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ABSTRACT

We determine Avogadro’s number by measuring the mean-squared displacement of
colloidal particles 100 nm and 1 µm in size suspended in water. This is essentially a
reproduction of the experiment for which Jean Perrin won the Nobel Prize in Physics
in 1926. However, we also attempt to explore the effect of solvent particle size on Brow-
nian motion by suspending the particles in glycerol and polyvinylpyrollidone (PVP) at
viscosities of η = 0.0025, 0.0083, and 0.250 kg m−1 s−1.

1. Introduction

At the turn of the 20th century, the concept of the atom was not universally accepted as a
physical reality. It was not until Albert Einstein wrote a paper in 1905 showing that the microscopic
motion of particles suspended in solution could be explained in the context of the molecular-kinetic
theory of heat and Jean Perrin experimentally confirmed Einstein’s predictions that the existence
of the atom was firmly established.

Before Einstein, it was thought by some that the microscopic random motion of colloidal
particles are a result of the collisions between the particles and the thermally agitated solvent
molecules. The opponents of this explanation contested that the minuscule size of the solvent
molecules in comparison to the particles could not yield a change in position large enough to be
perceptible and even if they could the extremely high collision rate (∼ 1012 for water molecules)
would not allow an observer to resolve the events.

Einstein realized that although each individual displacement is too small and occurs too quickly
to be detected, an observer is able to see the larger displacements that occur when a series of
collisions pushes the particle in one given direction. These larger displacements are rare because
the solvent molecules collide with the colloidal particle randomly from every direction. In other
words, they occur less frequently and at a rate which can be resolved by an observer. Using these
key arguments, Einstein reasoned that the colloidal particles are executing a random walk and he
predicted that their mean-squared displacement to be given by the Einstein relation

〈x2〉 =
RT

3πηNAr
t (1)

where, R is the ideal gas constant, T is the temperature, η is the viscosity of the solution, NA is
Avogadro’s number, r is the radius of the particle, and t is the sample time.
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The Einstein relation is crucial because it provided a method for measuring NA not just kBNA,
where kB is the Boltzmann constant. Avogadro’s number is the quantity that dictates the size of
atoms and molecules. Thus, the existence of atoms was established when Perrin used Eq. (1) to
find that NA is in fact a very large number. In this experiment, we follow Perrin and examine
the validity of Eq. (1) using 100 nm gold nanoparticles and 1 µm polystyrene spheres in a total of
seven solutions of varying viscosity for each particle. We will record the Brownian motion of the
particles and compute the mean-squared displacement for several sample rates. Then we plot 〈x2〉
as a function of t with error bars and perform a weighted least-squares linear regression. From the
slope of the regression line, we are able to compute the value of NA.

2. Theory

2.1. Random Walk

The ideas of a random walk are fundamental to the discussion of Brownian motion so we
discuss them in some detail here. We begin with a one-dimensional random walk. Suppose we have
a particle located at an origin of the real line at time t = 0. Next, suppose that after some discrete
time interval ∆t, the particle can either move to left or right in a discrete step of physical length
∆s. If the particle is allowed to take a total of N steps, then the particle displacement is given by
X = (R − L)∆s = (2R − N)∆s, where R is the number of steps taken to the right and L is the
number of steps taken to the left. Where is the particle after time t has elapsed?

The number of steps to the right R is discrete random variable whose distribution is binomial(N, p),
where N is the number of trials and p is the probability of success. The expectation value of
any random variable that follows a binomial(N, p) distribution is µ = Np and the variance is
σ2 = Np(1 − p). Since R follows binomial(N, 1/2) distributions, 〈X〉 = 0. This is equivalent to
saying that we expect to find the particle near the origin. However we will show that 〈X2〉 6= 0,
which indicates that the particle is not stationary at the origin but rather moving randomly about.

