has provided encouraging results [23], but its effectiveness 

critically depends on the electrode placement, the seizure’s morphology, and, most importantly, the 

seizure’s onset time, i.e., stimulation is mostly effective when administered immediately prior to or at 

the onset of the seizure. It is critical to develop a tool that accurately detects the seizure onset from 

sequential electroencephalographic (EEG) measurements. Although several algorithms have been 

introduced, automatic online seizure detection is still an open problem. The algorithms proposed thus 

far have high sensitivity (large number of true positives) but low specificity (large number of false 

positives), which ultimately limits their clinical use. 

Current research methods aim to develop novel computational tools to detect the onset of 

epileptic seizures, which will assist clinicians in earlier intervention and, eventually, in real-time 

treatment via neurostimulation.  The detection of seizure events can also prove useful in developing 

closed-loop intervention strategies, review the electrographic activity in a patient for sake of diagnosis, 

and ultimately, improve the patient’s quality of life.      

1.1.1 Performance Metrics 
There are several performance metrics used to evaluate and compare seizure detection 

algorithms in the literature.  They are defined below: 

(1) Sensitivity: The ratio of true positives to the total number of positives.  !"
!"#$%
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(2) Specificity: The ratio of true negatives to the total number of negatives.  !%
!%#$"

 

(3) Total Accuracy: !"#!%
!"#$%#!%#$"

, where TP = true positives, FN = false negatives, TN = 

true negatives, and FP = false positives.  

(4) False Alarm Rate: $"
&'

 

(5) Latency: The delay between expert identified electrographic onset and the time a 
detection algorithm indicates a seizure.   

 
While there have been many published seizure detection algorithms with high performance 

indicators in the research realm, implementations of seizure detections algorithms in the clinical 

setting has been less encouraging.  Reasons for this failure can be explained by the following factors 

that inhibit the detector’s performance.  First, epileptic seizure morphology has highly varied 

fluctuations between individual patients.  Thus, a generalized patient independent algorithm with 

clinically acceptable performance across a large patient population can perform mediocrely with 

respect to specific patients who are not adept to the design criteria.  Second, epileptic seizure 

morphology of a particular patient can exhibit variations over time due to a change in physiological 

state or recording electrodes.  Thus, a patient’s individual seizure characteristics can vary with time 

due to internal and external changes.  Third, epileptic seizure activity can be imitated by EEG 

recordings polluted with physiological and non-physiological artifacts [6].  With respect to the first 

challenge, about 70% of studies analyzed in this paper [1-9, 10-14] have demonstrated a wide 

improvement in seizure detection results using patient-specific algorithms as opposed to patient-

independent algorithms.  However, these methods exhibit little to no improvement in challenges 

two and three; they require a classifier to be trained specifically on a per patient basis, which is a 

burden in the clinical setting.  There exists a need to develop a patient-independent detector that 

adapts well to time varying seizure morphologies across patients and resists contamination of EEG 

artifacts during recordings.   
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2 Review of Literature 
This study includes peer-reviewed research articles that satisfy the following criteria: first, they 

propose machine learning methods for seizure detection or EZ localization; second, the proposed 

methods are tested on iEEG time series collected in vivo from subjects with drug-resistant epilepsy; 

and third, the articles have been published in the last 10 years.   

 

2.1 SVM Technology 
The Support Vector Machine (SVM) is a supervised machine learning algorithm that can be 

trained to solve binary decision classification problems, i.e. discriminate between 2 separable high-

order data classes via non-linear decision boundaries [27].  An SVM takes as input a feature set 

representing the highly non-linear non-stationary EEG signals; it is trained on the feature vectors (in 

many cases a combination of temporal and spectral features in each feature window) labeled a priori 

as belonging to either seizure or 

non-seizure classes.  Based on 

the training data, the SVM 

formulates a decision boundary 

hypersurface by maximizing a 

distance metric between the 

two brain-state classes in 

higher-dimensional space.  The 

maximization of distance 

between both classes of data 

results in extremely high 

classification accuracy for 

novel, unseen, data.  

Figure 2 – A four-component seizure onset detection architecture 
consisting of feature extraction, time window sampling, support 
vector machine classification, and onset time determination [12]. 
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Essentially, SVM compares class 1 (onset-containing) feature vectors and class 2 (non-onset 

containing) feature vectors to derive an optimal decision boundary that characterizes the data via a 

quadratic optimization problem.  Unlike its counterpart, neural networks, the SVM does not converge 

on local minima because of its robustness in handling different sized training sets [12].  Additionally, 

SVM has been shown to exhibit excellent performance in classification of neurological data, especially 

pertaining to EEG recordings epileptic seizure onset detection [12].       

 

2.1.1 Technical Background 
Based on Figure 3 below, the classification phase of the general seizure detection algorithm 

maps a feature vector to one of two possible classes, either seizure or non-seizure.  The main 

motivations for utilizing SVM classification are described next.  First, SVM classification is ideal for 

real-time applications because the training phase, the majority of the computational cost, is 

completed offline.  Second, through thorough study and analysis, SVMs predict well in theoretical 

and practical settings.  Third, the SVM technique can solve big-data, high-dimensional, problems 

due to the various optimization techniques developed [11].      

 
 
 
 
 

 

We now present the generic binary classification problem that constructs a training classifier 

to separate two disconnected sets of points in the standard Euclidian space.  First, let the training set 

be defined by	𝑇𝑆	 = 	 {(𝑢/, 𝑙/), 𝑢/ 	 ∈ 	𝑹𝒑, 𝑙/ 	 ∈ 	 {−1, 1}, 𝑖	 = 	1, . . . , 𝑃}.  We assume that there exists 

a hyperplane 𝐻(𝑤, 𝑏) 	= 	 {𝑢	 ∈ 	𝑹𝒏 ∶ 	𝑤′𝑢	 + 	𝑏	 = 	0}, i.e. the data points are linearly separable, 

with 

Figure 3 – A four-component seizure onset detection 
architecture consisting of feature extraction, time window 
sampling, support vector machine classification, and onset 
time determination [11]. 
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𝑤D𝑢/ + 	𝑏	 ≥ 	1		∀𝑖 ∶ 	 𝑙/ = 	1 

𝑤D𝑢/ + 	𝑏	 ≤ 	−1		∀𝑖 ∶ 	 𝑙/ = 	−1. 

