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Abstract. The infinitesimal generators of Lévy processes in Euclidean space are

pseudo-differential operators with symbols given by the Lévy-Khintchine formula.

In the absence of a canonical definition of Fourier transform which is sensible for

arbitrary Lie groups, a similar characterization of these processes for Lie groups

is a subtle matter. We introduce the notion of pseudo-differential operator in a

connected, simply connected nilpotent Lie group G using the Weyl functional cal-

culus. We prove that with respect to this definition, the quantized generators of

Lévy processes in G are pseudo-differential operators which admit C∞
c (R) as a core.
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1. Introduction

In Rn, a Lévy process is defined to be a cádlàg stochastic process with stationary

and independent increments (see Appendix B for definitions). Brownian motion and

the Poisson process are the most famous examples of these processes. In Euclidean

space, these processes are well understood. One of the most useful ways to character-

ize a stochastic process is to compute its Fourier transform. The Fourier transform

of a Lévy process ρ(t) has a particularly nice form, given by the Lévy-Khintchine

formula [1]:

E[eiθρ(t)] = exp(tϕ(θ))

for

(1.1) ϕ(θ) = aitθ − 1

2
σ2tθ2 + t

∫
R−{0}

(eiθx − 1− iθxI|x|<1ν(dx),

where a ∈ R, σ ≥ 0, I is the indicator function and ν is a suitably chosen measure.

Lévy processes are Markov processes, and every Markov process can be described

by a corresponding operator called an infinitesimal generator [1]. To understand these

operators, it is useful to recall some ideas from harmonic analysis. If f is a smooth

function on Rn with some reasonable decay properties, then the Fourier transform

F(f)(k) =
∫
Rn f(x)e−2πix·kdx converges and from integration by parts one obtains

the famous formula

F (Dαf) (k) = kαF(f)(k),

where α = (α1, . . . , αn) is any multi-index,

Dαf =
1

i|α|

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn
f and kα = kα1

1 · · · kαnn .

By defining

Pσ(f) = F−1 [σ(k)F(f)]
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one may recognize that Dα = Pσ where σ(k) = kα. The function σ is commonly

referred to as the symbol of the operator Dα. When σ(k) is a polynomial, Pσ is

a differential operator with constant coefficients; however Pσ is a sensible object

for many other choices of σ(k). This enables one to define a wide class of so-called

pseudo-differential operators Pσ (refer to Appendix A for a more detailed exposition).

Indeed, given an arbitrary operator W , one may wish to determine if there exists some

σW such that W = PσW
with respect to the symbol σW .

If ρ(t) is any Markov process, then one can define the following semigroup of oper-

ators:

(1.2) (Ttf)(x) = E (f(ρ(t))|ρ0 = x) .

The infinitesimal generator of this semigroup is the operator

(1.3) (Lρf)(x) := lim
r→0

1

t
(Tt(f)(x)− f(x)) .

It is an interesting fact that given appropriate conditions on L, one can determine

(up to reasonable equivalency) a process ρ for which L = Lρ [1]. Indeed, one way to

characterize a process is to characterize the infinitesimal generator of its associated

semigroup. One has the following classical result, the proof of which appears in

Appendix B.

Theorem 1.1. If ρ(t) is a Lévy process in Rn then Lρ is a pseudo-differential operator

which is densely defined in L2(R) and the symbol of this operator is given by the Lévy-

Khintchine formula:

(1.4) (Lpf) = Pϕ(D)

where D = 1
in

(
∂
∂x1
, . . . , ∂

∂xn

)
and ϕ is as in (1.1).
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Some of these properties have analogs in more general spaces, for example, in some

classes of Lie groups. Lie groups naturally arise in physics; indeed the most well

known non-trivial example is the Heisenberg group, which is generated by position

and momentum operators from classical quantum mechanics. The matrix groups

SO(n,R) and U(n) are other well-known examples.

For a large class of Lie groups one defines the Fourier transform as integration

against unitary irreducible representations of G,

(1.5) F(f(g))(λ) =

∫
G

f(g)πλ(g)dg,

where πλ is a unitary irreducible representation of G indexed by λ and dg is Haar

measure [6]. This formula is valid in all locally Abelian and nilpotent groups. For

these groups, then, the issue of developing harmonic analysis is intimately connected

to the representation theory of the group. For example, if G is locally compact and

Abelian, one defines the dual group Ĝ of G to be the collection of characters (i.e.

continuous homomorphisms from G into the circle group T ) of G. For each χ ∈ Ĝ,

define

f̂(χ) =

∫
G

f(g)χ(g)dg.

Pontryagin duality implies that this map is unitary and invertible.

If G is non-Abelian then this definition is not suitable, however there do exist gen-

eralizations of this formula. In the event that G is compact, the Peter-Weyl theorem

provides a decomposition of L2(G) and each irreducible unitary representation of G

can be realized as a regular representation on one of these subspaces [6].

Much of the analysis on groups can be reduced to analysis in a corresponding Lie

algebra. The tangent space of G at the identity has a natural Lie algebra structure

which determines many characteristics of G. For example the Lie algebra of any
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n-dimensional locally compact Abelian group is isomorphic to Rn with the bracket

identically 0. If Hn is the Heisenberg group then h is the (2n+ 1)-dimensional vector

space generated by {X1, . . . , Xn, Y1, . . . , Yn, Z} with the bracket operation [Xi, Yj] =

δijZ.

