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Abstract

Limit theorems, such as the Central Limit Theorem and the Law of Large
Numbers, are fundamental concepts in probability theory. They have been
studied extensively in various settings and at widely varying levels of gen-
erality over the last three hundred years, culminating in significant results
about the asymptotic behavior of sums of random variables (which may
be substituted by vectors, matrices, or elements of more abstract spaces).
More recently, there has been research on the asymptotic behavior of
products of such random elements when the notion of multiplication is
defined in the ambient space. We explore some of these “multiplicative
limit theorems” and present two new applications of these tools: deriving
the Black-Scholes European call option pricing model and understanding
the behavior of Lyapunov exponents in the context of products of random
matrices.
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Chapter 1

Introduction

The Central Limit Theorem is a cornerstone of modern probability theory, with Laplace,
Poisson, Cauchy, Lindeberg, and Lévy among the major contributors to its development in the
nineteenth and twentieth centuries. The basic form of the Central Limit Theorem, as given in
[13], is as follows: the sum of a sufficiently large number of independent and identically distributed
random variables with finite mean and variance approximates a normal random variable in distri-
bution. Formally, let X1, X2, . . . , be a sequence of random variables and Sn =

∑n
k=1Xk. Then,

under a variety of different conditions, the distribution function of the appropriately centered and
normalized sum Sn converges pointwise to the standard normal distribution function as n → ∞,
that is, the centered and normalized Sn converges weakly to Z, the standard normal random
variable.

Empirically, a normal distribution model has turned out to be appropriate for describing a
wide variety of phenomena in “real life.” For all we know, that is an illustration of the Central
Limit Theorem in action. For many phenomena and processes in real life, how they evolve is
determined by a large number of factors, with each making its own, small contribution. That is
exactly the concept that finds its mathematical formulation in the statement of the Central Limit
Theorem.

Another extremely significant probability limit theorem is the Law of Large Numbers. While
in ten tosses of a “fair” coin, we expect 5 heads and 5 tails, it is not out of the ordinary to
see 4 heads or 4 tails. On the other hand, if in a thousand tosses of a “fair” coin, we see 400
heads or 400 tails, that will be considered irrefutable evidence against the coin being fair. The
phenomenon that the fluctuation in the proportion of heads in a large number of tosses of a
fair coin steadily wanes as the number of tosses gets larger and larger (and the proportion gets
increasingly closer to 0.5) has been known for a long time. The first rigorous formulation of the
result was provided by (Jacob) Bernoulli in the early 18th century. More than 100 years after
Bernoulli, Poisson expanded on Bernoulli’s work and coined the term “Law of Large Numbers.”
Chebyshev, Markov, Kolmogorov, and Khinchin, among others, strengthened both the Weak Law
of Large Numbers as well as the Strong Law of Large Numbers by successively weakening the
assumptions. Today, a fairly general and standard version of the Law of Large numbers can be
found in [5]: Let {Xn : n ≥ 1} be a sequence of independent and identically distributed random
variables. If E

(∣∣X1

∣∣) <∞, then X1+···+Xn
n

→ E (X1) almost surely as n→∞.
The Central Limit Theorem and Law of Large Numbers have found applications in various

disciplines, ranging from physics and engineering to economics and finance. We propose two ad-
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2 | Multiplicative Probability Limit Theorems

ditional applications: (1) deriving the Black-Scholes European call option pricing model without
having to use advanced technical machinery such as stochastic differential equations and (2) un-
derstanding the behavior of Lyapunov exponents in the context of products of random matrices.
Both of these applications concern products of random variables rather than the random variables
themselves. Thus, we employ multiplicative versions of the traditional, additive limit theorems to
handle these applications.

In Chapter 2, we consider an alternative approach to the standard derivation of the Black-
Scholes European call option pricing model using the Central Limit Theorem; more specifically,
we exploit properties of products of random variables under a “multiplicative” version of the
Lindeberg-Feller Central Limit Theorem. The Black-Scholes model was proposed by Fischer Black
and Myron Scholes in their 1973 paper entitled “The Pricing of Options and Corporate Liabilities.”
They derived a formula to find the value of a “European-style” option in terms of the price of the
stock by utilizing techniques from stochastic calculus and partial differential equations [2]. Later
in 1973, Robert C. Merton expanded the mathematical ideas underlying the Black-Scholes model
in his paper entitled “Theory of Rational Option Pricing” [11]. Since its introduction, the formula
has been widely used by option traders to approximate prices and has lead to a variety of new
models for pricing derivatives. The standard derivation of the Black-Scholes model, which can be
found in [15], uses over 100 pages to arrive at the formula and requires a discussion on geometric
Brownian motion.

Our second application of multiplicative analogues of probability limit theorems, presented in
Chapter 3, involves the Lyapunov exponent, which measures the exponential growth rate of the
operator norm of the partial products of a sequence of independent and identically distributed
random matrices. It is difficult to compute this quantity explicitly from the distribution of the
matrices as there is no general method. Using analogues to the Central Limit Theorem and Law
of Large Numbers for the norm of the partial products of a sequence of such random matrices, we
explore new ways of efficiently computing Lyapunov exponent for several random matrix models
and numerically estimating corresponding variances.



Chapter 2

A Derivation of the Black-Scholes Option
Pricing Model

Our derivation of the Black-Scholes European call option pricing model using a Central Limit
Theorem approach is inspired by Chapters 17 and 18 of [16]. We give a rigorous mathematical
treatment of the results discussed in that text using an elementary approach that is accessible
to students who have taken an undergraduate probability course. We first introduce the basic
financial concepts underlying the Black-Scholes model.

A financial instrument is any asset that can be traded on the market. Consider the following
type of instrument: If an event B occurs, the holder of the instrument receives one dollar, and if
B does not occur, the holder receives nothing. The value of such an instrument is dependent on
the probability that the event occurs. This probability is assessed through a pricing measure,
denoted by Q. A pricing measure can be understood as a way to determine the amount of the
underlying asset that one would be willing to pay in order to own a financial instrument. For
example, if a financial instrument involves the exchange of one dollar given the event B occurs,
and the probability that event B occurs is Q(B), an individual would be willing to risk Q(B)
dollars to own the instrument.

A measuring unit for the price of a financial instrument is called a numeraire. In the previous
example, the dollar would function as a numeraire and the pricing measure would be with respect
to dollars. Numeraires have time stamps, so their value corresponds to a specific date. Consider
numeraires such as one unit of cash today, or one unit of cash at a future time t; the value of that
unit of cash today may differ from its value at time t. Thus, we specify that a pricing measure is
with respect to the numeraire unit cash at time-t.

A call (respectively, put) option is a contract that gives the option holder the right to buy
(respectively, sell) an asset for a certain price K, called the strike price, during the time period
[0, t] (for an American option) or at time t (for a European option), where t is the expiration time
of that right (often referred to as just the expiration time). We price a European call option,
which entitles the holder to purchase a unit of the underlying asset at expiration t for strike K.

The Black-Scholes model for the price of a European call option is derived under the assump-
tion that there is no arbitrage opportunity surrounding a trade of the option (or the underlying
instrument), that is, one cannot expect to generate a risk-free profit by purchasing (or selling) the
option (or the underlying instrument). We denote the time when the option is priced as time 0,
when the underlying instrument is valued at X0. Recall that the option expires at time t and the
strike price for the option is K. Suppose the risk-free rate of interest is r. If the option is priced for

3
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C, then the future-value of it at time t, under continuous compounding, is Cert. With Xt denoting
the price of the underlying instrument at time t, the payoff of the option is max (Xt −K, 0). The
no arbitrage opportunity on the option trade requires the equation

C = e−rtE (max (Xt −K, 0)) (2.0.1)

to hold; similarly, the no arbitrage opportunity on the trade of the underlying instrument requires
the equation

E (Xt) = X0e
rt (2.0.2)

to hold.
The formula used to price the European call option under the Black-Scholes European

option pricing model is given by

C = X0N(d+)−Ke−rtN(d−), (2.0.3)

where N is the standard Normal CDF, that is,

N(x) =
1√
2π

∫ x

−∞
e−y

2/2dy,

d± =
1

σ
√
t

log
[
ertX0/K

]
± 1

2
σ
√
t,

and σ is the volatility of the return on the underlying asset through expiration.

Example 2.0.1. Consider the pricing of a European call option on a stock with a present value
of 50 Euros and a strike price of 52 Euros under the following conditions: r = 4% (per annum),
t = 1 (year), σ = 0.15. To calculate the price of this option we use (2.0.3). We first find

d+ =
log
[
e0.04(1)50/52

]
0.15

+
1

2
(0.15) = 0.0802

and

d− =
log
[
e0.04(1)50/52

]
0.15

− 1

2
(0.15) = −0.0698;

we then have

C = 50N(0.0802)− 52e−(0.04)(1)N(−0.0698)

= 50(.532)− 52(0.96)(0.472)

= 3.04.

Thus, from the Black-Scholes model, the price of this call option would be 3.04 Euros.