We have that the standard Euclidian distance metric 𝜌(𝑤, 𝑏) of the hyperplane 𝐻(𝑤, 𝑏) is defined 

as the distance from the hyperplane to the closest training point(s), with  

𝜌 𝑤, 𝑏 = 	 min
/LM,N,...,"

𝑤D𝑢/ + 	𝑏
𝑤 .		 

As shown in Figure 4, the linear SVM method attempts to choose the optimal hyperplane, i.e. the 

hyperplane that exhibits maximum distance between disjoint sets.  

In SVM, the basic idea behind the training phase is based on 

concepts from statistical learning theory [27].  Due to the 

optimization techniques underlying SVM, it is assumed that the 

classification error on novel datasets is minimized [11].  

Thus, SVM is an excellent in developing predictive models, 

as needed in epileptic seizure detection.  SVM solves the 

following quadratic programming problem to obtain the optimal hyperplane for discriminability of 

data points, 

min
O	∈𝑹P,Q	∈𝑹

		
1
2 𝑤 N	 

subject to  𝑙/(𝑤D𝑢/ + 	𝑏) 	≥ 	1,			𝑖	 = 	1, . . . , 𝑃. 

In practice, linear SVM classifiers may produce poor results if the data is not linearly separable [11].  

Thus, it most often is the case that nonlinear classifiers are needed.  The principle behind nonlinear 

SVMs is different when compared to linear SVMs.  A nonlinear SVM maps input feature vectors to 

another space known as feature space H.  Mathematically the transformation is given by, 𝜑 ∶ 	𝑹T →

	𝐻.  The optimal hyperplane is determined in the space H and the new quadratic programming 

problem becomes,         

Figure 4 – Linear separating 
hyperplanes with linear SVM. The 
support vectors are circled. Image 
provided by A Tutorial on SVM for 
Pattern Recognition [28]. 



 9 

          	

min
O	∈𝑹P,Q	∈𝑹,V	∈𝑹P	

		
1
2 𝑤 N + 𝐶 ξY

"

/LM

 

subject to  𝑙/ 𝑤D𝜑 𝑢/ + 	𝑏 ≥ 	1 − ξY,			𝑖	 = 	1, . . . , 𝑃,  

with ξY ≥ 0,			i	 = 	1, . . . , P.  The following terms, ξ	 = 	 ξM, ξN, . . . , ξ[ D	and ξi, i	 = 	1, . . . , P, are 

slack variables, ξY[
YLM  acts as an upper bound on the training error, and C >0 varies the inverse 

relationship between ρ w, b  and the training error [11].   

Without considering the map 𝜑 ∶ 	𝑹T → 	𝐻 in explicit form, it is possible to create a nonlinear SVM 

classifier by only observing the inner product kernel on H.  Mathematically, let X be a subset of	𝑹_.  

Then the function 𝐾 ∶ 	𝑋	𝑥	𝑋 → 	𝑹 is a kernel if  

𝐾 𝑥, 𝑦 = 	 𝜑 𝑥 , 𝜑(𝑦) 		∀	𝑥, 𝑦 ∈ 𝑋, 

where 𝜑 𝑥 , 𝜑(𝑦)  denotes the inner product, 𝜑 ∶ 	𝑋 → 	𝐻 is a function, and H is a Euclidian 

inner product space. 

   

2.1.2 Kernel Types for Epilepsy Diagnosis 
This section outlines the main characterization of supervised kernel functions that have been 

used in epilepsy detection.  The most widely used technique is standard SVM with kernel functions 

as described in the previous section.  Kernels are employed in order to map input feature vectors 

into higher-dimensional feature spaces with low computational costs [18].  The most prevalent 

kernels utilized in the literature are the Gaussian radial basis function (RBF) kernel and the 

exponential radial basis function (ERBF) kernel.  About 70% of the papers [3-6, 8-13, 17-18] 

analyzed in this study use the radial basis function kernel in building the SVM classifier.  Whereas 

the rest of the state of the art uses roughly 15% linear kernels, 10% polynomial kernels, and 5% 

other unique kernels such as extreme learning machine (ELM) [15].  
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The RBF is likely the preferred kernel due to its ability to linearly map input data with 

nonlinear attributes and class labels into higher dimensional feature spaces, a mapping the linear 

kernel is not capable of completing.  Additionally, the RBF kernels only have one adjustable tuning 

parameter for the configuration of the classifier, unlike polynomial kernels, which have multiple 

parameters [18].  The formal mathematical expressions for the RBF and the ERBF are given below,  

𝐾de$ 𝑥/, 𝑥f = exp	(−
𝑥/ − 𝑥f

N

2𝜎N ) 

𝐾kde$ 𝑥/, 𝑥f = exp	(−
𝑥/ − 𝑥f
2𝜎N ) 

where 𝜎 is the control radius parameter that needs proper adjustment [18].    

The next type of SVM is called a least-squares SVM (LS-SVM).  The optimization problem is 

changed to return a system of linear equations.  To accomplish this, the least squares cost function is 

solved with equality constraints.   Another type of SVM is the S-SVM, which possesses a smooth 

unconstrained quadratic programming problem, similar to the standard SVM.  In S-SVMs, two 

modifications to the standard SVM are adopted.  First, the distance 𝜌 𝑤, 𝑏  between the two planes 

is maximized with respect to the direction w and location relative to the origin b.  Second, the soft 

margin error bound ξY was minimized using the 2-norm squared.  This new SVM formulation is not 

twice differentiable anymore; therefore smoothing techniques should be employed before use [18].  