By the definition of variance, it can be shown that the variance of any random variable A is
given by

σ2 = 〈A2〉 − 〈A〉2 (2)

For a binomial(N, 1/2) random variable we have

〈A2〉 = σ2 + 〈A〉2 = Np(1− p) + N2p2 =
N

4
(1 + N)

The expectation value of X2 is

〈X2〉 = 〈(2R−N)2(∆s)2〉
= (∆s)2〈4R2 − 4NR + N2〉
= (∆s)2[4〈R2〉 − 4N〈R〉+ N2]

= (∆s)2[N(N + 1)− 2N2 + N2] = N(∆s)2
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The number of steps taken by the particle is not a measurable physical parameter. We write
N in terms of the sample time t, which is physically measurable. The number of steps taken by
a particle in time t is N = t/∆t. There is no reason for us to know the physical step size of the
particle ∆s or the time between steps ∆t a priori. We choose to define the diffusion coefficient of
the random walk to be

D ≡ (∆s)2

2∆t
(3)

The diffusion coefficient hold all the physical information of the random walk. Making the sub-
stitution for the diffusion coefficient, the equation for the mean square displacement of a particle
undergoing a one-dimensional random walk is

〈X2〉 = 2Dt (4)

Our random walk is two-dimensional so we extend this result to two-dimensions. Let Y be
the random variable that represents the vertical displacement of a particle in the Euclidean plane.
The particle’s position is given by (X, Y ) or R2 = X2 + Y 2. We assume that the random variables
X and Y are independent i.e. the two dimensions are independent. If X and Y are independent
random variables, then the expectation of the same is just the sum of the expectation. The mean
square displacement for a particle undergoing a two-dimensional random walk is given by

〈R2〉 = 〈X2 + Y 2〉 = 〈X2〉+ 〈Y 2〉 = 4Dt (5)

2.2. Einstein Relation

We have derived a general equation that applies to any two-dimensional random walk process.
To make things more physical, we would like to know how the diffusion coefficient varies as a
function of particle size, solution viscosity, and temperature. Thus far, it is a function of the
intrinsic physical step size ∆s and the time between collisions ∆t, which are not macroscopically
measurable quantities. We eliminate ∆s and ∆t and find an expression for D in terms of the
particle size, solution viscosity, and temperature.

Return to the one-dimensional random walk. Suppose that one collision occurs per ∆t. The
motion of the particle after a single collision is

∆x = v0∆t +
F

2M
(∆t)2

where v0 is its random initial velocity, F is the magnitude of average force during the collision, and
M is the mass of the particle. The average value of ∆x is 〈∆x〉 = F/2M(∆t)2 because we assume
that 〈v0〉 = 0 by assuming each collision is independent and the initial velocity vector is equally
likely to be pointing in either direction. Thus, the particles gain a net drift velocity

vd =
〈x〉
∆t

=
F∆t

2M
=

F

ζ
(6)
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where
ζ = 2M/∆t (7)

is the viscous friction coefficient. The Stokes Formula gives us the viscous friction coefficient in
terms of the viscous of the solution (η) and the radius of the particle (r).

ζ = 6π η r (8)

Note that ζ is a macroscopically measurable quantity because it is a function of viscosity and
particle size.

Combining Eq. (3) and Eq. (7) yields

Dζ =
(∆s)2M
(∆t)2

(9)

Einstein’s stroke of genius was to notice that from the molecular-kinetic theory of heat

〈v2
0〉 =

〈
(∆s)2

(∆t)2

〉
=

(∆s)2

(∆t)2
=

kBT

M
(10)

Combining Eqs. (7), (9), and (10) we get

Dζ = kBT =
RT

NA
(11)

Thus, we have an expression for D that shows its depends on particle size and solution viscosity.
Substituting Eq. (11) into Eq. (5) gives the Einstein Relation in Eq. (1). We now have all the
ingredients for a Nobel Prize winning experiment.