In Section 2.1, we derive the call option pricing formula assuming the log-normality of the
underlying asset price; in Section 2.2, we prove the log-normality. In Section 2.3, we examine a
related model of stock price, calculate the expected value and variance of the log-asset price at
time t, and perform tests of normality.
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2.1 Pricing the European Call Option

To derive the call option pricing formula in (2.0.3) we first show the following fact regarding
normal random variables.

Lemma 2.1.1. For any normal random variable Y with mean µY , standard deviation σY , and
M > 0, we have

E
(
max

(
eY −M, 0

))
= E

(
eY
)
N (h+)−MN (h−) ,

where

h± =

[
log
(
E
(
eY
)/

M
)
± 1

2
σ2
Y

]/
σY .

Proof. For a normal random variable Y ,

E
(
eY
)

= eµY +
σ2Y
2 .

As such,

h+ =
µY + σ2

Y − logM

σY

and

h− =
µY − logM

σY
.

Now note that

E
(
max

(
eY −M, 0

))
=

∫ ∞
logM

eyφµY ,σY (y) dy −MP (Y > logM) ,

where φµY ,σY is the density of Y . Completing the square

y − (y − µY )2

2σ2
Y

= µY +
σ2
Y

2
− (y − (µY + σ2

Y ))
2

2σ2
Y

,

we obtain, using the identity 1−N (x) = N (−x),∫ ∞
logM

eyφµY ,σY (y) dy = eµY +
σ2Y
2 N (h+) .

Since
P (Y > logM) = N (h−) ,

the equality follows.

Recall that under the assumption of no arbitrage, the price of a European call option must
equal the expected payoff of the option. Expectation is computed with respect to the pricing
measure Qt, corresponding to time-t cash numeraire.
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Proposition 2.1.2. Assume there are no opportunities for arbitrage and the risk-free interest rate
is r. Consider a European call option on an instrument with expiration t and strike K. Let Xt be
the time-t price of the underlying instrument, where Xt = X0e

Yt and the Qt-induced distribution
of Yt is N (µYt , σ

2
Yt

). Then, the discounted (that is, time-0) price of the call option, C, is given by

C = X0N(d+)−Ke−rtN(d−), (2.1.1)

where

d± =
1

σYt
log
[
ertX0/K

]
± 1

2
σYt .

Proof. From the definition of Xt,

max (Xt −K, 0) = X0 max

(
eYt − K

X0

, 0

)
.

By Lemma 2.1.1,

E
(

max

(
eYt − K

X0

, 0

))
= E

(
eYt
)
N (h+)− K

X0

N (h−)

with

h± =

[
log

(
E
(
eYt
) X0

K

)
± 1

2
σ2
Yt

]/
σYt = d±,

where the second equality follows from (2.0.2). The proof follows from (2.0.1).

2.2 Log-Normality of Prices

In the previous section, we derived the Black-Scholes model with the premise that our prices
follow a log-normal distribution. In this section, we use the Lindeberg-Feller Central Limit Theo-
rem (as stated in [17]) to prove this premise under suitable assumptions.

Theorem 2.2.1 (Lindeberg-Feller). Suppose for each n and i = 1, . . . n, Xni are independent
and have mean 0. Let Sn =

∑n
i=1Xni. Suppose that

∑n
i=1 E[X2

ni] → σ2 for 0 < σ2 < ∞. Then,
the following two conditions are equivalent:

(a) Sn converges weakly to a normal random variable with mean 0 and variance σ2, and the
triangular array {Xni} satisfies the condition that

lim
n→0

max
i

E
(
X2
ni

)
= 0.

(b) (Lindeberg Condition) For all ε > 0,

n∑
i=1

E
[
X2
ni; |Xni| > ε

]
→ 0.

We make the following three assumptions.
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Assumption 1. For each t, the random variable Yt = log Xt
X0

has finite variance.

Assumption 2. The process Yt has stationary and independent increments. That is, the differ-
ences Yt − Ys are independent for disjoint intervals [s, t]; for intervals of equal length, they are
i.i.d.

Assumption 3. For every ε > 0, nE
[(
Yt/n − Y0

)2
;
∣∣Yt/n − Y0∣∣ > ε

]
→ 0 as n→∞.

Theorem 2.2.2. Under Assumptions 1, 2, and 3, for every t > 0, Yt is a normal random variable
with respect to the pricing measure Q0 with variance σ2t for some constant σ ≥ 0 and all t ≥ 0.

In addition to the Lindeberg-Feller Central Limit Theorem (Theorem 2.2.1), the proof of
Theorem 2.2.2 makes use of the following lemma.

Lemma 2.2.3. Suppose f : [0,∞) → [0,∞) satisfies f (x+ y) = f(x) + f(y). There exists a
constant C such that f(x) = Cx for all x ≥ 0.

Proof. We first observe that

f(0) = f(0 + 0) = f(0) + f(0) = 2f(0),

implying that f(0) = 0. We can prove by induction that

f(m) = mf(1) for all m ≥ 1. (2.2.1)

Let p and q (> 1) be positive integers with no common factors. By induction again,

f

(
m
p

q

)
= mf

(
p

q

)
for all m ≥ 1. (2.2.2)

Using (2.2.1) followed by (2.2.2),

pf(1) = f(p) = f

(
q
p

q

)
= qf

(
p

q

)
;

hence, for every positive rational number r of the form p/q,

f(r) = f

(
p

q

)
=
p

q
f(1) = rf(1). (2.2.3)

Thus, we have shown that for every rational number x in
[
0,∞

)
,

f(x) = Cx where C = f(1). (2.2.4)

Note that if x ≤ y, then

f (y) = f (x+ y − x) = f (x) + f (y − x) ≥ f (x) ,

showing that f is non-decreasing.
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We claim that (2.2.4) holds for a positive irrational number d. Let n0 be a positive inte-
ger such that for all n ≥ n0,

1

n
< d.

For every n ≥ n0, choose rn ∈
(
d− 1

n
, d
)

and sn ∈
(
d, d+ 1

n

)
to be arbitrary rational numbers.

Then, by (2.2.4) and the observed monotonicity of f ,

rnf (1) = f (rn) ≤ f (d) ≤ f (sn) = snf (1) .

Since rn → d and sn → d, by the squeeze theorem we have that f(d) converges to df(1), as
needed.

We are now ready to prove Theorem 2.2.2.

Proof. We first show that
Var [Yt] = σ2t. (2.2.5)

To that end, note that
Yt+s − Y0 = Yt+s − Yt + Yt − Y0; (2.2.6)

by Assumption 2 (independent increments followed by stationary increments),

Var [Yt+s − Y0] = Var [Yt+s − Yt] + Var [Yt − Y0]
= Var [Ys − Y0] + Var [Yt − Y0] . (2.2.7)

With f(u) = Var [Yu − Y0], (2.2.7) reduces to

f(t+ s) = f(t) + f(s). (2.2.8)

Since f is non-negative, by Lemma 2.2.3, f(t) = tf(1), where f(1) = Var [Y1 − Y0] = σ2, thus
establishing (2.2.5).

Now, to prove the assertion of the theorem, we show that Yt − Y0, where Y0 is a deterministic
quantity, is normally distributed with variance σ2t using the Lindeberg-Feller Theorem.

With
Xni = Yti/n − Yt(i−1)/n, (2.2.9)

we obtain, by telescopic cancellation,

Yt − Y0 =
n∑
i=1

Xni, (2.2.10)

where the dependence of Xni on t is suppressed for notational convenience. Since

Yt − Y0 − E [Yt − Y0] =
n∑
i=1

[
Yti/n − Yt(i−1)/n −

(
E
[
Yti/n

]
− E

[
Yt(i−1)/n

])]
,

without loss of generality, we can assume that Yt − Y0 and Xni = Yti/n − Yt(i−1)/n have mean
zero. By stationary increments in Assumption 2, Xni has the same distribution as Yt/n − Y0.
Consequently, by (2.2.5),

E
[
X2
ni

]
= σ2 t

n
, (2.2.11)
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implying
∑n

i=1 E [X2
ni] = σ2t. Thus we can apply the Lindeberg-Feller Central Limit Theorem once

the Lindeberg condition is satisfied.
Let ε > 0. By the consequence of the assumption of stationary increments noted above,

n∑
i=1

E
[
X2
ni; |Xni| > ε

]
= nE

[(
Yt/n − Y0

)2
;
∣∣Yt/n − Y0∣∣ > ε

]
,

whence the Lindeberg condition follows from Assumption 3.

A couple remarks are in order.

Remark 2.2.4. While Assumptions 1 and 2 reflect reasonable properties of the asset price process,
it is difficult to interpret Assumption 3. It seems that the only significance of this assumption is
its sufficiency for the Lindeberg condition. However, note that the array defined in (2.2.9), by
virtue of Equation (2.2.11), satisfies the second part of the first condition in the Lindeberg-Feller
Theorem, rendering Assumption 3 necessary for the desired asymptotic normality.

Remark 2.2.5. We note that Lindeberg’s condition is needed, in principle, to avoid jumps in the
stochastic process Yt. Without this condition one can obtain the Poisson process as a limit (or
more generally a Lévy process), but this is beyond the scope of this thesis. See for example [1,
Theorem 28.5].