Additionally, P-SVMs employ classification a little differently compared to standard SVM.  In the P-

SVM approach, data points are classified by being assigned one of the two closest parallel planes.  

This SVM implementation can be thought of as a hybrid of S-SVM and LS-SVM, where the cost 

function is identical to S-SVM and the constraints are replaced with equalities [18].  Next, is the L-

SVM, which achieves greater efficiency in the training process by means of an iterative approach.  

The cost function is the same as in the standard SVM implementation, except that the 2-norm is 

used instead of the 1-norm [18].   
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Finally, the relevance vector machine (RVM) is discussed.  Conventional SVMs minimize 

classification error and produce a simple binary decision without modeling the data distribution.  

There may be scenarios where the binary classification estimate is not sufficient and a probabilistic 

output is preferred.  This is the principle behind RVMs.  An RVM has the same function as an SVM, 

except it is implanted within a Bayesian network.  Thus, the RVM outputs a probability that the data 

point(s) are in a certain class.  It is important to note that the error estimate in an RVM is assumed 

to be a normally distributed random variable with zero mean and nonzero variance [18].  RVMs 

have not been widely used in the area of seizure detection.  However, classifying input data based on 

associated probabilities per class combined with smoothing and collar techniques has the potential 

to drastically reduce the false positive per hour (FP/hr) rate.  One paper found in the literature that 

was successful in employing RVMs is [29].  A sensitivity of 92.94% and a specificity of 97.47% were 

achieved.     

The tables below show results of the most widely used RBF kernels with discrete wavelet 

transform (DWT) and Lyapunov exponents as features.  Table 1 displays the average accuracy 

achieved by each kernel machine type with respect to the best-configured classifiers and Table 2 

conveys the percentage of the best-configured classifiers that yielded 100% total accuracy.   

    

 

 

 

 

 

Table 1 – The proportion of the best-calibrated models that 
have achieved 100% total classification accuracy [18]. 

Table 2 – The average classification accuracy exhibited by 
each kernel machine taking into account the best-calibrated 
models produced for associated kernel machine 
configurations [18]. 
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2.1.3 Collections of Papers 
The literature search for state of the art publications was done using the PubMed database 

from the National Center for Biotechnology Information (NCBI).  NCBI is the most respected 

resource containing citations for biomedical literature; their mission “is to develop new information 

technologies to aid in the understanding of fundamental molecular and genetic processes that control 

health and disease [30].”  Publications found on the PubMed database are well known by the scientific 

community and clinicians alike.  These are research methods that have been examined in the clinical 

setting and/or whose ultimate goal is to be integrated in hospital environments.    

Throughout the literature search for SVM methods in epilepsy detection and localization, it 

was verified that all pertinent articles satisfied the criteria of being tested on iEEG time series and 

were published within the last 10 years.  Various combinations of keywords were used to extract 

papers. These are, in no particular order, seizure detection, seizure localization, SVM, support vector 

machine, epilepsy, iEEG, intracranial EEG, automated seizure detection, classification, machine 

learning, automated epilepsy localization, and similar articles recommended by the PubMed database.  

The following were the most common combinations of searches: seizure detection SVM; seizure 

detection support vector machine; epilepsy localization support vector machine; iEEG seizure 

detection support vector machine; iEEG epilepsy localization support vector machine; SVM epilepsy 

localization, detection; SVM intracranial EEG epilepsy; SVM for epilepsy detection, automated seizure 

detection SVM, SVM classification epilepsy; machine learning intracranial EEG epilepsy, seizure 

detection machine learning, automated epilepsy localization; and similar articles recommended by 

PubMed.   

All papers were saved into a Collections folder in PubMed; the union of the searches produced 

274 distinct papers.  Papers matching the criteria above were extracted and rigorously analyzed further.  

The resultant number of papers applicable to the assessment of the state of the art is 20 distinct papers.  

In other words, 7-8% of the SVM papers fit the conditions set forth in the introduction.  It can be 
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concluded right away from the paper extraction that few SVM methods are tested and validated on 

intracranial EEG datasets. 

 

2.1.4 Detection Methods 
A multitude of SVM detection methods can be implemented based on various feature sets, 

SVM detector architectures, channel policies, and preprocessing and post-processing techniques.  

Here we describe the two main SVM detector architecture methods that have been successfully 

implemented in the literature.  The first technique [10] separately preprocesses and splits EEG data 

into epochs.  An epoch usually refers to a short time window or segment of EEG data used for 

processing.  Then a feature vector is extracted from each epoch and sent as input to a single SVM 

classifier.  The output of the SVM classifier can produce either a data pointwise decision, i.e. a -1 for 

non-seizure class and a 1 for seizure class, or a probability of seizure during the epoch.  SVM 

outputs can be post-processed using various advanced filtering techniques, which will be discussed 

in detail later.  Ultimately, the SVM outputs are compared to a threshold value, i.e. 10 channels in 

seizure, to determine a final multi-channel binary decision.  The following papers followed the above 

methodology using a single SVM per channel [5, 6, 9, 10, 14].  A representation of the 

aforementioned SVM seizure detector is shown in Figure 5.   

The second technique seen in the literature is described below.  The detection system passes 

a 2-4 second epoch from each of the N intracranial EEG channels to a feature extractor.   