If g is a Lie algebra, then one may define g0 = g and gn = [g, gn−1]. If gn = {0}

for some n, then g is said to be nilpotent. If m is the smallest value satisfying

that gm = {0} then g is said to be step m nilpotent. A group G is nilpotent if its

corresponding Lie algebra is nilpotent. For example, the Heisenberg group is step 2

nilpotent.

The unitary irreducible representations of H are given, by the Stone-von Neumann

Theorem as

πλ(w, y, z)f(k) = ei(±λzI+±λ
1/2x·K+λ1/2y·D)f(k)

where f(k) ∈ L2(R), Kf(k) := kf(k) and λ ∈ R+. These representations were

discovered early in the development of classical quantum mechanics. Using these

representations to define the Fourier transform on H, one can analogously form ex-

pressions for pseudo-differential operators on H. Indeed, this is given by the classical

Weyl functional calculus [11] as

a(K,D) =

∫
â(p, q)e2πi(q·K+p·D)dpdq

where â(p, q) is the Euclidean Fourier transform of a(x, y). An operator Q on L2(R)

may be called pseudo-differential if Q = σ(K,D) for some suitably chosen σ.

Lie groups have topological manifold structure, with respect to which multiplication

is smooth. In these spaces one can naturally construct a group-valued Lévy process

ρ by defining the increment between times s and t to be ρ(s)−1ρ(t) (see Section 5 for
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a precise definition). Given a Lévy process ρ(t) on H, define the semigroup

(1.6) T πt (ϕ) =

∫
G

π(g)ϕ qt(d(g)),

where ϕ ∈ L2(R), dg is Haar measure and qt is the law of ρ(t). Let Lπ denote the

infinitesimal generator of this semigroup. The following theorem appears in [2].

Theorem 1.2. If ρ(t) is a Lévy process in H and π is any irreducible unitary repre-

sentation of ρ, then the infinitesimal generator Lπ is a pseudo-differential operator,

densely defined in L2(R). Moreover the symbol of this operator is given by the Lévy-

Khintchine formula from R3:

(1.7) σρ(x, y) = ϕ(1, x, y).

Note that Theorem 1.2 is a statement not about the generator L, but about the im-

age of L through the representation π. The image Lπ is referred to as the quantization

of the generator L.

The goal of this thesis is to investigate Lévy processes in a higher step nilpotent

group. The first step in extending this analysis is to construct the Fourier trans-

form. In particular, this involves determining a complete set of unitary irreducible

representations for these groups.

For general nilpotent groups, these representations are described by Kirillov’s method

of co-adjoint orbits [4]. Let G be a nilpotent group with Lie algebra g. If l ∈ g∗ is a

linear functional on the Lie algebra g, then a subalgebra m of g is said to be subor-

dinate to l if l([A,B]) = 0 for all A,B ∈ m. One can construct a unitary irreducible

representation π by fixing a specific linear functional lπ on g and identifying a cor-

responding subalgebra of maximal dimension, ml, subordinate to lπ. One has that

M = exp(m) is a subgroup of G on which π behaves as a character. The restriction
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of π to exp(m) is given by a representation of Euclidean space, and can be uniquely

extended by induction [11] to a unitary irreducible representation of G. The space

over which the induced representation acts is L2(G/M).

Every unitary irreducible representation of a nilpotent group can be realized as an

representation induced in this manner. The exponential map is a global diffeomor-

phism in nilpotent groups, and so if g ∈ G then g = exp(γ) for some γ ∈ g. G acts

on g∗ by g(l)(X) = l([γ,X]) for each l ∈ g∗ and X ∈ g. This is called the co-adjoint

action of G on g∗. If l1 and l2 are linear functionals corresponding to two representa-

tions π1 and π2 then π1
∼= π2 if and only if l1 and l2 lie in the same co-adjoint orbit.

Thus the co-adjoint orbits of g∗ parameterize unitary irreducible representations of

G (hence the λ from (1.5) in fact indexes the co-adjoint orbit corresponding to πλ).

In nilpotent groups, Haar measure is the push-forward of Lebesgue measure on the

Lie algebra [4], and so every function in L2(G/M) can be pulled back to a function in

L2(g/m). Thus every representation of G can be realized as a representation acting

in L2(Rm). Therefore, for each reasonable function f(g), the Fourier transform of f

(given by (1.5)) operates on L2(Rm).

There is a general Weyl functional calculus for nilpotent groups [3, 11]. Given

a unitary irreducible representation π of G there exists a set of multiplication and

differentiation operators A1, . . . , Ak in L2(Rn) such that for each suitably chosen

function σ on G, the Weyl calculus allows for a sensible definition of σ(A1, . . . , Ak)

as an operator on L2(Rn). Indeed an operator Q on L2(R) may be called pseudo-

differential if Q = σ(A1, . . . , Ak) for some suitably chosen σ. Given a Lévy process

ρ(t) on G one defines the semigroup T πt and its infinitesimal generator Lπ as in the

Heisenberg group case.
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These techniques are quite general and it appears that they can be applied to

arbitrary nilpotent groups. In section 3 of this volume we utilize Kirillov’s method of

coadjoint orbits to determine a complete set of representations of the simplest step

3 nilpotent Lie group. These representations are then used in section 4 to formulate

the Weyl functional calculus for this group. In section we prove the following main

result

Theorem 1.3. Let G be a Lie group with step 3 nilpotent Lie algebra g generated by

W,X, Y and Z with the following commutation relations:

[W,X] = Y and [W,Y ] = Z,

and let ρ(t) be a Lévy process in G, and let π be an irreducible unitary representation

of G. The quantized generator Lπ is a pseudo-differential operator which is densely

defined in L2(R).