2.3 Simulations

We now turn our attention to simulating stock prices according to the Black-Scholes model
and empirically testing them for log-normality.

First, note that the Black-Scholes stochastic differential equation is written

dXt = µXtdt+ σXtdWt, (2.3.1)

where Xt denotes the price of the underlying instrument, Wt is Brownian motion, µ is drift, and
σ is the volatility. The unique process satisfying (2.3.1) is the geometric Brownian motion

Xt = X0 exp

((
µ− σ2

2

)
t+ σWt

)
, (2.3.2)

that is, Xt is log-normal for all t.
We will make a discrete approximation to this process. We assume that

X0, X1, X2, . . . , Xt, . . .

satisfy

Xt+1 −Xt = µXt + σXtεt

Xt+1 = Xt(1 + µ+ σεt)

Xt+1 = X0

t∏
i=0

(1 + µ+ σεi)

(2.3.3)
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for an appropriate choice of i.i.d. random variables εi, as this serves as a discrete simulation
of geometric Brownian motion. That is, we expect Xt to be “approximately” log-normal for all
t as well. Moreover, by (2.3.2), we expect the Gaussian associated to Xt to have parameters
approximately (µ− σ2/2)t and σ2t respectively. We thus sample simulated stock paths according
to (2.3.3).

2.3.1 Theoretical Mean and Variance

Let X0, X1, X2, . . . , Xt, . . . follow the updating rules in (2.3.3); X0 is deterministic. Further,

let X̃t = e−rtXt and Yt = log X̃t. We compute the theoretical mean and variance of the random
variable Yt using discrete intervals created by the partition. First note that Yt − Ys are i.i.d. if
and only if log e−rtXt

e−rsXs
are also i.i.d. We can then compute

E[Yt − Y0] =
t∑
i=1

E
[
log
(
e−riXi

)
− log

(
e−r(i−1)X(i−1)

)]
=

t∑
i=1

E
[
log

(
e−r

Xi

X(i−1)

)]

=
t∑
i=1

(−r + E[log(1 + µ+ σε1)])

= t(−r + E[log(1 + µ+ σε1)]), (2.3.4)

where the last equality uses the fact that each εi have the same distribution. Y0 is deterministic,
so we have E[Yt − Y0] = E[Yt]− Y0. Since Y0 = logX0, we obtain, rearranging (2.3.4),

E[Yt] = logX0 + t(−r + E[log(1 + µ+ σε1)]). (2.3.5)

Note that this is a linear equation with respect to the variable t.
Now we can compute the variance. Squaring (2.3.5), we find that

E[Yt]
2 = (−rt+ logX0 + tE[log(1 + µ+ σεi)])

2. (2.3.6)

In order to compute E[(Yt)
2], we first observe that

Yt = log X̃t = log

[
e−rtX0

t∏
i=1

(1 + µ+ σεi)

]
= −rt+ logX0 +

t∑
i=1

log(1 + µ+ σεi). (2.3.7)

Then, by squaring the result in (2.3.7) and taking its expectation, we have

E[(Yt)
2] = E

(−rt+ logX0 +
t∑
i=1

log(1 + µ+ σεi)

)2


= (rt)2 + (logX0)
2 − 2rt logX0 − 2rt

t∑
i=1

E [log(1 + µ+ σεi)]

+ 2 logX0

t∑
i=1

E [log(1 + µ+ σεi)] + E

( t∑
i=1

log(1 + µ+ σεi)

)2
 . (2.3.8)
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The final term on the right-hand side of (2.3.8) can be written as

E

( t∑
i=1

log(1 + µ+ σεi)

)2
 =

t∑
i=1

E
[
(log(1 + µ+ σεi))

2
]

+
t∑
i 6=j

E [log(1 + µ+ σεi)]E [log(1 + µ+ σεj))] .

We can thus conclude, using the results of (2.3.6) and (2.3.8),

Var(Yt) = E[(Yt)
2]− E[Yt]

2 =
(
E[log2(1 + µ+ σε1)]−

(
E[log(1 + µ+ σε1)]

)2)
t. (2.3.9)

Note that this is a linear equation with respect to the variable t.

Proposition 2.3.1. Let µ, σ, r,X0 > 0. Suppose that

Xt = X0

t−1∏
i=0

(1 + µ+ σεi) ,

where εi are i.i.d. random variables satisfying E
[
log2 (1 + µ+ σε1)

]
< ∞. If Yt = log X̃t, where

X̃t = e−rtXt, then
E [Yt] = logX0 + t (−r + E [log (1 + µ+ σε1)])

and
Var (Yt) =

(
E
[
log2 (1 + µ+ σε1)

]
− (E [log (1 + µ+ σε1)])

2) t.
We will compute two examples for specific εi.

Example 2.3.1 (Rademacher). Consider the case when εi ∼ Rademacher, taking values 1 and
−1 with probability 1

2
each. Using (2.3.5) and computing the expectation with εi ∼ Rademacher,

we have

E[Yt] = logX0 + t

[
−r +

1

2
log
(
(1 + µ)2 − σ2

)]
. (2.3.10)

Now, using (2.3.9) and computing the expectations, we have

Var(Yt) = t

(
1

2
log2(1 + µ+ σ) +

1

2
log2(1 + µ− σ)−

(
1

2
log
(
(1 + µ)2 − σ2

))2
)
. (2.3.11)

Example 2.3.2 (Uniform). Consider the case when εi ∼ Uniform[−1, 1]. Again, using (2.3.5)
and computing the expectation, we have

E[Yt] = logX0 + t(−r + λ1). (2.3.12)

Similarly, using (2.3.9),
Var(Yt) = t(λ2 − λ12). (2.3.13)



12 | Multiplicative Probability Limit Theorems

We define λ1 and λ2 as follows.

λ1 =
1

2σ

[
(−µ+ σ − 1)log(µ− σ + 1) + (µ+ σ + 1)log(µ+ σ + 1)− 2σ

]
and

λ2 =
1

2σ

[
(µ+ σ + 1)

(
(log(µ+ σ + 1)− 2)log(µ+ σ + 1) + 2

)
− (µ− σ + 1)

(
(log(µ− σ + 1)− 2)log(µ− σ + 1) + 2)

]
.

We continue with these two examples in the following section, where we use numerical simula-
tions to examine the properties of Xt.

2.3.2 Numerical Results

Our goal in this section is to verify the following:

1. The mean of our log-sample paths at time t is approximately equal to (µ− σ2/2)t.

2. The variance of our log-sample paths at time t is approximately equal to σ2t.

3. At each time t, Xt is log-normal.

To begin with, we simulate daily data spanning a period of 15 years for a total of 5,475 days (we
do not account for leap years); our total number of sample paths is 5,000. Our initial price, X0,
is set at 225.93, the position of the Vanguard 500 at the time of simulation. Further, we set the
drift, µ, at 0.1732

365
, where 0.1732 is the annual return of the Vanguard 500, and the volatility, σ, at

0.114√
30

, where 0.114 is the volatility index on the S&P 500. We take r = 0 as we are only concerned
with the normality of the random variable and discounting does not impact this characteristic.
The final component of our simulation is the random term. We run two sets of simulations, one
with a Rademacher random term and the other with a Uniform random term over the interval
(−1, 1). For each set of simulations, we examine log sample path means and variances, comparing
our empirical results with the theoretical calculations done below. We also test Xt for normality
at the end of 5 years, 10 years, and 15 years.

Using the aforementioned parameters, we compute the following theoretical means and vari-
ances for both sets of simulations (i.e., for both εi ∼ Rademacher and εi ∼ Uniform) before
running the actual market simulations.

εi ∼ Rademacher E[Yt] = 6.8326 Slope = 0.0002580

Var(Yt) = 2.370 Slope = 0.0004329

εi ∼ Uniform E[Yt] = 7.6231 Slope = 0.0004023

Var(Yt) = 0.790 Slope = 0.0001443.

In our first set of simulations, the random term is Rademacher. From Figures 2.1a and 2.1b,
we note that the slopes given by our model, both simulated and theoretical, closely match the
drift and volatility of the geometric Brownian motion as calculated above.
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(a) Log Sample Path Means (b) Log Sample Path Variances

Figure 2.1: Simulated slopes for εi ∼ Rademacher.

The histogram in Figure 2.2 shows the log prices at the end of the 15th year.

Figure 2.2: Histogram of log prices at Year 15 with εi ∼ Rademacher.

Clearly, the data is normally distributed; this is further verified by the Shapiro-Wilk Normality
Test results below:

Year 5 10 15
Shapiro-Wilk p-value 0.276 0.441 0.498

The second set of simulations features a Uniform random term. As in the case with the
Rademacher random term, the simulated and theoretical means and variances given by our model
are quite close (see Figure 2.3), although they are closer in the Rademacher model. It should
be noted that Black-Scholes simulations generally tend to use Rademacher as the distribution of
choice, since one may think of Brownian motion as the scaling limit of a simple random walk.
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(a) Log Sample Path Means (b) Log Sample Path Variances

Figure 2.3: Simulated slopes for εi ∼ Uniform.

Our log-prices are normally distributed at the end of five, ten, and fifteen years as evidenced
by the results of the Shapiro-Wilk Normality Test in the table below (and in Figure 2.4, for the
15th year).