 

 

Figure 5 – Architecture of an SVM seizure detection system 
[10]. 
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The feature extractor computes the best characterizing features representing the signals most 

efficiently and groups these features across all channels into one extended feature vector.  Features 

from all channels are grouped into one large feature vector in order to observe spatial relationships 

between channels [19].  The feature vector is then passed through a trained SVM classifier and 

assigned to either a seizure or non-seizure class.  An overall seizure is declared upon meeting a 

certain temporal constraint.  For example, a seizure can be declared once 3 consecutive epochs are 

marked as seizure; requiring seizure activity to last for 6-12 seconds prior to declaring onset has been 

shown to decrease the false positive rate [19].  The papers implementing detectors with one SVM 

across all channels include [3, 4, 7, 8, 11, 12].  Figure 6 shows the second SVM detector architecture 

technique.   

   

         

 

 

 

 

 

 

Additionally, a few papers execute their methods on a single intracranial EEG channel.  

Reasons for analyzing a single channel may include increasing computational efficiency or that channel 

selection has been employed prior to the classification phase of detection.  The approach in [2] uses 

wavelet decomposition along with a single channel to validate its algorithm.  Channel selection is a 

critical problem in the design of reliable SVM detectors and is thus discussed next.   

 We first list the potential problems with channel selection.  First, the computational cost of 

the seizure detection algorithm varies directly with the increasing number of channels.  Second, 

Figure 6 – Architecture of an SVM seizure detection system 
with one large feature vector [19]. 
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computational load can be reduced if decreasing the number of channels is done by studying pertinent 

features.  Third, the levels of reliability and robustness decrease if using a single channel.  Fourth, the 

problem of potential over-fitting of data can occur by using too many channels [8].  The first two 

issues are concerned with computational power and time, an important characteristic if another 

algorithm can accomplish the equivalent task with greater efficiency.  Problem three ascertains that 

single channel selection may work well for some patients, but lack in accuracy for others.  Finally, the 

fourth problem deals with classifier discrimination between data points.  A greater number of channels 

imply a greater number of features for classification.  This may cause a problem during seizure onset 

because if the seizure has not yet generalized across many channels, then features calculated from non-

focal channels will have similar values to features found during the pre-ictal state [8].  This will cause 

overlaps between seizure and non-seizure data, potentially confusing the classifier and producing false 

negatives.   

 Previous works in channel selection have utilized the clinician’s judgement or on calculated 

features, instead of on raw iEEG data.  Basing the relevant channels on the clinician’s verdict may 

produce a bias in the decision and highly depends on their level of attentiveness [8].  One possible 

simple automatic channel selection method employed in the literature is to compare all channels based 

on a simple feature [8].  This method compared selection of channels based on different criteria such 

as clinician’s choice of channels, variance among channels, difference in variance of the channels, 

entropy of the channels, and random selection of channels.  It is observed that channel selection based 

on variance produced the best results.  The n channels with maximum variance are chosen for further 

analysis and feature extraction.  It can be observed from Table 3 below that automatic channel 

selection based on variance is comparable to the clinician’s judgement.    
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Another paper that uses channel selection is [21], in an attempt to minimize the number of channels 

for continuous monitoring of EEG signals in an ambulatory setting.  This added technique may allow 

patients to return home with a personal monitoring device.  By reducing the number of channels, this 

method manages to the lower power consumption of the algorithm.  It was shown that the 

computational burden was reduced by 65% with no negative effect on system performance.  

 Overall, channel selection (also known as sensor or feature selection) is a powerful tool that 

can improve the real-time component of a seizure detection system while requiring less computational 

resources.  Furthermore, channel selection provides information on the localization of seizure onset, 

crucial knowledge for the patient and clinician alike.  From this thorough literature review it is 

concluded that the majority of papers focus on seizure detection and very few have implemented 

robust techniques for seizure localization.  More research is needed in this area, both in selecting 

channels and attempting to keep the feature vectors small.   

 

2.1.4.1 Datasets 
Various datasets were used for testing and validation of the proposed methods.  The main 

datasets found in the literature were the Freiburg Database 

[2-5, 9, 11], the BONN Database [1, 6, 13, 16-18], and the 

Flint Hills Scientific (FHS) Database [8].  A few other 

datasets including recordings from the Neonatal Intensive 

Care Unit Cork University Maternity Hospital, 

Cork, Ireland [11], from surgical patients requiring 

invasive monitoring at Massachusetts General Hospital [7], and from recordings collected for clinical 

Table 3 – Comparison of channel selection methods for choosing 
optimal channels.  Results obtained after 30 distinct training models and 
reported as mean ∓ SD. [8]. 

Figure 7 – Representation of grid-, strip-, 
and depth- electrodes for iEEG recording 
in the brain [31]. 
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investigation of an implantable neurostimulator [12].  It has been observed that according to the 

pool of analyzed papers, roughly 30% utilize the Freiburg Database, roughly 40% utilize the BONN 

Database, and about 30% of the remaining papers use other independent patient data.  It is 

important to note the 70% of the proposed algorithms employing SVM complete testing and 

validation on public datasets.  This implies that proposed algorithms can be compared to one 

another with minimal biases.   

In order to better understand the Freiburg, BONN, and Flint Hills Databases, we give a 

brief overview of the data stored in each one.  All three are publicly available datasets for researchers 

in the epilepsy domain.  The Freiburg database [31] includes intracranial EEG recordings of 21 

patients suffering from medically intractable focal epilepsy.  All patient data was recorded prior to an 

invasive surgical procedure.  The epileptic focus was located in different brain regions across 

patients; eleven patients contracted epilepsy in neocortical brain structures, eight patients in the 

hippocampus, and two across both regions.  Intracranial grid-, strip-, and depth- electrodes were 

used to acquire records directly from focal areas with a higher signal-to-noise ratio (SNR) and less 

artifacts.  The EEG data consists of 128 channels, 256 Hz sampling rate, and a 16 bit analog-to-

digital converter.  It is important to note that notch or any preprocess filtering has not been applied.  