8 JOHN HAGA

2. A Step 3 Nilpotent Lie Group

Let G denote R4 with the multiplication law

{w1, x1, y1, z1} ∗ {w2, x2, y2, z2} =
{
w1 + w2, x1 + x2, y1 + y2 + w1x2,(2.1)

z1 + z2 + w1

(
y2 +

w1x2

2

)}
.

Proposition 2.1. (Characterization of G)

With respect to the multiplication law in (2.1) G is a Lie group with identity {0, 0, 0, 0}

and inversion given by

{w, x, y, z}−1 =
{
−w, −x, −y + wx, −z + w

(
y − wx

2

)}
.

Proof. Clearly G is closed under ∗. We verify associativity:

({w1, x1, y1, z1} ∗ {w2, x2, y2, z2})∗{w3, x3, y3, z3} =

=
{
w1 + w2, x1 + x2, y1 + y2 + w1x2, z1 + z2 + w1

(
y2 +

w1x2

2

)}
∗ {w3, x3, y3, z3}

=
{

(w1 + w2) + w3, (x1 + x2) + x3, (y1 + y2 + w1x2) + y3 + (w1 + w2)x3,(
z1 + z2 + w1

(
y2 +

w1x2

2

))
+ z3 + (w1 + w2)

(
y3 +

(w1 + w2)x3

2

)}
=

{
w1 + (w2 + w3), x1 + (x2 + x3), y1 + (y2 + y3 + w2x3) + w1(x2 + x3),

z1 +
(
z2 + z3 + w2

(
y3 +

w2x3

2

))
+ w1

(
(y2 + y3 + w2x3) +

w1(x2 + x3)

2

)}
= {w1, x1, y1, z1} ∗ ({w2, x2, y2, z2} ∗ {w3, x3, y3, z3}) .

We have that

{w, x, y, z} ∗ {0, 0, 0, 0} = {w, z, y, z} = {0, 0, 0, 0} ∗ {w, x, y, z}
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and

{w, x, y, z} ∗
{
−w, −x − y + wx, −z + w

(
y − wx

2

)}
=

=
{
w + (−w), x+ (−x), y + (−y + wx) + w(−x),

z +
(
−z + w

(
y − wx

2

))
+ w

(
(−y + wx) +

w(−x)

2

)}
= {0, 0, 0, 0}.

Therefore G is a group. We have that G is a manifold with a global chart Φ : R4 → G

given by Φ(w, x, y, z) = {w, x, y, z}. We equip G with the standard topology on R4,

realized as the topology induced by Φ. Define µ : G×G→ G by µ(g1, g2) = g−1
2 ∗ g1

for all g1, g2 ∈ G. The product space is equipped with product topology, and

µ ({w1, x1, y1, z1}, {w2, x2, y2, z2})

=
{
−w2,−x2,−y2 + w2x2,−z2 + w2

(
y2 −

w2x2

2

)}
∗ {w1, x1, y1, z1}

=
{
w1 − w2, x1 − x2, y1 − y2 + w2x2, z1 − z2 + w2

(
y2 −

w2x2

2

)
− w2

(
y1 −

w2x1

2

)}
.

Thus µ is a polynomial map from R8 into R4, and as such, is smooth. Therefore G is

a Lie group. �

Because both the underlying manifold of G and g are R4, we adopt the convention

of {w, x, y, z} when referring to a point in G and (w, x, y, z) when referring to a point

in g.
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We have the following characterization of the Lie algebra of G.

Proposition 2.2.

(1) The collection of left-invariant vector fields of G is spanned by the following

set:

W =
∂

∂w
X =

∂

∂x
+ w

∂

∂y
+
w2

2

∂

∂z
Y =

∂

∂y
+ w

∂

∂z
Z =

∂

∂z
.

Moreover, the nonzero commutators of these vector fields are given by

[W,X] = Y [W,Y ] = Z.

(2) The linear span of {W,X, Y, Z} is a vector space g which is a Lie algebra with

respect to the bracket operation

[W,X] = Y [W,Y ] = Z.

(3) The Lie algebra g is step 3 nilpotent.