Year 5 10 15
Shapiro-Wilk p-value 0.305 0.920 0.941

Figure 2.4: Histogram of log prices at Year 15 with εi ∼ Uniform.



Chapter 3

Lyapunov Exponents and Products of Random
Matrices

Let {Yi}i≥1 be a sequence of i.i.d. random matrices equipped with measure µ. Further, let
Sn =

∏n
i=1 Yi. We assume that E(log+ ‖Y1‖) < ∞. The Lyapunov exponent λ associated with µ

is given by

λ = lim
n→∞

1

n
E (log ‖Sn‖) , (3.0.1)

with λ ∈ R ∪ {−∞}. In this chapter, we investigate the behavior of the Lyapunov exponent as
the common distribution of the sequence of random matrices varies over a wide class.

The Lyapunov exponent gives a measure of the exponential growth rate of the matrix norm.
Since all finite-dimensional norms are equivalent, λ is unique regardless of which norm ‖ ·‖ we use.
At the same time, λ depends on µ, which we usually take to be fixed in any discussion of λ and
so omit from our notation. Occasionally, when we are considering λ over a family of distributions
parametrized by some variable, we will write λ as a function of that variable.

The Lyapunov exponent is known explicitly for very few random matrix models as there is no
closed-form formula that can be applied universally. While there are examples in the literature
where explicit expressions have been obtained for some matrices under certain conditions, such as
in [3, 4, 9], it is often not possible to compute directly.

There have also been multiple forays into approximating the Lyapunov exponent for models
where it cannot be calculated explicitly. In [18], the author finds that random Fibonacci sequences
can be used to better understand the behavior of λ and employs new computational methods to
find exact values for a given λ. Further, in [14], λ is expressed in terms of associated complex
functions and a more general algorithm to numerically approximate λ is proposed. In [10], the
authors construct explicit invariant measures for a family of random matrix models where one
entry follows a Gamma distribution in order to calculate the corresponding Lyapunov exponents.

In Section 3.2, we provide analytic upper and lower bounds on the Lyapunov exponent as-
sociated with the product of random matrices where one entry is a Bernoulli random variable
with probability p equal to 1

2
. We find that these bounds converge to the Lyapunov exponent.

Interestingly, these bounds are related to Fibonacci sequences.
We further develop new tools to analytically and numerically compute the Lyapunov exponents

associated with various “parameter models” as defined in Section 3.3. For each of these models,
we also examine the variance associated with a multiplicative Central Limit Theorem for products
of random matrices under different priors on the model parameters. Compared to the calcula-

15
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tion of the Lyapunov exponent, there have been relatively few attempts to explicitly compute or
numerically approximate this variance. Our work aims to bridge this gap in the context of the
parameter models that we consider. These models are all based on the products of matrices that
have one element distributed as a random variable – in Section 3.4, this element is a standard
Cauchy random variable multiplied by a real-valued parameter ξ; in Section 3.5, a Bernoulli ran-
dom variable with probability p equal to 1

2
multiplied by a real-valued parameter ξ; in Section

3.6, a Bernoulli random variable with the probability p as the parameter; and in Section 3.7, a
Rademacher random variable multiplied by a real-valued parameter ξ.

In Section 3.1, we discuss some well-known results regarding λ that we make use of in our
subsequent analysis of the aforementioned random matrix models.

3.1 Preliminaries

In what follows, we introduce notational conventions and terminology and recall well-known
results regarding the Lyapunov exponent. Let P1 (R) denote the one-dimensional projective space.
Recall that P1 (R) denotes the set of directions in R2. To describe P1 (R) let us define the following

equivalence relation ∼ on R2\ {0}. We say the vectors x̃ =

(
x̃
ỹ

)
∈ R2\ {0} and x =

(
x
y

)
∈

R2\ {0} are equivalent, denoted x ∼ x̃, if there exists a nonzero real number c such that x = cx̃.
We define x̄ to be the equivalence class of a vector x. We can thus define P1 (R) as the set
of all equivalence classes x̄. We can also define a bijective map φ : P1 (R) → R ∪ {∞} for

x =

(
x1
x2

)
∈ R2 by

φ (x̄) =

{
x1
x2

if x2 6= 0

∞ if x2 = 0.

With a slight abuse of notation, we can identify P1(R) with R ∪ {∞}
Let G be a topological semigroup acting on X and let µ, ν be measures on G,X respectively.

Define µ ∗ ν to be the measure satisfying∫
X

f(x) d(µ ∗ ν)(x) =

∫
X

∫
G

f(g · x) dµ(g) dν(x)

for all integrable f . If µ ∗ ν = ν, then we say that ν is µ-invariant. Furthermore, we say that G is
strongly irreducible if there is no finite family of one-dimensional vector subspaces {X1, . . . , Xn}
such that g(X1 ∪ · · · ∪Xn) = X1 ∪ · · · ∪Xn for all g ∈ G. For our purposes, we are interested in

the action of GL(2,R) on P1 (R). For A =

(
a b
c d

)
∈ GL(2,R) and x ∈ P1 (R), we define

A · x =
ax+ b

cx+ d
.

The following result by Furstenberg and Kesten in [6] gives an important analogue to the Law
of Large Numbers.
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Theorem 3.1.1. Let {Yi}i≥1 be i.i.d. GL(d,R)-valued random matrices and Sn =
∏n

i=1 Yi. If
E(log+ ‖Y1‖) <∞, then a.s.

λ = lim
n→∞

1

n
log ‖Sn‖.

Suppose µ is a measure on the group GL(d,R) and that the matrices {Yi}i≥1 are distributed
according to µ. In [7], Furstenberg and Kifer give an expression for λ in terms of the measure µ
and the µ-invariant measures ν on P1 (R). The following result is given in [7, Theorem 2.2],

Theorem 3.1.2. Let µ be a measure on the group GL(d,R). Let {Yi}i≥1 be i.i.d. random matrices
distributed according to µ and Sn =

∏n
i=1 Yi. If E(log+ ‖Y1‖+log+ ‖Y −11 ‖) <∞, then the Lyapunov

exponent is given by

λ = sup
ν

∫
P1(R)

∫
GL(d,R)

log
|Mx̄|
|x̄|

dµ(M) dν(x),

where the supremum is taken over all probability measures ν that are µ-invariant on P1 (R).

If ν is the unique invariant distribution on P1 (R), then Theorem 3.1.2 shows that the Lyapunov
exponent can be written as

λ =

∫
P1(R)

∫
GL(d,R)

log
|Mx̄|
|x̄|

dµ(M) dν(x).

Given a measure µ on GL(d,R), Furstenberg and Bougerol state sufficient conditions for the
existence of a unique µ-invariant measure ν on P1 (R). The following theorem can be found in [3,
Theorem 4.1].

Theorem 3.1.3. Let µ be a measure on the group GL(2,R) and {Yi}i≥1 be i.i.d. random matrices
distributed according to µ. Further, let Sn =

∏n
i=1 Yi. Suppose Gµ is the smallest closed subgroup

containing the support of µ. If

(i) | detY1| = 1 a.s.

(ii) E(log+ ‖Y1‖) <∞

(iii) Gµ is not compact and strongly irreducible

then there exists a µ-invariant distribution ν on P1 (R), λ > 0 a.s. In particular, a.s.

λ = lim
n→∞

1

n
log ‖Snx̄‖ = lim

n→∞

1

n
log ‖Sn‖

for any x ∈ P1 (R), and

λ =

∫
P1(R)

∫
GL(2,R)

log
|Mx̄|
|x̄|

dµ(M) dν(x).
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Let A =

(
a b
c d

)
be a GL(2,R)-valued random matrix and X be a P1 (R)-valued random

variable with distributions µ and ν respectively. In this chapter, we only study matrices A with a
random and all other entries constant. Let us suppose that ν is the unique µ-invariant distribution
on P1(R). Following [10, pp. 3421] we see that

λ =

∫
P1(R)

∫
GL(2,R)

log
|Ax̄|
|x̄|

dµ(A) dν(x)

=
1

2

∫
P1(R)

∫
GL(2,R)

log
(ax+ b)2 + (cx+ d)2

x2 + 1
dµ(A) dν(x)

=
1

2

∫
P1(R)

∫
GL(2,R)

log

[(
ax+ b

cx+ d

)2

+ 1

]
+ log

(
|cx+ d|
x2 + 1

)
dµ(A) dν(x)

=
1

2

∫
P1(R)

∫
GL(2,R)

log
(
|A · x|2 + 1

)
+ log

[
(cx+ d)2

]
− log |x2 + 1| dµ(A) dν(x)

=

∫
P1(R)

log |cx+ d| dν(x) +
1

2

∫
P1(R)

∫
GL(2,R)

log
(
|A · x|2 + 1

)
dµ(A) dν(x)

− 1

2

∫
P1(R)

log |x2 + 1| dν(x)

=

∫
P1(R)

log |cx+ d| dν(x),

where in the second-to-last step we apply the definition of µ-invariance to the second term. Thus,
if X has distribution ν, then

λ = E [log |cX + d|] . (3.1.1)

Moreover, from the definition of µ-invariance, we can also conclude that A · x has the same
distribution as x, which we write A · x ∼ x. Thus, the random variable X with law given by a
unique µ-invariant distribution ν on P1 (R) must satisfy

aX + b

cX + d
∼ X. (3.1.2)

We make use of this distributional identity for the µ-invariant distribution in later sections.
The following result by Le Page stated in [12] gives us an analogue to the standard, additive

Central Limit Theorem.