The data was collected from three focal electrodes and three non-focal electrodes per patient, 

resulting in recordings of 2-6 seizures per patient with at least 50 minutes of pre-ictal data.  For 13 

patients, there are 24 hours of interictal recordings; for the remaining subset of patients, less than 24 

hours of interictal recordings were joined together to come up with at least 24 hours of nonseizure 

data per patient.   

Although the Freiburg database ranks as one of the most comprehensive databases available, 

there are a few weaknesses worth noting.  First, about one day of recording time per patient is not 

sufficient for a rigorous analysis of proposed seizure detection algorithms.  Second, about 40% of 

the Freiburg database does not contain continuous iEEG recordings.  This discretized fusion of 
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time series data can increase artifacts within the data and cause detection algorithms to produce a 

greater number of false positives.  Third, there is only limited clinical metadata and annotation 

information available at this time [33].         

The University of BONN database [32] comprises 5 sets, labeled A-E, of EEG data.  Each 

set in the database contains 100 single-channel EEG 23.6 second segments with each segment 

comprising 4096 data points.  The data has a sampling rate of 173.61 Hz, a 12 bit analog-to-digital 

converter, and the time series have a spectral bandwidth equal to that of the acquisition system, 

which is 0.5 Hz – 85 Hz.  Sets A and B were recorded from surface EEG electrodes of five healthy 

volunteers with eyes open (A) and eyes closed (B).  The other three datasets were obtained from 

intracranial EEG from patients during a pre-surgical evaluation procedure.  Both sets C and D 

contained recordings from interictal (non-seizure) and ictal (seizure) intervals, while set E contained 

only ictal iEEG recordings.  Set C was collected from the hippocampal area of the brain, set D was 

collected from areas opposite the epileptogenic zones, and set E contained data from all recording 

sites.   

A number of drawbacks observed from the BONN database include the following.  First, 

the data contains scalp EEG recordings, which are not the focus of this literature review.  Thus, an 

attempt to choose papers that only employed the intracranial subset of EEG data was made.  

Second, individual datasets are discontinuous and contain about 40 minutes of EEG data [33].   

The Flint Hills Scientific, L.L.C., Public ECoG Database, supported by the NIH, consists of 

1419 hours of continuous intracranial EEG recordings for 10 patients with 59 total seizures.  The 

data is sampled at 249 Hz.  The database includes metadata information about seizure events and all 

electrode locations, which range from 48-64 per patient [33]. 

Overall, scalp EEG is the least invasive type of EEG and are relatively simple to obtain.  

However, they provide high distortion and attenuation of high frequencies due to interference from 

the skull [20].  Intracranial EEG measurements have high SNRs and possess few artifacts.  
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However, iEEG data is difficult to obtain due to the complex invasive presurgical evaluation 

required.  As such, iEEG data is limited because of ethical issues and the highly intrusive nature of 

the technique [20].   

There is an obvious need for a well-rounded, comprehensive, and generalized epilepsy 

database in addition to the mere datasets currently available [33]. 

Some common frequency sub-bands examined in EEG epilepsy diagnosis are shown in 

Table 4 below.   

   

 

 

 

 

 

 

2.1.4.2 Data-based vs. Model-Based Detection 
Within seizure detection, there are two main paradigms used for construction an algorithm.  

One is called a data-based approach and the other is called a model-based approach.  In the data 

based approach, EEG data is viewed as a large time series; here, linear and non-linear features are 

extracted via calculations from signals and systems theory.  In the model based approach, a model, 

usually a state-space representation model is used to mathematically model the EEG data.  From 

this model all resultant features and signal characteristics are extracted.  In this literature review, 90% 

of the papers use a data-based approach [2, 3, 5-10, 12-15], while 10% used a model-based approach 

[4, 11].  Thus, we see a stronger inclination for methods to use data-based approaches.  However, 

for those papers that did use a model-based approach, the EEG data was viewed as a non-linear 

Table 4 – Commonly analyzed frequency sub-bands in EEG [20]. 
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dynamical system [4] and as an autoregressive (AR) model [11].  All other papers viewed the EEG 

data as either a time-frequency distribution or a non-linear, nonstationary time series.   

Viewing the EEG data as either data-based or model-based ultimately culminates in the 

extraction of features to be input into an SVM classifier.  Each of the studies analyzed in this work 

greatly differed in the type of features extracted.  However, there are some differences worth noting.  

First, the Discrete Wavelet Transform (DWT) is popular in feature extraction because it can 

represent both time and frequency information simultaneously.  Another repetitive feature is signal 

power and/or Power Spectral Density (PSD); these features are used in epilepsy detection because 

EEG data increases in Power and Energy during seizure onset.  A complete listing of features 

extracted for a subset of 15 papers is shown below.       

Papers [Citation Number] Features 

1 ApEn, Hurst exponent, Detrended fluctuation analysis 

2 DWT, Total Power, Log of product of absolute feature values 

3 EMD algorithm extracts IMFs, variance of IMFs 

4 Lyapunov exponent of Discrete Wavelet Packet Transform, Shannon Wavelet Entropy 

5 
Wavelet decomposition - 5 scales/3 frequency bands, Relative Energy, Relative 
Amplitude, Coefficient of Variation and Fluctuation Index  

6 Teager Energy, Power, Lempel-Ziv Complexity for sub-bands 

7 
Spectral Distribution/Energy, Short-term Temporal Evolution; Artifiact Rejection 
System works alongside SVM to decrease FP 

8 Wavelet Analysis 

9 Spectral Power - Raw or Bipolar and/or Time-differential signals (only linear features) 

10 Table of Frequency Domain, Time Domain, and Information Theory features included 

11 AR coeffcients, Smoothed with Moving Average Filter 

12 Spectral Power in 5 frequency bands via Wavelet and FFT 

13 

Mean of absolute value of coefficients, Average Power of Wavelet coefficients, SD of 
coefficients, Ratio of absolute mean values in sub-bands (via DWT); reduced via PCA, 
LDA, ICA 

14 
Relative Spectral Powers in specific frequency bands, Spectral Power Ratios, Feature 
Selection by Classification and Regression Tree (CART) 

15 Wavelet features, ApEn, LLE, Maximum Value, Minimum Value, Mean, SD  
 

 

Table 5 – A table of features values for a subset of 15 papers 
analyzed in the literature review.   