(4) The exponential map exp : g→ G is given by

exp(w, x, y, z) =

{
w, x, y +

wx

2
, z +

wy

2
+
w2x

6

}
.(2.2)

Proof. Let f ∈ C1(G). We have

lim
t→0

f({w, x, y, z} ∗ {t, 0, 0, 0})− f({w, x, y, z})
t

= lim
t→0

f({w + t, x, y, z})− f({w, x, y, z})
t

=
∂f

∂w
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lim
t→0

f({w, x, y, z} ∗ {0, t, 0, 0})− f({w, x, y, z})
t

= lim
t→0

f({w, x+ t, y + wt, z + w2t
2
})− f({w, x, y, z})

t

=
∂f

∂x
+ w

∂f

∂y
+
w2

2

∂f

∂z

lim
t→0

f({w, x, y, z} ∗ {0, 0, t, 0})− f({w, x, y, z})
t

= lim
t→0

f({w, x, y + t, z + wt})− f({w, x, y, z})
t

=
∂f

∂y
+ w

∂f

∂z

lim
t→0

f({w, x, y, z} ∗ {0, 0, 0, t})− f({w, x, y, z})
t

= lim
t→0

f({w, x, y, z + t})− f({w, x, y, z})
t

=
∂f

∂z

We have that

[W,X] =
∂

∂w

(
∂

∂x
+ w

∂

∂y
+
w2

2

∂

∂z

)
−
(
∂

∂x
+ w

∂

∂y
+
w2

2

∂

∂z

)
∂

∂w

=
∂

∂y
+ w

∂

∂z

= Y
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and also that

[W,Y ] =
∂

∂w

(
∂

∂y
+ w

∂

∂z

)
−
(
∂

∂y
+ w

∂

∂z

)
∂

∂w

=
∂

∂z

= Z.

Thus (1) is proven, and (2) is clear. To prove (3), write

[(w1, x1, y1, z1), [(w2, x2, y2, z2), [(w3, x3, y3, z3), (w4, x4, y4, z4)]]]

= [(w1, x1, y1, z1), [(w2, x2, y2, z2), (0, 0, w3x4 − w4x3, w3y4 − w4y3)]]

= [(w1, x1, y1, z1), (0, 0, 0, w2(w3x4 − w4x3))]

= 0.

Thus (3) is proven. To verify (4) we write the following

exp(w, 0, 0, 0) = {w, 0, 0, 0}

exp(0, x, 0, 0) = {0, x, 0, 0}

exp(0, 0, y, 0) = {0, 0, y, 0}

exp(0, 0, 0, z) = {0, 0, 0, z}

then the formula (2.2) follows from a standard application of the Baker-Campbell-

Hausdorff-Dynkin formula (refer to Appendix D for details). �

Any Lie group naturally acts on its Lie algebra via the adjoint representation. We

have the following proposition.
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Proposition 2.3. The adjoint representation of G on g is given by

Ad({w, x, y, z})(a, b, c, d) =

(
a, b, c+ (wb− ax), d+ (wc− ay) +

w2b

2

)
.

Proof.

Ad({w, x, y, z})(a, b, c, d)

:=
d

dt

(
{w, x, y, z} ∗ exp(t(a, b, c, d)) ∗ {w, x, y, z}−1

) ∣∣∣
t=0

=
d

dt

(
{w, x, y, z} ∗

{
ta, tb, tc+

t2ab

2
, td+

t2ac

2
+
t3a2b

6

}
∗
{
−w, −x, −y + wx, −z + w

(
y − wx

2

)}) ∣∣∣
t=0

=
d

dt

(
{w, x, y, z} ∗ {ta, tb, tc, td} ∗

{
−w, −x, −y + wx, −z + w

(
y − wx

2

)}) ∣∣∣
t=0

=
d

dt

({
w + ta, x+ tb, y + t(c+ wb), z + td+ w

(
tc+

twb

2

)}
∗
{
−w, −x, −y + wx, −z + w

(
y − wx

2

)}) ∣∣∣
t=0

=
d

dt

({
ta, tb, t(c+ wb) + wx+ (w + ta)(−x),

td+ w

(
tc+

twb

2

)
+ w

(
y − wx

2

)
+ (w + ta)

(
(−y + wx) +

(w + ta)(−x)

2

)}) ∣∣∣
t=0

=

(
a, b, c+ (wb− ax), d+ (wc− ay) +

w2b

2

)
�

Let g∗ denote the linear dual of g. The adjoint action induces the co-adjoint action

of G on g∗, defined for each l ∈ g∗ as

Ad∗({w, x, y, z}) (l(a, b, c, d)) = l(Ad({w, x, y, z}−1)(a, b, c, d)).

In the following sections we will make use of unitary irreducible representations of G.

Classifications of these representations for nilpotent Lie groups follows from Kirillov’s
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“method of co-adjoint orbits,” as stated in Theorem 3.1. To this end we must identify

the co-adjoint orbits of G in g∗. If

l(a, b, c, d) = αa+ βb+ γc+ δd

for (a, b, c, d) ∈ g then we will adopt the convention of writing l = [α, β, γ, δ]. Utilizing

these coordinates, we have the following proposition.

Proposition 2.4. The co-adjoint Representation of G on g∗ is given by

Ad∗({w, x, y, z})[α, β, γ, δ] =

[
α + xγ + (y − wx)δ, β − wγ +

w2δ

2
, γ − wδ, δ

]
.

Proof.