Theorem 3.1.4. Define ` as the function `(M) = max{log+ ‖M‖, log+ ‖M−1‖}. Let µ be a
measure on the group GL(2,R) and {Yi}i≥1 be i.i.d. random matrices distributed according to µ.
Further, let Sn =

∏n
i=1 Yi. Suppose that Gµ is the smallest closed subgroup containing the support

of µ. If

(i)
∫
GL(2,R) exp (t`(M)) dµ(M) <∞ for some t > 0

(ii) Gµ is strongly irreducible

(iii) {| detM |−1/dM : M ∈ Gµ} is not contained in a compact subgroup of GL(2,R)
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then, for any x ∈ Rd \ {0}, there exists a Gaussian random variable Z with mean 0 and variance
σ2 such that

1√
n

(log ‖Snx̄‖ − nλ)→ Z and
1√
n

(log ‖Sn‖ − nλ)→ Z.

In subsequent sections, we present numerical approximations for the value of σ2 for several
matrix models. There have been very few attempts to find the value of σ2 explicitly.

3.2 Bernoulli
(

1
2

)
Model

The first matrix model that we study is based on a Bernoulli
(
1
2

)
random variable. Recall that

a random variable ε ∼ Bernoulli
(
1
2

)
if P (ε = 1) = 1

2
and P (ε = 0) = 1

2
. In this section we consider

a measure µ on GL(2,R) given by

Yi =

(
εi 1
1 0

)
, εi ∼ Bernoulli

(
1

2

)
. (3.2.1)

Suppose there exists a unique µ-invariant distribution ν related to the products of random
matrices of the form Yi. By (3.1.2), ν must have the same distribution of a random variable X
that satisfies the following distributional identity

X ∼ 1

X
+ ε, (3.2.2)

where ε ∼ Bernoulli
(
1
2

)
and is independent of X. Clearly, X must be a positive random variable.

In fact, X has full support in (0,∞). By the formula given in (3.1.1), the Lyapunov exponent
related to Yi in (3.2.1) is of the form

λ = E [logX] .

For a detailed study on this random variable and the Markov chain related to it we refer the
reader to [8]. In particular, the author proves that the Markov chain related to the system Yi has
a unique invariant distribution ν that satisfies (3.2.2) in [8, Theorem 5.2]. The author also gives
a formula for the distribution function in terms of continued fraction expansions.

In order to compute λ, we will study properties of the random variable X on (0,∞) that
satisfies (3.2.2). We begin by establishing some identities related to E [logX].

Proposition 3.2.1. If X is the random variable satisfying (3.2.2) then

E [logX] =
1

6
E [log (2X + 1)] .

Proof. Let X be a random variable with distribution ν as in (3.2.2). Then,

E [logX] = E
[
log

(
1

X
+ ε

)]
=

1

2
E
[
log

(
1

X

)]
+

1

2
E
[
log

(
1

X
+ 1

)]
= −1

2
E [logX] +

1

2
E
[
log

(
1 +X

X

)]
= −E [logX] +

1

2
E [log (1 +X)] . (3.2.3)
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Adding E [logX] to both sides of (3.2.3) and dividing by 2,

E [logX] =
1

4
E [log (1 +X)] . (3.2.4)

Continuing in a similar fashion with (3.2.4), we obtain

E [logX] =
1

4
E
[
log

(
1 +

1

X
+ ε

)]
=

1

8
E
[
log

(
1 +

1

X

)]
+

1

8
E
[
log

(
2 +

1

X

)]
=

1

8
E
[
log

(
X + 1

X

)]
+

1

8
E
[
log

(
2X + 1

X

)]
=

1

8
E [log (X + 1)] +

1

8
E [log (2X + 1)]− 1

4
E [logX]

=
1

4
E [logX] +

1

8
E [log (2X + 1)] . (3.2.5)

Subtracting 1
4
E [logX] from both sides of (3.2.5) and dividing by 3

4
yields

E [logX] =
1

6
E [log (2X + 1)] ,

thus completing the proof.

The proof of Proposition 3.2.1 helps us generalize several other identities. We can prove a
string of these identities in a similar fashion as follows.

E [logX] =
1

6
E [log (2X + 1)]

=
1

14
E [log (3X + 2) (X + 2)]

=
1

32
E [log (5X + 3) (3X + 1) (2X + 3) (2X + 1)]

=
1

72
E [log (8X + 5) (4X + 3) (5X + 2) (3X + 2) (3X + 5) (X + 3) (3X + 2) (X + 2)]

(3.2.6)

...

The string of equalities above is obtained by iteratively exploiting the distributional equivalence
of X and 1

X
+ε, the independence of X and ε, and elementary logarithmic identities. An interesting

pattern emerges.
At the first step of the iteration, we are looking at the expected value of the log of one affine

function of X that is obtained by taking the inner product of the vector (2, 1) and the vector
(X, 1). As we move to the second step of the iteration, we encounter the expectaton of the log of
the product of two affine functions of X. The first one is obtained by taking the inner product of
(3, 2) and (X, 1), while the second is obtained by taking the inner product of (1, 2) and (X, 1). At
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the third step, we encounter the expected value of the log of the product of four (= 23−1) affine
functions of X; these are obtained by respectively taking the inner product of (X, 1) with the
vectors (5, 3), (3, 1), (2, 3), and (2, 1).

In what follows, we represent the vectors generating the aforesaid affine functions of X via
inner products with (X, 1), which we call “coefficient pairs”, in an array where the row number
corresponding to the nth step of the iteration is n − 1. The first five rows of the array are
shown below. We use the symbol 7→ to map the collection of coefficient pairs to the real number
representing the product of the sum of entries in each coefficient pair in the row; we make extensive
use of these quantities later on.

n = 0 (2, 1) 7→ 3

n = 1 (3, 2) (1, 2) 7→ 5 · 3 = 15

n = 2 (5, 3) (3, 1) (2, 3) (2, 1) 7→ 8 · 4 · 5 · 3 = 480

n = 3 (8, 5) (4, 3) (5, 2) (3, 2) (3, 5) (1, 3) (2, 1) (2, 3) 7→ 13 · 7 · 7 · 5 · 8 · 4 · 3 · 5 = 1528800

n = 4 (13, 8) (7, 4) (7, 5) (5, 3) (8, 3) (4, 1) (3, 2) (5, 2)

(5, 8) (3, 4) (2, 5) (2, 3) (5, 3) (3, 1) (1, 2) (3, 2)

7→ 59668697090000

· · · · · · , (3.2.7)

Now, for the kth coefficient pair in the nth row, let akn denote the first element and bkn the second.
To illustrate this notational convention, consider the example 1

14
E [log (3X + 2) (X + 2)]. This is

in row n = 1, so we would refer to the 3 in (3X + 2) as a11 and the 2 as b11. Similarly, in (X + 2),
the coefficient X, 1, would be labeled a21 and the 2 would be labeled b21. In terms of akn and bkn,
the expression is 1

14
E [log (a11X + b11) (a21X + b21)].

We define the following multilevel recursion.

Definition 3.2.2. Set a10 = 2 and b10 = 1. For any given n ∈ N, define(
akn+1, b

k
n+1

)
:=
(
akn + bkn, a

k
n

)
, for k = 1, . . . , 2n,(

akn+1, b
k
n+1

)
:=
(
bk−2

n

n , ak−2
n

n

)
, for k = 2n + 1, . . . , 2n+1.

We recall that a “Fibonacci-like sequence” f0, f1, f2 . . . is a sequence determined by the initial
values f0, f1 such that

fn+1 = fn + fn−1

for all n ∈ N. When f0 = f1 = 1, we recover the standard Fibonacci sequence. Fibonacci-like
sequences can be given by a closed formula. Let fn(f0, f1) represent the nth term in the sequence
given initial values f0, f1. If

φ1 =
1 +
√

5

2
and φ2 =

1−
√

5

2
,

then

fn(f0, f1) =
f1 − f0φ2√

5
(φ1)

n +
f0φ1 − f1√

5
(φ2)

n . (3.2.8)
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We observe several patterns in (3.2.7). Note that the nth row is made up of 2n pairs. By
definition, given a fixed k ∈ {1, . . . , 2n−1}, we have

akn+1 = akn + bkn = akn + akn−1.

Thus, for each k, the sequence akn will be a Fibonacci-like sequence on n. Given a fixed k, the
sequence bkn will also be a Fibonacci-like sequence in n. Also note that by definition, the second
half of the nth row is simply the (n− 1)th row where the elements within the coefficient pairs are
flipped. We use these patterns to help establish bounds on the Lyapunov exponent. In order to
find suitable estimates, we first need to establish some preliminary results. These involve proving
the string of equalities on the Lyapunov exponent given in (3.2.6). We also need to some to prove
some elementary inequalities on the logarithm of the polynomials given inside the expectation in
(3.2.6).