 21 

The goal in the feature extraction phase of the seizure detection algorithm is to choose maximally 

relevant and minimally redundant features.  If the feature set proves too large, redundancy among 

features may arise, ultimately increasing memory requirements and decreasing computational speed.  

Thus, a thorough analysis of the feature vector size in each algorithm was studied and interesting 

conclusions result.  To begin, on average 26 features were chosen per vector to send into the SVM 

detector across all papers.  The size of the feature vector varied among methods, with the smallest 

feature vector containing 3 features [3] and the largest feature vector containing 55 features [10].  It 

is important to note that a number of papers use dimensionality reduction techniques to reduce the 

dimension of their feature vector.  The main dimensionality reduction techniques used were PCA, 

ICA, and LDA.  There feature transformation techniques have the ability to minimize the within 

class scatter and maximize the between-class scatter, ultimately significantly improving classification 

accuracy [13].  A key observation with regards to feature vector dimension is almost no correlation 

exists between the number of features and the performance of the classifier.  For example, a 

sensitivity of 100% and a FP rate of 0.10 FP/hr were achieved with only 6 features per feature 

vector [4].  Additionally, a detection accuracy of 98.72% was achieved in [6] with only 7 features per 

feature vector.  Thus, removing the redundancy in the feature set is a key objective for increased 

classification results via SVM.   

 To further improve the accuracy of the detectors, post-processing techniques are employed 

to increase the robustness and reliability of detection.  SVM classifiers are very sensitive to changes 

in data; therefore, the performance is greatly affected by post-processing.  Algorithms which would 

have otherwise had 80% sensitivity without post-processing had 95% sensitivity with post-

processing.  The most notable, i.e. producing the highest sensitivity and detection accuracy, post-

processing techniques included Kalman filtering [9, 11], smoothing, multi-channel decision and 

collar technique [5, 10, 12, 14], and maintaining a temporal constraint in addition to thresholding [3, 



 22 

8].  Smoothing, multi-channel decision and collar technique was effective when SVM outputs were 

mapped, via the sigmoid function, to the probability of either being in a seizure or non-seizure class.   

 Lastly, to determine how an algorithm actually ranks compared to others in the field, a 

validation step must be executed.  The majority of SVM algorithms proposed in the literature require 

a large subset of the clinical data to be used for training purposes.  The goal is to develop seizure 

detection algorithms that are trained on a minimal set of data.  However, roughly 70% of the papers 

analyzed use n-fold/leave-one-out cross validation technique, where n is usually 1 or 2, to estimate 

the performance of their classifiers.  The cross validation technique works as follows, first, let N 

equal the number of data segments.  To estimate the detector’s sensitivity, specificity, latency, and 

false alarm rate, the classifier is trained on N-1 segments per patient.  The classifier is then tested on 

the Nth withheld data segment.  This process is continued N times so that each data segment is 

tested.  Usually each round results in a training of N-1 seizures because there is roughly one seizure 

per data segment [7].  It was observed that a larger training set of data resulted in higher sensitivities 

with values around 90%.  However, one exception was when Wavelet Analysis was used.  In [8], 54 

minutes of training data per patient were used with a testing set containing 639 hours across all 

patients.  The resulting sensitivity was 96% with a FP Rate of 0.14 FP/hr.  
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3 Methods 
The objective of this research project is to design, implement, and validate a support-vector-

machine (SVM)-based software tool for the automatic detection of onset time of seizure events in 

subjects with drug-resistant epilepsy (DRE).  The tool operates on time series of feature vectors 

computed from multichannel intracranial EEG (iEEG) recordings collected continuously across one 

week from DRE epilepsy patients.  This work builds upon mathematical and computational tools 

for interpreting iEEG signals to answer the question: given promising features, can seizures be 

detected at the initiation stage in real-time?   

 

3.1 Materials  
3.1.1 Experimental Setup 

Real patient data is drawn from existing databases, eliminating the need for human subjects 

and physical EEG equipment.  Twenty-six DRE patients were monitored 24/7 via iEEG across 

several days, ranging from 2 to 10 days, before receiving surgical resection of the epileptogenic zone.  

The resulting multichannel iEEG recordings were sampled at 500 Hz, stored for offline review, de-

identified, and then made available to the scientific community through the IEEG Portal.  Data for 

each patient is obtained in the form of 

iEEG signals from multiple channels, with 

each channel corresponding to one 

recording intracranial electrode placed 

beneath the patient’s scalp.  The IEEG 

Portal, known as the International Epilepsy 

Electrophysiology Portal, is funded by the 

National Institutes of Neurological Disease and Stroke [42].  Notes about the clinical history of the 

Figure 8 – EGG channel data, with each channel 
representing the electrical activity at respective areas 
of the brain. Image provided from IEEG.org [42].   
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subjects and annotations of seizure events (onset and offset times) are provided by board-certified 

epileptologists.   

3.1.2 Data Repository 
For each patient, the original multichannel iEEG recordings were divided into time series 

(one time series per channel) and each time series was divided into 2-second-long windows with a 1-

second overlap.  For each window, the iEEG signal was band-pass filtered in four distinct frequency 

sub-bands, resulting in four band-limited signals.  For each band-limited signal, two features were 

computed, line-length and standard deviation.  These two features were chosen based on their low 

computational burden and their ability to capture changes in iEEG system dynamics.  The 

mathematical representation of each feature is shown below.  