Ad∗({w, x,y, z})[α, β, γ, δ](a, b, c, d) = [α, β, γ, δ](Ad({w, x, y, z}−1)(a, b, c, d))

=[α, β, γ, δ]
(

Ad
({
−w,−x,−y + wx,−z + w

(
y − wx

2

)})
(a, b, c, d)

)
=[α, β, γ, δ]

(
a, b, c+ (ax− bw), d+ (ay − cw)− awx+

w2b

2

)
=αa+ βb+ γ (c+ (ax− bw)) + δ

(
d+ (ay − cw)− awx+

w2b

2

)
= (α + γx+ δ(y − wx)) a+

(
β − γw +

δw2

2

)
b+ (γ − δw) c+ δd

�
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3. Representation Theory of G

To form a complete set of unitary irreducible representations of G, we make use

of the fact that G is nilpotent. The following result, due to Kirillov is presented in

Section 2.2 of [4].

Theorem 3.1. (Kirillov) Let K be any locally compact, simply connected connected

nilpotent Lie group with Lie algebra k.

(1) If l ∈ k∗ then there exists a subalgebra ml of k of maximal dimension such that

l([m1,m2]) = 0 for all m1,m2 ∈ ml.

(2) Ml = exp(ml) is a closed subgroup of K and ρl(exp(m)) = e2πil(m) is one

dimensional representation of Ml.

(3) IndKMl,ρl
is a unitary irreducible representation of K.

(4) If π is any unitary irreducible representation of K, then there exists l ∈ k∗ such

that π is unitarily equivalent to IndKMl,ρl
. (Refer to Appendix E for elementary

theory of induced representations).

(5) Two irreducible representations π1 = IndKMl1
,ρl1

and π2 = IndKMl2
,ρl2

are unitar-

ily equivalent if and only if l1 and l2 are elements of the same coadjoint orbit

of K in k∗.

If l and ml are as in Theorem 3.1, then the subalgebra ml is said to be a maximal

subordinate algebra for l.

Theorem 3.1 implies that the set of unitary irreducible representations of G is in-

dexed by the set of co-adjoint orbits of G in g∗. The coadjoint action described in

Proposition 2.4 allows for an explicit parametrization of these orbits. This parametriza-

tion can be used to give an explicit expression of unitary dual of G, as presented in

the following proposition. This calculation can be found in [4, 9], but we include it

here for completeness.
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Proposition 3.2. If π is a unitary irreducible representation of G then π is unitarily

equivalent to a representation of one of the following types:

I. π is a unitary character of G given by

π({w, x, y, z})(z) = e2πi(αw+βx)z

for some α, β ∈ R and any z ∈ C.

II. π is a representation on L2(R) given by

π({w, x, y, z})f(k) = e2πiγ(y+ kx
2 )f(k + w)

for some γ ∈ R.

III. π is a representation on L2(R) given by

π({w, x, y, z})f(k) = e2πi(βx+δ(z+k(y+ kx
2 )))f(k + w)

where δ ∈ R×, β ∈ R.

Proof. If [α, β, γ, δ] ∈ g∗ and {w, x, y, z} ∈ G then π[α,β,γ,δ]({w, x, y, z}) can be com-

puted by considering some individual cases.

Type I: (δ = γ = 0). In this case Ad∗(w, x, y, z)[α, β, 0, 0] = [α, β, 0, 0] for all w, x, y, z.

These are 1 point orbits determined by α and β. The maximal subordinate algebra

corresponding to any such orbit is the entire Lie algebra g, since [A,B] ∈ Span {Y, Z}

for each A,B ∈ g. Therefore Ml = G and G/Ml
∼= 0. For any point {w, x, y, z} ∈ G,

we write

{w, x, y, z} = exp

(
w, x, y − wx

2
, z − x

2

(
y − wx

2
+
w2

6

))
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and π[α,β,0,0] is the one dimensional representation of G given in C as

π[α,β,0,0]{w, x, y, z}z = e
2πi[α,β,0,0]

(
w, x, y−wx

2
, z−x

2

(
y−wx

2
+w2

6

))
z

= e2πi(αw+βx)z,

for each z ∈ C.

Type II: (δ = 0, γ 6= 0). In this case Ad∗(w, x, y, z)[α, β, γ, 0] = [α+xγ, β−wγ, γ, 0],

and so

Ad∗(G)[α, β, γ, δ] = {[p, q, γ, 0] : p, q ∈ R} .

These are 2-dimensional orbits parametrized by γ. For any such orbit, the unitary

irreducible representations induced by elements of the orbit are all unitarily equiv-

alent and so it suffices to choose a convenient representative. There is a one-to-one

correspondence between the set

R2 = {[0, 0, γ, 0] : γ ∈ R×}

and the collection of orbits of this type. Since γ 6= 0,

lγ([W,X]) = γ 6= 0

and so g is not subordinate to [0, 0, γ, 0]. The three dimensional subalgebra m =

Span {X, Y, Z} is Abelian and is therefore maximal subordinate to any element of g∗.

The subgroup

M = exp(m) = {{w, x, y, 0} : w, x, y ∈ R}

and G/M ∼= R. As indicated in [11], π[0,0,γ,0] acts on

Hγ =
{
f : G→ C

∣∣∣f ∈ L2(G/M) and

f(exp(q)g) = e2πilγ(q)f(g) for each q ∈ m and g ∈ G
}
.
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We have that Haar measure µ on G is given by µ(exp(E)) = Λ(E) where Λ is Lebesgue

measure on g, and so Hπ := L2(G/M,µ) ∼= L2(R,Λ). We have that

π[0,0,γ,0]({w, x, y, z})f(k)

= f({k, 0, 0, 0} ∗ {w, x, y, z})

= f

({
k + w, x, y + kx, z + k

(
y +

kx

2

)})
= f

({
0, x, y +

kx

2
, z + k

(
y +

kx

2

)}
∗ {k + w, 0, 0, 0}

)
= e2πiγ(y+ kx

2 )f(k + w).