First, we extend the identities given in (3.2.6) for all n.

Proposition 3.2.3. If X is the random variable satisfying (3.2.2), then

E [logX] =
1

(n+ 6)2n
E

[
log

(
2n∏
k=1

(
aknX + bkn

))]
, (3.2.9)

for all n ∈ N ∪ {0}.

Proof. We begin with n = 0. By Proposition 3.2.1,

E [logX] =
1

(0 + 6)20
E
[
log
(
a10X + b10

)]
=

1

6
E [log (2X + 1)] .

Now suppose (3.2.9) holds for n. We shall prove (3.2.9) holds for n+ 1. Note that

E [logX] =
1

(n+ 6)2n
E

[
log

(
2n∏
k=1

(
aknX + bkn

))]

=
1

(n+ 6)2n

(
1

2
E

[
log

(
2n∏
k=1

(
akn

(
1

X
+ 1

)
+ bkn

))]
+

1

2
E

[
log

(
2n∏
k=1

(
akn

(
1

X

)
+ bkn

))])

=
1

(n+ 6)2n+1

(
E

[
log

(
2n∏
k=1

(
akn
X

+ akn + bkn

))]
+ E

[
log

(
2n∏
k=1

(
akn
X

+ bkn

))])

=
1

(n+ 6)2n+1

(
E

[
log

(
2n∏
k=1

(
akn +

(
akn + bkn

)
X

X

))]
+ E

[
log

(
2n∏
k=1

(
akn + bknX

X

))])

=
1

(n+ 6)2n+1

(
E

[
log

(
2n∏
k=1

((
akn +

(
akn + bkn

)
X
) (
akn + bknX

)))])
− 2n+1E [logX]

(n+ 6)2n+1

=
1

(n+ 6)2n+1

(
E

[
log

(
2n∏
k=1

((
bkn+1 +

(
akn+1

)
X
) (
akn + bknX

)))])
− E [logX]

(n+ 6)
.

(3.2.10)
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After adding the last term in (3.2.10) to both sides and then dividing by the coefficient in front
of E [logX], we have

E [logX] =
1

((n+ 1) + 6)2n+1

(
E

[
log

(
2n+1∏
k=1

(
akn+1X + bkn+1

))])
.

Here, the product simplifies because the
(
akn + bknX

)
term will show up in the second half of the

(n + 1)th row (since the coefficients are flipped from the nth row). This is taken into account by
the new product from k = 1 to 2n+1 which will multiply all of the 2n+1 sums that appear in the
n+ 1 row. Since the formula holds for n+ 1, by induction, it holds for all n ≥ 0.

We now prove the elementary inequalities needed on the polynomials in (3.2.9).

Lemma 3.2.4. For x > 1,

log

(
2n∏
k=1

(
aknx+ bkn

))
< log

(
x2

n
2n∏
k=1

(
akn + bkn

))
.

Proof. We let f(x) = log
(∏2n

k=1

(
aknx+ bkn

))
and g(x) = log

(
x2

n∏2n

k=1

(
akn + bkn

))
. Note that

f(1) = g(1). Taking the derivative of both of these functions, we obtain

f ′(x) =
2n∑
k=1

akn
aknx+ bkn

and

g′(x) =
2nx2

n−1

x2n
=

2n

x
.

Note that for x > 1,
2n∑
k=1

akn
aknx+ bkn

<
2n∑
k=1

akn
aknx

=
2n∑
k=1

1

x
=

2n

x
.

This shows that f ′(x) < g′(x) when x > 1. Since we also have that f(1) = g(1), it must be that
f(x) < g(x) for all x > 1.

Lemma 3.2.5. For x < 1,

log

(
2n∏
k=1

(
aknx+ bkn

))
> log

(
x2

n
2n∏
k=1

(
akn + bkn

))
.

Proof. Note that when x < 1, we have aknx + bkn >
(
akn + bkn

)
x. Taking products and the log of

both sides gives us the desired result.

Using Lemmas 3.2.4 and 3.2.5, we can prove that the Lyapunov exponent is bounded by terms
dependent only on n. First, we define the following quantity.
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Definition 3.2.6. For a fixed n, let cn be the product of the sums of coefficient pairs in the nth

row of (3.2.7). That is,

cn =
2n∏
k=1

(
akn + bkn

)
= cn−1

2n−1∏
k=1

(
akn + bkn

)
=

2n∏
k=1

akn+1.

Recall that c0, . . . , c4 are displayed in (3.2.7).

Theorem 3.2.7. The Lyapunov exponent λ = E [logX] associated with the random matrices Yi
in (3.2.1) can be estimated by

pn ≤ E [logX] ≤ qn, (3.2.11)

where

pn =
log cn

(n+ 7) 2n
and qn =

log cn
(n+ 4) 2n

. (3.2.12)

Proof. Recall that by Proposition 3.2.3, we have that

E [logX] =
1

(n+ 6)2n

(
E

[
log

(
2n∏
k=1

(
aknX + bkn

))])
.

Using this and Lemma 3.2.4, we can write

E [logX] =
1

(n+ 6)2n

(
E

[
log

(
2n∏
k=1

(
aknX + bkn

))
· 1(X<1)

]
+ E

[
log

(
2n∏
k=1

(
aknX + bkn

))
· 1(X>1)

])

≤ 1

(n+ 6)2n

(
E

[
log

(
2n∏
k=1

(
akn + bkn

))
· 1(X<1)

]
+ E

[
log

(
X2n

2n∏
k=1

(
akn + bkn

))
· 1(X>1)

])
.

(3.2.13)

Further,

E [logX]

≤ 1

(n+ 6)2n

(
log

(
2n∏
k=1

(
akn + bkn

))
· 1(X<1) + E

[
log
(
X2n

)
· 1(X>1)

]
+ log

(
2n∏
k=1

(
akn + bkn

))
· 1(X>1)

)

=
1

(n+ 6)2n

(
log

(
2n∏
k=1

(
akn + bkn

)))
+

2n

(n+ 6)2n
E
[
log (X) · 1(X>1)

]
=

log cn
(n+ 6)2n

+
1

(n+ 6)
(2E [logX]) . (3.2.14)

To obtain (3.2.14), we used the fact that cn =
∏2n

k=1

(
akn + bkn

)
and E

[
log (X) · 1(X>1)

]
= 2E [logX],

which is shown in (3.6.3) by Proposition 3.6.1. Subtracting the last term in (3.2.14) from both
sides and dividing by the resulting constant that multiplies E [logX], we have

E [logX] ≤ log cn
(n+ 4) 2n

.
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This result gives us the upper bound.
On the other hand, using Lemma 3.2.5,

E [logX] =
1

(n+ 6)2n

(
E

[
log

(
2n∏
k=1

(
aknX + bkn

))
· 1(X<1)

]
+ E

[
log

(
2n∏
k=1

(
aknX + bkn

))
· 1(X>1)

])

≥ 1

(n+ 6)2n

(
E

[
log

(
X2n

2n∏
k=1

(
akn + bkn

))
· 1(X<1)

]
+ E

[
log

(
2n∏
k=1

(
akn + bkn

))
· 1(X>1)

])
(3.2.15)

Further,

E [logX]

≥ 1

(n+ 6)2n

(
log

(
2n∏
k=1

(
akn + bkn

))
· 1(X<1) + E

[
log
(
X2n

)
· 1(X<1)

]
+ log

(
2n∏
k=1

(
akn + bkn

))
· 1(X>1)

)

=
1

(n+ 6)2n

(
log

(
2n∏
k=1

(
akn + bkn

)))
+

2n

(n+ 6)2n
E
[
log (X) · 1(X<1)

]
=

log cn
(n+ 6)2n

− 1

(n+ 6)
E [log (X)] . (3.2.16)

To obtain (3.2.16), we used the fact that cn =
∏2n

k=1

(
akn + bkn

)
and E [log (X) · 1X<1] = −E [logX],

which is shown in (3.6.4) by Proposition 3.6.1. Adding the last term in (3.2.16) to both sides and
dividing by the resulting constant that multiplies E [logX], we have

log cn
(n+ 7)2n

≤ E [log (X)] .

This gives us the lower bound.

We now show that these bounds converge to the Lyapunov exponent.

Theorem 3.2.8. If pn, qn are the sequences defined in (3.2.12), then

pn, qn → E [logX] .

Proof. It follows from the earlier observations that cn ≤ (Fn+3)
2n where Fn is the usual Fibonacci

sequence. Also note that

lim
m→∞

log
(

(Fm+3)
2m
)

(m+ 4)2m
= lim

m→∞

log (Fm+3)

(m+ 4)

= lim
m→∞

1

m+ 4
log


(

1+
√
5

2

)m+4

√
5

−

(
1−
√
5

2

)m+4

√
5


= log (φ1) .
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Thus, we have

|qn − pn| =
log cn

(n+ 4) 2n
− log cn

(n+ 7) 2n

=
3 log cn

(n+ 7) (n+ 4) 2n

≤ 3

n+ 7
×

log
(

(Fn+3)
2n
)

(n+ 4) 2n
= 0. (3.2.17)

Using (3.2.11) and (3.2.17), we reach the desired result.