3. Equipment

The main piece of equipment used in this experiment is the Zeiss Aviovert 200 microscope.
Attached to the microscope is a CCD camera that captures the motion of the particles under the
microscope. The output of the CCD camera is sent to a data processing unit. The data processing
unit consists of a Dell computer and a movie making program called Octopus111. The Octopus111
front-end allows the user to specify the number of frames to be captured and the frame rate.
The movies are specifically designed to be compatible with Matlab data analysis software. The
experimental setup is shown in a block diagram in the Appendix.

4. Observations

4.1. CCD Plate Scale

Octopus111 and the Matlab tracking software returns pixel positions of the particles. We would
like to translate this to physical displacement. Thus, we need to measure the pixel to nanometer
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conversion for the CCD. We use the 20x objective on the microscope for all observations. We
prepare a slide with 9.86 ± 0.65 µm polystyrene spheres. We measure the pixel diameter of five
different polystyrene spheres: 30, 27, 29, 27, 29 pixels. The mean and standard deviation of these
values give us a CCD plate scale of 347.18± 1.3416 nm pixel −1.

4.2. Making Slides

For the experiment, two particle sizes are used: 100 nm gold particles and 1 µm polystyrene
spheres. For each particle size we select seven different solvents of different viscosity. The solutions
are water, three different viscosity glycerol solutions, and three different viscosity PVP solutions.
Table 1 lists the viscosity of the different solutions.

H2O PVP 1 PVP 2 PVP 3 Gly 1 Gly 2 Gly 3

η (Pa s) 10−3 0.0025 0.25 0.0083 0.0025 0.25 0.0083

Table 1: The viscosities of the seven solutions used in the experiment.

Slides of each particle in each solution are prepared. The preparation of the slides differs
slightly for the two particle sizes. The 100 nm gold particles are so tiny that a buffer of 10µm
polystyrene spheres must be used in order for the gold particles to but freely suspended in soltuion.
After the coverslip is applied, the edges of the slide are cover with nail polish to prevent the solution
from evaporating and causing a net flow.

4.3. Making Movies

The slides are placed under the microscope and we setup Kohler illumination with the 20x
objective. The 1 µm polystyrene spheres are viewed under light-field illumination (dark particles,
bright background). The 100 nm gold particles cannot be view under these condition because their
physical size is much smaller than the wavelength of visible light. We must use a technique called
dark-field illumination(bright particle, dark background) to resolve the tiny gold particles.

The motion of the particle varies depending on the solution. We vary the total movie time
and frame rate to what we believe is optimal for each condition. Table 2 is a log of the number of
movies, total time, and frame rate for each condition.
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Size (nm) Solution Frame rate (ms) # Frames # Movies

1000 H2O 200 50 10
1000 PVP1 500 20 10
1000 PVP2 1000 20 10
1000 PVP3 100 50 5
1000 Gly1 200 50 10
1000 Gly2 500 20 10
1000 Gly3 100 50 10
100 H2O 100 10 10
100 PVP1 100 40 10
100 PVP2 500 20 7
100 PVP3 100 50 11
100 Gly1 100 40 12
100 Gly2 100 40 11
100 Gly3 100 50 12

Table 2: A log of the data we took for each particle is each solution.

5. Analysis

5.1. Do It All

Once we have all the videos for each particle, we use a Matlab program provided to us called
DOITALL to extract the pixel position of each particle in each video. The program first filters
the raw movie based on two parameters: noise diameter and object diameter. Next the program
takes the filtered movie and creates a bi-level movie where there are only two pixel values. This
part of the program depends on the parameters standard deviation and minimum deviation. Next,
the program does a clean-up on the edges based on the parameter minimum size. This portion
is here because we may want to disregard certain particles if they get too close to the edges of
the movie. Next, the program finds the pixel position of the particles by centroiding. Lastly, the
program produces a track for each particle by logically connecting the positions from one frame to
the next based on the parameter maximum displacement. The output of the program is a cellular
matrix where each column represents the track of a single particle through the entire movie. Each
cell contains the (xi, yi) pixel position of the particle in the ith frame. We can extract the track of
a single particle from this cellular matrix using the Matlab function CELL2MAT.
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5.2. The Diffusion Coefficient

From the track of the particles, we compute the mean-squared displacement for a given time
interval for each particle size in each solution. This is done for multiple time intervals and we plot
the mean-squared displacement as a function of the time interval. We see from Eq. (5) that the
slope of this plot will give us the diffusion coefficient for a particular particle size in a particular
solution. We write our own Matlab program called DIFFUSIONPLOT to do this.