Type III: (δ 6= 0). We have that

Ad∗({w, x, y, z})[α, β, γ, δ]

=

[
α + xγ + (y − wx)δ, β − wγ +

w2δ

2
, γ − wδ, δ

]
.

Defining q = γ − wδ we have that w = γ−q
δ

and so

Ad∗({w, x, y, z})[α, β, γ, δ]

=

[
α + xγ + (y − wx)δ,

(
β − γ2

2δ

)
+
q2

2δ
, q, δ

]
.

Hence

Ad∗(G)[α, β, γ, δ] =

{[
p,

(
β − γ2

2δ

)
+
q2

2δ
, q, δ

]
: p, q ∈ R

}
.

These orbits are 2-dimensional parabolic cylinders parametrized by δ and the quantity

β − γ2

2δ
. As in the previous case we have that

R3 = {[0, β, 0, δ] : δ ∈ R×, β ∈ R}
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is a collection of orbit representatives and M = Span {X, Y, Z} is a maximal subor-

dinate subalgebra for each representative. Therefore, Hβ,δ = L2(R) and

π[0,β,0,δ]({w, x, y, z})f(k)

= f ({k, 0, 0, 0} ∗ {w, x, y, z})

= f

({
0, x, y +

kx

2
, z + k

(
y +

kx

2

)}
∗ {k + w, 0, 0, 0}

)
= e2πi(βx+δ(z+k(y+ kx

2 )))f(k + w).

�
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4. The Weyl Functional Calculus for G

In Euclidean space, there is a well-developed theory of pseudo-differential operators

and the corresponding symbolic calculus (see, for example [12]). The classical Weyl

functional calculus provides an analogous construction for the simplest step-2 nilpo-

tent case. A functional calculus for general connected and simply connected nilpotent

groups has been developed in [3]. We will characterize this functional calculus for G,

and begin by stating the general construction for arbitrary nilpotent groups.

Definition 4.1. As above, let K be an n dimensional locally compact nilpotent Lie

group with corresponding Lie algebra k.

(1) Let ξ0 ∈ k∗ with corresponding co-adjoint orbit O. The isotropy group of K

at ξ0 is Kξ0 := {k ∈ K|Ad∗(k)ξ0 = ξ0}.

(2) Kξ0 is a Lie group with corresponding isotropy Lie algebra

kξ0 = {X ∈ k|ξ0 ◦ ad(k)X = 0}.

(3) Fix a sequence of ideals in k,

{0} = k0 ⊂ k1 ⊂ · · · ⊂ kn = k

such that dim(kj/kj−1) = 1 and [k, kj] ⊂ kj−1 for j = 1, . . . , n. Pick any

Xj ∈ kj \ kj−1 for j = 1, . . . , n so that the set {X1, . . . , Xn} is a Jordan-Hölder

basis in k.

(4) Consider the set of jump indices of the coadjoint orbit O with respect to the

Jordan-Hölder basis,

Jξ0 = {j ∈ {1, . . . , n}|kj 6⊆ kj−1 + kξ0}

= {j ∈ {1, . . . , n}|Xj 6⊆ kj−1 + kξ0}
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and then define the corresponding predual of the coadjoint orbit O,

ke := Span {Xj|j ∈ Jξ0} .

(5) The Fourier transform S (O)→ S (ge) is given by the formula:

P ∈ ge â(P ) =

∫
O

e−i〈ξ,P 〉a(ξ)dξ.

where dξ is Liouville measure on O.

(6) The Weyl calculus Opπ(·) for the unitary representation π is defined for every

a ∈ S (O) by

Opπ(a) =

∫
ke

â(V )π(expK V )dV,

where â(V ) is the Fourier transform of a ∈ S (O). The operator Opπ(a) is

called the pseudo-differential operator with symbol a.

The following result appears in [3].

Theorem 4.2. The Weyl calculus has the following properties:

(1) For every symbol a ∈ S (O) we have Opπ(a) ∈ B(H )∞ (the space of smooth

operators for the representation π) and the mapping

S (O)→ B(H )∞ a 7→ Opπ(a)

is a linear topological isomorphism.

(2) For every T ∈ B(H )∞ we have T = Opπ(a) where a ∈ S (O) satisfies the

condition â(V ) = Tr(π(expK V )−1A) for every V ∈ ke.

If π is a representation of the nilpotent group G, then π can be classified as in

Proposition (3.2). If π is of type 1 or type 2 then Opπ(·) is understood [11]. From

above results one can compute the Weyl functional calculus for type 3 representations

of G.
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Proposition 4.3. If π is the Type III irreducible unitary representation of G cor-

responding to the orbit O and a ∈ S (O) then the Fourier transform of a is given

by

â (yY + wW ) =

∫
R2

e−i(qy+pw)a (q, p) dqdp

and the pseudo-differential operator Opπ(a) is given for each f ∈ L2(R2) by

Opπ(a)f(k) =

∫
R2

[∫
R2

e−i(qy+pw)a(q, p)dqdp

]
e2πi(δky+ 1

2
δyw)f(k + w)dydw.