Unfortunately, there is no obvious recursion among the cn values. In order to compute cn
using its definition, we must consider 2n coefficient pairs. To do so beyond n = 25 exceeds our
computing power. With n = 25, we have the upper bound from (3.2.11) to be 0.225397 and the
lower bound to be 0.204266.

3.3 Overview of Parameter Models

We consider a parameter model to be one where an element of the random matrix that the
model is based on is either a random variable whose parameter we vary or a random variable that
is multiplied by a real-valued parameter.

More specifically, the random matrices {Yi}i≥1 in the first type of parameter model are of the
form

Yi =

(
εi b
c d

)
,

where εi ∼ Bernoulli (p) with the parameter p ∈ (0, 1); we investigate the properties of this model
in Section 3.6.

In the second type of parameter model, the random matrices {Yi}i≥1 are of the form

Yi =

(
ξεi b
c d

)
,

where εi is distributed as Cauchy (0, 1) in Section 3.4, Bernoulli
(
1
2

)
in Section 3.5, and Rademacher

in Section 3.7. In all models, ξ ∈ R.
For the first type, we study the behavior of the following two objects:

1. λ (p)

2. the variance of

Lp =

∑n
i=1 log ‖Six‖ − nλ (p)√

n
.

For the second type, we study

1. λ (ξ)
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2. the variance of

Lξ =

∑n
i=1 log ‖Six‖ − nλ (ξ)√

n
.

If λ (ξ) or λ (p) does not have an explicit form, we approximate it using the method outlined
in Section 3.3.1. We simulate Var (Lξ) and Var (Lp) using the method outlined in Section 3.3.2.

3.3.1 Approximating λ

We first define U1, U2, . . . UN as

U1 = log

∥∥∥∥Y1 x

‖x‖

∥∥∥∥
U2 = log

∥∥∥∥Y2 Y1x

‖Y1x‖

∥∥∥∥
...

Un = log

∥∥∥∥Yn Yn−1 . . . Y1x

‖Yn−1 . . . Y1x‖

∥∥∥∥ .
Since

Un = log ‖YnYn−1 . . . Y1x‖ − log ‖Yn−1 . . . Y1x‖ , (3.3.1)

we have

log ‖YnYn−1 . . . Y1x‖ = Un + log ‖Yn−1 . . . Y1x‖
= Un + Un−1 + · · ·+ U1 + log ‖x‖ . (3.3.2)

Further,

log
‖Snx‖
‖x‖

=
n−1∑
i=0

log
‖Si+1x‖
‖Six‖

, (3.3.3)

which implies

log ‖Snx‖
n

=

∑n
i=0 log ‖Si+1x‖

‖Six‖ + log ‖x‖
n

. (3.3.4)

By Furstenberg and Kesten’s analogue to the Law of Large Numbers (Theorem 3.1.1), we can
approximate λ for a large n using the right-hand side of (3.3.4).

3.3.2 Variance Simulation Method

Motivated by Theorem 3.1.4, we obtain estimates for the variance associated with a multi-
plicative Central Limit Theorem for products of random matrices with the following simulation
method:

1. Choose an interval [a, b] as the range of ξ. Divide this interval into sub-intervals of length k.
Let ξ be of the form a+ jk for j = 0, 1, . . . , b−a

k
− 1.
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2. Choose a unit vector x.

3. For each ξ, simulate

Lξ =

∑n
i=1 log ‖Six‖ − nλ(ξ)√

n
,

and store the result in a data vector of length b−a
k

.

4. Repeat Step 3 an m number of times to obtain a m × b−a
k

matrix, where the jth column
contains all of the Lξ corresponding to ξj.

5. Calculate the variance of each column of the matrix.

To obtain estimates for Var (Lp), we use the same procedure with

Lp =

∑n
i=1 log ‖Six‖ − nλ(p)√

n
,

in Step 3.

Note that in all of our simulations, we set x =
(√

2
2
,
√
2
2

)
in Step 2.

3.4 ξ ·Cauchy Parameter Model

The first parameter model we consider is based on the standard Cauchy distribution (that is,
Cauchy with location x0 = 0 and scale γ = 1). The probability density function of a Cauchy
random variable X with location x0 and scale γ is

f(x) =
1

πγ

[
1 +

(
x−x0
γ

)2]
for −∞ < x <∞.

In this section, we consider a measure µξ on GL(2,R) given by

Yi =

(
ξεi −1
1 0

)
, εi ∼ Cauchy (0, 1) , ξ ∈ R. (3.4.1)

It can be seen that µξ satisfies Theorem 3.1.3 (see [3, pp. 36]). By (3.1.2), the unique µξ-
invariant distribution νξ must have the same distribution of the random variable Xξ that satisfies
the distributional identity

Xξ ∼ −
1

Xξ

+ ξε, (3.4.2)

where ε ∼ Cauchy (0, 1) is independent of Xξ. Following [3, pp. 33], we have an explicit formula
for the Lyapunov exponent in terms of the parameter ξ.

Proposition 3.4.1. The Lyapunov exponent λ(ξ) related to the random matrices Yi given in
(3.4.1) is of the form

λ(ξ) = log

(
ξ +

√
ξ2 + 4

2

)
. (3.4.3)
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Proof. We want to compute λ(ξ) = E[log |Xξ|], where Xξ is a random variable satisfying (3.4.2).
First, we show that the random variable Xξ ∼ Cauchy (0, a) satisfies the distributional identity

Xξ ∼ −
1

Xξ

+ ξε, (3.4.4)

where ε is a standard Cauchy distribution independent of Xξ.
From the transformation properties of the Cauchy distribution, we know that the right-hand

side of (3.4.4) has a Cauchy distribution;

− 1

Xξ

+ ξε ∼ Cauchy

(
0,

1

a
+ |ξ| a

)
.

Since the left-hand side of (3.4.4) also has a Cauchy distribution, it suffices to find which parameter
a (3.4.4) holds for. Taking the characteristic function of each side (recall that ϕX(λ) = e−a|λ|) and
using the independence of Xξ and ε,

e−a|λ| = e
−1
a
|λ|e−ξ|λ|.

Clearly, a = 1
a

+ ξ, which implies that a2 − ξa− 1 = 0. Hence,

a =
ξ +

√
ξ2 + 4

2
.

A simple computation thus shows that

λ(ξ) =

∫
log |x| 1

πa(1 + x2

a2
)
dx =

1

πa
(πa log |a|)

= log |a|,

completing the proof.

Figure 3.1a shows the graph of λ(ξ) for ξ ∈ [−20, 20]; in Figure 3.1b, we plot λ(ξ) for ξ ∈ [−1, 1].
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Figure 3.1: ξ vs. λ(ξ)
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Following our variance simulation method of Section 3.3.2, we specify the set of ξ to use in
our parameter models by choosing an interval [a, b] as the range of ξ, dividing this interval into
sub-intervals of length k, and writing ξ in the form a + jk for j = 0, 1, . . . , b−a

k
− 1. Figure 3.2

illustrates the results for ξ ∈ [−20, 20], i.e., with a = −20, b = 20, and k = 0.25, for a total of
b−a
k

= 40
0.25

= 160 points in the interval. This is the same set of ξ used to produce Figure 3.1a, that
is, we use the set of λ(ξ) shown in Figure 3.1a in our simulation of Var (Lξ) in Figure 3.2.

0.0

0.5

1.0

1.5

2.0

2.5

−20 −10 0 10 20
ξ

V
ar

(L
ξ)

Figure 3.2: k = 0.25, m = 5000 000, n = 1000

In Figure 3.3, we superimpose a curve on the points shown in Figure 3.2. We do this for all λ
and variance figures that follow, unless noted otherwise.

0.0
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1.0

1.5

2.0
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V
ar
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Figure 3.3: k = 0.25, m = 5000 000, n = 1000

Clearly, Var (Lξ) is equal to 0 when ξ = 0. Further, while a slight perturbation of ξ on either
side of zero produces a very steep change in the value of the variance, the rate of change gradually
flattens out as ξ moves away from zero.

Next, in Figure 3.4, we plot Var (Lξ) for ξ ∈ [−1, 1] with much finer intervals of length 0.01.
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Figure 3.4: k = 0.01, m = 1000 000, n = 1000

The two halves of the graph (i.e., between −1 and 0 and between 0 and 1) appear, at first
glance, to be linear. While there are some small jumps on either side, especially as ξ moves away
from zero, the mean squared error is equal to 0.0001 (for each half), so these deviations are indeed
negligible.

3.5 ξ ·Bernoulli
(

1
2

)
Parameter Model

Our second parameter model is based on the Bernoulli
(
1
2

)
model of Section 3. The random

matrices are of the form

Yi =

(
ξεi 1
1 0

)
, εi ∼ Bernoulli

(
1

2

)
, ξ ∈ R. (3.5.1)

In this model, we do not have an explicit expression for λ(ξ). Thus, in order to study the
asymptotics of λ(ξ), we build on our approximation method from Section 3.3.1 and simulate
it as follows.