The first parameter DIFFUSIONPLOT accepts is the root name of a series of movies for a
given particle size in a given solution. Each movie is named by the root and some integer. Thus,
we allow DIFFUSIONPLOT to take a maximum and minimum integer value. This is here so that
it can iterate through an entire series of videos. We pick a set of appropriate values for DOITALL
and DIFFUSIONPLOT performs DOITALL on each video in that series.

At the end of each iteration, DIFFUSIONPLOT concatenates the output cellular matrix with
the particle tracks to the previous iteration’s output cellular matrix. The result is a master cellular
matrix with the particle tracks for each particle in each movie for a given particle size in a given
solution.

Some of the particles do not have a continuous track through the entire movie because they
may go out of focus or move off the screen. These appear at empty cells in the cellular matrix.
DIFFUSIONPLOT replaces the empty cells with [-99,-99]. This is done so that the particle tracks
remain consistent when using CELL2MAT. If this were not done, CELL2MAT throws away the
empty cells and all information about the time interval between particle positions is lost.

Next, DIFFUSIONPLOT calls on a squared displacement computation program we wrote. It
runs through each particle track at a given time step and computes the squared displacement in
pixels. DIFFUSIONPLOT then computes the average value of these squared displacements (〈x2〉)
in pixels and the standard deviation of the mean (σ). The values are saved in an array. The squared
displacement computation program disregards a computation if either point is [-99,-99]. This is
repeated for different time intervals and the result is an array with time interval, mean-squared
displacement in pixels, and standard deviation of the mean in pixels.

The (t, 〈x2〉, σ) arrays are extracted for each particle in each solution. We use IDL to plot
〈x2〉 versus t with error bars given by σ. The σ values are bigger for larger values of t since the
standard deviation of the mean goes as σx̄/

√
N , where N is the number of data points. There

are more data points for smaller t values so the uncertainty in the mean is smaller. The values
of 〈x2〉 are converted to meters using the CCD plate scale. Twelve percent is added to σ due to
the uncertainty in the pixel to meter conversion and the uncertainty in particle size. A weighted
linear-regression is performed on the data using IDL.

The weighted linear-regression is computed as follows. The data is fit to a line of the form
y = A + Bx, where each yi has a different uncertainty σi. Weights wi = 1/σ2

i are introduced. The
smaller the uncertainty, the more the point is weighted. The slope of the linear-regression line and
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its error is given by

B =
∑

w
∑

wxy −∑
wx

∑
wy

∆

σB =

√∑
w

∆
∆ =

∑
w

∑
wx2 − (

∑
wx)2

This is done for each particle in each solution. The slope of the weighted least squares line
yields the diffusion coefficient D. From the diffusion coefficient, Avogadro’s number NA is computed
from from

D =
RT

6πNAηr
(12)

using a value of T ≈ 300 K for room temperature. The percent error of our experimental values
from NA = 6.02 × 1023. The results are listed in Table 3. The plots are shown at the end of the
the paper.