Proof. The basis {W,X, Y, Z} is a Jordan-Hölder basis for G, and the predual of the

co-adjoint orbit O is given by ge = {W,Y }. The chart

O → R pW ∗ +

[
β − q2

2δ

]
X∗ + qY ∗ + δZ∗ 7→ (p, q)

is a map which brings Liouville measure on O to Lebesgue measure on R. Direct

substitution implies that the Fourier transform is given by

â (yY + wW ) =

∫
R2

e−i(qy+pw)a (q, p) dqdp.

For π({w, x, y, z})f(k) = e2πi(βx+δ(z+k(y+ kx
2

)))f(k + w) and (w, 0, y, 0) ∈ ge we have

that

π(exp(w, 0, y, 0))f(k) = π({w, 0, y, 0})f(k) = e2πi(δ(ky+ k2x
2

))f(k + w),

and direct substitution yields the result.

�
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5. Lévy Processes in G

The introductory material of this section follows from [2]. Suppose that K is an

arbitrary (not necessarily nilpotent) Lie group with Lie algebra k. A Lévy process in

K is a K-valued stochastic process ρ = (ρ(t), t ≥ 0) which satisfies the following:

(1) ρ has stationary and independent left increments, where the increment be-

tween s and t with s ≤ t is ρ(s)−1ρ(t).

(2) ρ(0) = e a.s.

(3) ρ is stochastically continuous, i.e.

lim
s→t

P (ρ(s)−1ρ(t) ∈ A) = 0

for all A ∈ B(K) such that e 6∈ A.

Let C0(K) be the Banach space (with respect to the supremum norm) of functions

on K which vanish at infinity. Just as in the Euclidean case, one obtains a Feller

semigroup on C0(K) by the prescription

T (t)f(τ) = E(f(τρ(t))),

for each t ≥ 0, τ ∈ K, f ∈ C0(K) and its infinitesimal generator will be denoted as

L.

We fix a basis {Z1, . . . , Zn} for k and define a dense subspace C2(K) of C0(K) as

follows:

C2(K) =

{f ∈ C0(K);ZL
i (f) ∈ C0(K) and ZL

i Z
L
j (f) ∈ C0(K) for all 1 ≤ i, j ≤ n},

where ZL denotes the left invariant vector field associated to Z ∈ k.
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In [8], Hunt proved that there exist local coordinate functions yi ∈ C2(K), 1 ≤ i ≤ n

so that each

yi(e) = 0 and ZL
i yj(e) = δij,

and a map h ∈ Dom(L) which is such that:

(1) h > 0 on K − {e}.

(2) There exists a compact neighborhood of the identity U such that for all τ ∈ U ,

h(τ) =
n∑
i=1

yi(τ)2.

Any such function is called a Hunt function in K. A positive measure ν defined

on B(Q− {e}) is called a Lévy measure whenever∫
Q−{e}

h(σ)ν(dσ) <∞.

Theorem 5.1 (Hunt). Let ρ be a Lévy process in K with infinitesimal generator L

then,

(1) C2(K) ⊂ Dom(L).

(2) For each τ ∈ K, f ∈ C2(K)

L(τ) =
n∑
i=1

biZ
L
i f(τ) +

n∑
i,j=1

cijZ
L
i Z

L
j f(τ)

+

∫
K−{e}

(f(τσ)− f(τ)−
n∑
i=1

yi(σ)ZL
i f(τ))ν(dσ),(5.1)

where b = (b1, . . . , bn) ∈ Rn, c = (cij) is a non-negative-definite, symmetric

n× n real-valued matrix and ν is a Lévy measure on K − {e}.

Furthermore, any linear operator with a representation as in 5.1 is the restriction to

C2(K) of a unique weakly continuous, convolution semigroup of probability measures

in K.
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Let H be a complex, separable Hilbert space and U(H ) be the group of unitary

operators in H . Let π : K → U(H ) be a strongly continuous unitary representation

of K in H and let C∞(π) = {ψ ∈ H ; k → π(k)ψ is C∞} be the dense linear space

of smooth vectors for π in H . Define a strongly continuous contraction semigroup Tt

of linear operators on H by

Ttψ = E(π(ρ(t))ψ)

for each ψ ∈H . Let Lπ denote the infinitesimal generator of this semigroup; i.e.

Lπψ = lim
t→0

Ttψ − ψ
t

.(5.2)

It follows from the work in [2] that C∞(π) ⊆ Dom(Lπ) and for f ∈ C∞(π) we have

Lπf =
n∑
i=1

bidπ(Zi)f +
n∑

i,j=1

cijdπ(Zi)dπ(Zj)f+

+

∫
K−{e}

(
π(σ)− I −

n∑
i=1

yi(σ)dπ(Zi)

)
fν(dσ).(5.3)

We now investigate Lπ where K = G. Since G is nilpotent, the Haar measure

dσ is related to Lebesgue measure on g via the exponential map. Therefore it will

be convenient to adopt exponential coordinates in G. To this end we impose the

identification of (w, x, y, z) with exp(w, x, y, z). Fix real numbers β and δ 6= 0. Let

π = πδ,β be a representation of the third type. Define

Kf(k) = kf(k) and Df(k) =
1

i

df

dk
.