1. Choose an interval [a, b] as the range of ξ. Divide this interval into sub-intervals of length k.
Let ξ be of the form a+ jk for j = 0, 1, . . . , b−a

k
− 1.

2. For each ξj,

(a) simulate

xj,i =
1

xj,i−1
+ ξjεj,i,

with i = 0, 1, . . . , N , εj,i ∼ Bernoulli
(
1
2

)
and xj,0 = 1;

(b) repeat Step(2)(a) an M number of times to get a set of values

zj =
{
x
(1)
j,N , x

(2)
j,N , . . . x

(M)
j,N

}
.

3. Calculate
λ(ξj) = E log |zj| .
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For our simulations of λ (ξ) and Var (Lξ), we use two sets of values for ξ:

• a = −20, b = 20, k = 1 (Figure 3.5)

• a = −1, b = 1, k = 0.02. (Figure 3.6)

Both sets’ λ(ξ) are simulated with M = 1 000 000 and N = 1000, and variance with m = 1 000 000
and n = 1000.
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Figure 3.5
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Figure 3.6

3.6 Bernoulli (p) Parameter Model

In this section, we consider a random matrix model where the random entry follows a
Bernoulli (p) distribution and the parameter of interest is p. Let µp be a measure on GL(2,R)
given by

Yi =

(
εi 1
1 0

)
, εi ∼ Bernoulli (p) , 0 ≤ p ≤ 1. (3.6.1)

Recall that in [8, Theorem 5.2] the author proves the existence of a unique µp-invariant distri-
bution νp. By (3.1.2), νp must have the same distribution of the random variable Xp that satisfies
the following distributional identity

Xp ∼
1

Xp

+ εi, (3.6.2)
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where ε ∼ Bernoulli (p) is independent of Xp.
Let λ(p) be the Lyapunov exponent related to the matrices of the form Yi in (3.6.1). Much like

with the Bernoulli
(
1
2

)
model, we do not have an expression for the Lyapunov exponent. Despite

this, we can make some observations about its behavior depending on the parameter p. As pointed
out in [8, Theorem 5.2] we have that

Xp ≥ 0

with support in (0,∞).
To study the asymptotics of λ(p) near zero, we begin with inequalities related to E [log (Xp)].

Proposition 3.6.1. If Xp is the random variable that satisfies (3.6.2), then we have the following
identities:

E
[
log (Xp) · 1(Xp>1)

]
=

1

p
E [log (Xp)] , (3.6.3)

E
[
log (Xp) · 1(Xp<1)

]
=

(p− 1)

p
E [log (Xp)] , (3.6.4)

and
E
[
log (Xp) · 1(Xp<1)

]
= (p− 1)E

[
log (Xp) · 1(Xp>1)

]
. (3.6.5)

Proof. We first prove (3.6.5) by noting that

E
[
log (Xp) · 1(Xp<1)

]
= pE

[
log

(
1

Xp

+ 1

)
· 1(

1
Xp

+1<1
)]+ (1− p)E

[
log

(
1

Xp

)
· 1(

1
Xp

<1
)]

= 0 + (1− p)E
[
log

(
1

Xp

)
· 1(Xp>1)

]
= (p− 1)E

[
log (Xp) · 1(Xp>1)

]
.

To prove (3.6.3), observe that

E [log (Xp)] = E
[
log (Xp) · 1(Xp>1)

]
+ E

[
log (Xp) · 1(Xp<1)

]
= E

[
log (Xp) · 1(Xp>1)

]
+ (p− 1)E

[
log (Xp) · 1(Xp>1)

]
= pE

[
log (Xp) · 1(Xp>1)

]
.

Combining (3.6.5) and (3.6.3), we can show (3.6.4).

Proposition 3.6.2. If Xp is the random variable that satisfies (3.6.2), then

E [log (Xp)] =
p

2
E [log (Xp + 1)] . (3.6.6)

Proof. The proof is analogous to the proof of Proposition 3.2.1.

We can now use these results to establish bounds on the Lyapunov exponent as a function of
p. We begin with an upper estimate.

Proposition 3.6.3. If Xp is the random variable that satisfies (3.6.2), then

E [log (Xp)] ≤ p log 2. (3.6.7)
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Proof. First, log(x+ 1) ≤ log(2x) for x ≥ 1. Using (3.6.3), we have

E [log (Xp)] =
p

2
E [log(Xp + 1)]

=
p

2
E
[
log(Xp + 1) · 1(Xp<1) + log(Xp + 1) · 1(Xp>1)

]
≤ p

2

[
log (2)P (Xp < 1) + E

[
log(2Xp) · 1(Xp>1)

]]
=

p

2

[
log 2 + E

[
log(Xp) · 1(Xp>1)

]]
=

p

2
log 2 +

1

2
E [log (Xp)] . (3.6.8)

Subtracting 1
2
E [log (Xp)] from both sides of (3.6.8), we reach the desired result.

Now we consider the lower bound of the Lyapunov exponent as a function of p.

Proposition 3.6.4. If Xp is the random variable that satisfies (3.6.2), then

p

3− p
log 2 ≤ E [log (Xp)] . (3.6.9)

Proof. Note that x+ 1 ≥ 2x for x < 1. Using (3.6.4), we have

E [log (Xp)] =
p

2
E [log(Xp + 1)]

=
p

2
E
[
log(Xp + 1) · 1(Xp<1) + log(Xp + 1) · 1(Xp>1)

]
≥ p

2

[
E
[
log(2Xp) · 1(Xp<1)

]
+ log 2P (Xp > 1)

]
=

p

2

[
log 2 + E

[
log(Xp) · 1(Xp<1)

]]
=

p

2
log 2 +

(p− 1)

2
E [log (Xp)] . (3.6.10)

A simple rearrangement gives us the desired result.

Using these bounds, we can establish the asymptotics for λ(p). Recall that a function f(x) is
equal to Θ (g(x)) near x0 if there exists constants C1, C2 > 0 such that C1g(x) ≤ f(x) ≤ C2g(x)
near x0.

Proposition 3.6.5. As p→ 0,
λ(p) = Θ(p).

Proof. We know that λ(p) = E[log (Xp)]. From (3.6.7), we have the bound

|E[log (Xp)]| ≤ |p| log (2) ,

implying

lim sup
p→0

|E[log (Xp)]|
|p|

≤ log (2) ,
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so that λ(p) is equivalent to O(p) as p→ 0. Now consider the bound from (3.6.9):

|E[log (Xp)]| ≥
|p|

3− p
log (2) .

This implies that

lim sup
p→0

|E[log (Xp)]|
|p|

≥ lim sup
p→0

log 2

3− p
=

log (2)

3
,

thus completing the proof.

In Figure 3.7, we plot λ(p) in black and the upper and lower bounds of λ(p) (from Propositions
3.6.3 and 3.6.4 respectively) in blue.
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Figure 3.7: k = 0.01, n = 1000 000

We simulate, usng our simulation method from Section 3.3.2 , Var (Lp) with n = 1000 and
m = 1 000 000. We plot the resulting points in Figure 3.8.
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Figure 3.8

With p = 0 and p = 1, the variance is zero. The distribution of variances is moderately skewed
to the left. The maximum variance is achieved at p = 0.56.
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3.7 ξ ·Rademacher Parameter Model

Our final parameter model involves matrices where the first entry is a parameter ξ ∈ R mul-
tiplied by a Rademacher random variable. A Rademacher random variable takes on the value 1
with probability 1

2
and −1 with probability 1

2
. We consider a measure µξ on GL(2,R) given by

Yi =

(
ξεi 1
1 0

)
, εi ∼ Rademacher, ξ ∈ R. (3.7.1)

We do not have an explicit formula for λ (ξ), so we approximate it using our standard method
from Section 3.3.1. Figure 3.9 displays the resulting λ(ξ) plot for ξ ∈ [−20, 20] with intervals of
length of 1.

0

1

2

3

−20 −10 0 10 20
ξ

λ(
ξ)

(a)

0

1

2

3

−20 −10 0 10 20
ξ

λ(
ξ)

(b)

Figure 3.9

We use these λ(ξ) to simulate Var (Lξ), shown in Figure 3.10. The shape of the variance curve
in Figure 3.10a is difficult to interpret, so we examine the individual points in Figure 3.10b.
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Figure 3.10

The variance is 0 when ξ = 0, but sharply increases at ξ = 1 (and ξ = −1) before decreasing
in the same manner between ξ = 1 and ξ = 3 (and between ξ = −1 and ξ = −3).
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To better understand the behavior of the variance between −3 and 3, we look at finer intervals
(k = 0.05) between ξ = 0 and ξ = 3. The sixty variance points that we obtain in Figure 3.11
clearly indicate that the region between ξ = 1.5 and ξ = 1.8 experiences the most volatility.
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Figure 3.11

Thus, we examine this region between ξ = 1.5 and ξ = 1.8 in greater detail. Figure 3.12 shows
the variance of 31 sample points in this region. There is no clearly discernable pattern, although
it is worth mentioning that the Golden Ratio lies in this region. For future research, it would be
interesting to investigate this phenomenon further.
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