Solution/Particle D (m2 s−1) Fractional Error[%] NA (atoms mole−1) % error

Water/Gold (3.37± 0.04)× 10−12 1.05 (5.89± 0.07)× 1023 2.16
Water/PS (5.68± 0.4)× 10−13 3.2 (3.49± 0.1)× 1023 42.03

PVP1/Gold (1.17± 0.04)× 10−12 31.3 (6.73± 0.2)× 1023 11.79
PVP1/PS (1.85± 0.1)× 10−13 5.95 (4.27± 0.2)× 1023 29.07

PVP2/Gold (1.08± 0.3)× 10−14 31.30 (7.29± 2)× 1023 21.10
PVP2/PS (2.93± 0.2)× 10−14 5.45 (2.7± 0.1)× 1022 95.51

PVP3/Gold (1.94± 0.05)× 10−13 2.6 (1.22± 0.03)× 1024 102.66
PVP3/PS (6.92± 0.3)× 10−14 4.69 (3.43± 0.2)× 1023 43.02

GLY1/Gold (1.66± 0.05)× 10−12 3.26 (4.77± 0.2)× 1023 20.76
GLY1/PS (8.67± 0.3)× 10−14 2.89 (9.14± 0.3)× 1023 51.83

GLY2/Gold (1.64± 0.06)× 10−12 3.63 (4.83± 0.2)× 1021 Huge
GLY2/PS (1.82± 0.1)× 10−13 5.78 (4.35± 0.2)× 1021 Huge

GLY3/Gold (2.75± 0.08)× 10−13 2.93 (8.63± 0.3)× 1023 43.36
GLY3/PS (8.72± 0.3)× 10−14 3.55 (2.72± 0.1)× 1023 54.82

Table 3: These are value we computed for the diffusion coefficient for each particle in each solution
and the value for NA we computed using those values.
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6. Discussion

6.1. Avogadro’s Number

Our experimental values for Avogadro’s number are quite good, with four values that agree
with the accept value NA = 6.023 × 1023 atoms mole−1 within approximately 20%. The other
values are approximately the correct order of magnitude. The only aberrant value is that of both
100 nm and 1 µm in Gly2. We attribute these deviations to be due in large part to human error
in mixing the solutions. This is likely because the easiest solution to work with (water) yields the
best result for NA. There also exists the possibility that there were mistakes made by DOITALL
when identifying particle tracks. However, we do not expect this to be a big factor, although a
verification of this is needed, because of the large number of data points we have and the fact that
most of our movies only contain one or two particles.

6.2. Distinguishing Solvent Molecule Size

The diffusion coefficient equation we gave in Eq. (12) does not explicitly show that the diffusion
coefficient should depend on the size of the solvent molecule. We test this prediction by plotting the
diffusion coefficient versus the viscosity for a single particle size for both PVP and glycerol. These
are shown in Figure 1 and Figure 2. However, we notice immediately that the data for glycerol is
quite bad. For a given particle size in at a fixed temperature, the relationship between D and η

should be an inverse relationship. The plots for both particle size in glycerol do not indicate this
relationship in the slightest. This strengths our conjecture that the error was human. It is possible
that the mixed solutions did not have the intended viscosity.

Fig. 1.— D versus η for the PVP solution.
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Fig. 2.— D vs. η for the glycerol solution.

7. Conclusion

This experiment was intended to reproduce Perrin’s experiment and to test Einstein’s predic-
tion about the atomic nature of matter. Our results indicate that the Brownian motion of particles
is dictated by the equation Einstein set forth in Eq. (1) i.e. Einstein was right! After performing
this experiment, we have gained an appreciation of the perspicacity of Einstein’s reasoning. We
have even obtained a feeling of the power and reach of Einstein’s result after viewing an onion cell
under the microscope. We could see the millions of tiny microtubules transporting molecules within
the cell. It is simply amazing that cells and do anything when their underlying motion is random.
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10. Appendix

Fig. 3.— 100 nm particles in Gly1 and Gly2.

Fig. 4.— 100 nm particles in Gly3 and water.
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Fig. 5.— 100 nm particles in PVP2 and PVP3.

Fig. 6.— 100 nm particles in PVP3.

Fig. 7.— 1 µm particles in Gly1 and Gly2.
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Fig. 8.— 1 µm particles in Gly3 and water.

Fig. 9.— 1 µm particles in PVP1 and PVP2.

Fig. 10.— 1 µm particles in PVP3.