Signal Line Length:  𝐿. 𝐿. = 	 𝑥 𝑖 − 1 -𝑥[𝑖]q
/LM  

Signal Standard Deviation: 𝑆. 𝐷.= M
qsM

	(𝑥 𝑖 − 𝜇)Nq
/Lu , 

where x is the iEEG signal measured in microvolts, M is the number of samples, and 𝜇 is the mean.   

 As a result, an 8x1-feature vector was computed for each iEEG channel per second for each 

patient.  Patient data sets can be as large as 100 channels, consisting of both electro-corticographical 

and intracranial data, thus forming a truly big-data problem.  All analyzed data was made available on 

a local high capacity server at the UConn Storrs Campus.  The main frequency bands of interest 

considered in this study are: [15, 30] Hz (beta), [35, 70] Hz (gamma), [80, 250] Hz (high-gamma), 

and [10, 250] Hz (full-band).        
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3.2 Design 
The prediction of an impending seizure relies on classification techniques made possible by 

machine learning, such as SVM.  Classification allows a descriptive label to be chosen given a particular 

input data set [44].  Labels are 

usually determined in advance, for 

our purposes defined as suffering 

a seizure or not.  A classifier model 

is termed supervised if it is 

developed based on tested features 

containing the appropriate label 

for each input [44].  The flowchart 

of a supervised classifier is shown in 

Figure 9 above.   

Thus, the domain specific aim is making informed automated decisions, which in this 

application is differentiating between normal electrical activity in the brain and electrical signals which 

indicate an imminent seizure [23].    

3.2.1 Algorithm Implementation 
The algorithm implemented in this study is designed to input a continuous stream of 

multichannel iEEG data and output a decision every second based on the patient’s brain wave 

morphology.  This task is accomplished by splitting the multichannel iEEG data into time series data, 

which is then further segmented into overlapping time windows.  A generated decision is calculated 

during each time window. 

Figure 9 – Model of Supervised Classification. During training, the 
feature extractor converts the input into a set of features which are 
fed into a machine learning algorithm to develop a model.  During 
prediction, an identical feature extractor is used to convert 
unknown inputs into feature sets.  The classifier model is used to 
classify/label the given input.  Image provided from Natural 
Language Processing with Python textbook [44]. 
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Within each time window, the algorithm executes through 3 consecutive stages, as shown in 

Figure 10 below.  The first stage constitutes preprocess filtering, where each channel passes through 

a bank of band-pass filters.  The band-pass filter pass-band and stop-band frequencies are chosen  

 

such that resulting band-limited signals are clinically relevant for seizure detection [5].  It is important 

to note that the number of filtered band-limited signals will be four times the number of incoming 

iEEG channels.  The second stage comprises the calculation of two mathematically relevant features 

from each band-limited frequency signal.  The quantitative expressions for line-length and standard 

deviation features are given in Section 3.1.2.  From the Review of Literature (Section 2), line length 

and power are shown to be successful in the detection of seizures [5,7,19].  In most cases, it is the 

deviation of power from the mean that captures most important signal characteristics.  Thus, it is 

hypothesized that taking the standard deviation with power instead of amplitude will aid in seizure 

detection.  The line length feature is also known to be sensitive to variations in amplitude and 

frequency modulation [45], therefore it is also hypothesized to exhibit changes in behavior between 

the band-limited frequency signals.   

 An important additional consideration for the signal features is computational cost.  The two 

features used in this study were selected for both capturing significant signal information and their 

computational efficiency.  Observing the mathematical relations for line-length and standard 

deviation, their calculation requires the use of one summing operation.  Thus, only a single iteration 

Figure 10 – Stages of the detection algorithm. 
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of the signal is required for computation, resulting in a O(n) runtime.  Comparing our computation to 

the FFT (Fast Fourier Transform), which requires a O(n*log(n)) runtime, the chosen features are 

computationally efficient.   

 The third stage of the algorithm involves classification via a support-vector-machine (SVM), 

selected for its adaptability to large varying datasets and its precision in discriminating between two 

classes.  The SVM ultimately outputs a discrete decision, i.e. a seizure or non-seizure class label.  All 

training, testing, and validation was completed in MATLAB through the Statistics and Machine 

Learning Toolbox and the SVM Library.     

3.2.1.1 SVM Classifier Architecture 
  The SVM architecture designed in this study assumes that the multichannel iEEG data is 

linearly separable in some higher dimensional feature space.  As such, a linear kernel was chosen in 

the SVM implementation after initial testing.  Our architecture combines both aspects of the two state 

of the art architectures discussed in the Detection Methods (Section 2.1.4).  We pass all n channels 

through a feature-specific SVM, as shown in Figure 11 below, producing an n-dimensional feature space.  

For each patient, the two feature-specific SVMs 

produce a discrete output class label for each 

time window and the resulting labels are 

correlated to produce a final binary decision.   

  When building the model, an SVM 

algorithm searches for two specific criteria, one, 

a hyperplane with the largest possible boundary, 

and two, a hyperplane that separates as many 

different class instances as possible.  Akin to 

Heisenberg’s Uncertainty Principle, where an observer can either calculate an electron’s position or 

Figure 11 – SVM architecture for seizure 
detection problem.  
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velocity with 100% certainty, so too can the SVM optimize only one of the aforementioned criteria.  

The key to producing a successful classification is choosing constraints and parameters such that there 

is an elegant balance.  The kernel method accomplishes the task of mapping the dataset into a higher 

dimensional feature space.  This mapping is done 

implicitly, without explicit knowledge of each 

value, by simply computing the inner product 

between the two vectors in the original space. 

Then, the linear bounds are separated as much as 

possible in the higher dimensional feature space.  

The boundary constraint was chosen to be the 

default MATLAB value, C = 1, which produces a 

large margin within the hyperplane. 

 

3.2.1.2 Classification Criteria 
In order to classify the dataset based on the designed SVM Classifier Model, a few classification 

criteria and a detection rule must be put in place.  It is important to mention that patient data is split 

into two categories, a training set and a testing, or validation, set1.  First, for each testing block of data 

(~ 1 hour in length) in a single patient, the time windows are classified and then class labels from each 

feature specific SVM are summed together.  A detection warning is issued if and only if the following 

two conditions are satisfied, one, both features are simultaneously in a ‘seizure’ class, and two, at least 

N consecutive ‘seizure’ class labels are observed.  The parameter N is patient specific and designed to 

be less than the length of the smallest seizure.  N was experimentally chosen such that to minimize 

False Positives and maximize True Positives. 

                                                
1 Note that training dataset used to build the classifier model will not be used in the testing dataset. 

Figure 12 – Representation of the linear kernel 
used for the SVM implementation.  
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4 Results 
The first step in understanding the applicability of the algorithm to various patients is by 

observing the behavior of the extracted signals features around seizure data.  The line-length and 

standard deviation were examined in specific channels responsible for seizure initiation, as 

documented in the clinical annotations.  In order for the SVM classifiers to make meaningful 

decisions, it is crucial for noticeable changes in the signal features to take place.  To show robustness 

of the signal features, their graphs around seizure data for two randomly selected patients are shown 

in Figures 13-14 below.  In particular, the beta-band line-length and standard deviation are plotted, 

with the red markers indicating clinical seizure onset and offset times.    

 Figure 13 – Study 021 Seizure 1 in ECoG channel 2. Shown from top to 
bottom, beta-band signal, beta-band standard deviation, beta-band 
line-length.    
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We clearly see from the two figures above that the chosen features increase in amplitude during seizure 

onset.  This result demonstrates that both features are responsive to seizure events across different 

patients.  Therefore, by selecting line-length and standard deviation, the algorithm will be successful 

discerning seizure and non-seizure data among patients.  Additionally, the two features are highly 

correlated, i.e. exhibit a similar shape, however, they do showcase slight differences.  These slight 

nuances in feature shape can be instrumental in classifying incoming patient data.  For example, from 

Figure 13 we see that the line length is more sensitive during the beginning of a seizure, a quality that 

can aid in earlier detection.  The added redundancy of a standard deviation feature is also helpful in 

the detection process and such similarity among features can prove positive [16].     

4.1 Classifier Validation 
In order to determine whether or not the software tool can be used in a clinical setting, it must 

Figure 14 – Study 030 Seizure 1 in ECoG channel 7. Shown from top to 
bottom, beta-band signal, beta-band standard deviation, beta-band 
line-length.    
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be validated on different patients experiencing varying seizure morphologies.  As mentioned in 

footnote 1, it must be guaranteed that the algorithm is validated on data not included in the training 

set.  Table 6 below shows the proposed algorithm trained on 2 hours of training data around seizure 

and validated on all remaining data from the same patient for 4 patients.  The average False Alarm 

Rate across all patients is 0.00 FP./hr and the Average delay time across all patients is 4 seconds.         

Patient  Total 
Seizures 

Detected 
Seizures 

False 
detection 

Total 
testing 
EEG (h) 

False alarm 
rate (# 
FP/h) 

Average delay 
time (s) 

Study 004-2 3 3 0 184 0.00 2 

Study 006 5 4 0 25 0.00 14 

Study 010 3 3 0 95 0.00 0 

Study 011 3 2 0 55 0.00 0 

 
 
 
Another validation metric used for SVM is the ROC (Remote Operating Characteristic) curve 

generated from MATLAB testing data.  The ROC curves were calculated using the perfcurve method 

in MATLAB, taking as parameters a vector of classifier predictions, given true class labels, and the 

positive class label.  These curves were generated during training and validation when populating the 

table above.  The algorithm performs significantly above chance as is shown in the figures below.   

Table 6 – Table showing algorithm validation on a subset of 
4 patients. 
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Finally, it was observed that using all iEEG channels improved detection results, as more 

information was captured by the algorithm.  It was also observed that higher frequency band-limited 

signals do not improve classifier performance and low frequency signals are more advantageous in 

the seizure detection problem.  Through testing it was determined that beta-band (low frequency) 

features showed redundancy with full-band features, thus not contributing additional useful 

information.  

 Overall, the proposed software tool shows a significant improvement above chance and is 

proven to be robust across a subset of patients.       

 

 

 

  

Figure 15 – ROC curves for each feature-specific SVM per patient.    
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5 Conclusions and Future Work 
5.1 Closed Loop Intervention Systems 

A natural progression forward would be to improve the classifier seizure detection method and 

extend seizure localization capabilities.  Current research is focused heavily on seizure detection 

methods and very few versatile techniques have been implemented in the area of seizure localization, 

i.e. in the form of channel selection methods and keeping feature vectors very small.  The challenge 

in this area has been in selecting appropriate channels and understanding where to place detection 

electrodes.  Correct selection and placement of electrodes will allow electrical stimulation to be 

applied to a local area of the brain, without the patient consciously perceiving intervention [22].  

Such advances will allow the design of a low-power, low cost, automatic seizure detection algorithm 

capable of warning of imminent seizures and taking preventative measures to suppress them.   

Another direction to consider is optimizing and training this algorithm offline so to deploy it on 

a microcontroller based system without impending memory usage.  A significant advantage of the 

SVM is that it can be trained offline, thus requiring a simple set of matrix operations (dot product 

and vector sum) to reach a decision in real-time.   
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