We have that

π(w, x, y, z)f(k) = e2πi((βx+δ(z+xy
2

+w2x
6

))I+(y+wx
2

)K+x
2
K2+2πiwDf(k)(5.4)
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and

dπ(W ) = 2πiD

dπ(X) = 2πiβI + πiK2

dπ(Y ) = 2πiδK

dπ(Z) = 2πiδI.

Let

Lπ1 =
n∑
i=1

bidπ(Zi)

Lπ2 =
n∑

i,j=1

cijdπ(Zi)dπ(Zj)

Lπ3 =

∫
G−{e}

(
π(σ)− I −

n∑
i=1

yi(σ)dπ(Zi)

)
fν(dσ).

We have that the drift part

Lπ1 = b1(2πiδI) + b2(2πiδK) + b3(2πiβI + πiK2) + b4(2πiD).(5.5)

With respect to the Weyl functional calculus expressed in Proposition 4.3, Lπ1 is a

pseudo-differential operator with symbol given by

Sπ1 = 2πiδb1 + 2πiδb2t+ b3(2πiβ + πit2) + 2πib4
∂

∂t
.
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The Brownian part can be expressed

Lπ2 = c11(−4π2δ2I) + c22(−4π2δ2K2)(5.6)

+ c33(−4π2β2I − 4π2βK2 − π2K4)

+ c44(−4π2D2) + 2c12(−2π2δ2K) + 2c13(−4π2δβI − 2π2δK2)

+ 2c14(−4π2δD) + 2c23(−4π2δβK − 2π2δK3) + c24(−4π2δKD)

+ c34(−4π2βD − 2π2K2D) + c42(−4π2δ(KD + I))

+ c43(−4π2βD − 2π2(2K +K2D)),

which is a pseudo-differential operator with symbol

Sπ2 = − 4π2δ2c11 − 4π2δ2c22t
2 + c33(−4π2β2 − 4π2βt2 − π2t4)

+ c44

(
−4π2 ∂

2

∂t2

)
− 4π2δ2c12t+ 2c13(−4π2δβ − 2π2δt2)

− 8π2δc14
∂

∂t
+ 2c23(−4π2δβt− 2π2δt3)− 8π2δc24t

∂

∂t

+ c34

(
−4π2β

∂

∂t
− 2π2t2

∂

∂t

)
− 4π2δc42

(
t
∂

∂t
+ 1

)
+ c43

(
−4π2β

∂

∂t
− 2π2

(
2t+ t2

∂

∂t

))
.

Before expressing the jump part Lπ3 , observe that (5.4) can be rewritten as

π(w, x, y, z)f(k) = exp(iΦ(w, x, y, z))f(k)
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where

Φ(w, x, y, z) = 2π

[
δI

(
z +

1

2
w2x+

1

2
wy

)
+ δK

(
y +

1

2
wx

)
+

(
βI +

1

2
K2

)
(x) + wD

]
is essentially self-adjoint. This form suggests the following choices for local coordinate

functions:

y1(w, x, y, z) = wχB(w, x, y, z)

y2(w, x, y, z) = xχB(w, x, y, z)

y3(w, x, y, z) =

(
y +

1

2
wx

)
χB(w, x, y, z)

y4(w, x, y, z) =

(
z +

1

2
w2x+

1

2
wy

)
χB(w, x, y, z),

where yi(w, x, y, z) = yi(exp(w, x, y, z)), B = exp(B(0, 1)). With respect to these

local coordinate functions we have that

Lπ3 =∫
R4−{0}

(π(w, x, y, z)− I − iΦ(w, x, y, z)χB(w, x, y, z)) ν(dz dy dx dw).

We have that Lπ3 is a pseudo-differential operator with symbol

Sπ3 =∫
R4−{0}

(
τ(w, x, y, z)− I − iΘ(w, x, y, z)χB(w, x, y, z)

)
ν(dz dy dx dw).

where

τ(w, x, y, z) = exp(iΘ(w, x, y, z))
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for

Θ(w, x, y, z) = 2π

[
δ

(
z +

1

2
w2x+

1

2
wy

)
+ δt

(
y +

1

2
wx

)
+

(
β +

1

2
t2
)

(x) + w
∂

∂t

]
and π is as in (5.4). We are now ready to state the main theorem of this paper.

Theorem 5.2. The operator Lπ is a pseudo-differential operator. Moreover, C∞c (R)

is a core for Lπ.

Proof. We have that

Lπ = Lπ1 + Lπ2 + Lπ3 ,

and consequently we have shown that Lπ is pseudo-differential with symbol

Sπ = Sπ1 + Sπ2 + Sπ3 .

We write Lπ3 = Lπ3,1 + Lπ3,2 with

Lπ3,1 =

∫
Bc

(π(w, x, y, z)− I) ν(dz dy dx dw)

Lπ3,2 =

∫
B−{0}

(
π(w, x, y, z)− I − iΦ(w, x, y, z)

)
ν(dz dy dx dw).

For each f ∈ C∞c (R), we have that

‖Lπ3,1f‖ ≤
∫
Bc
‖(π(w, x, y, z)− I) f‖ ν(dz dy dx dw)

≤2ν(Bc)‖f‖.

Let P (w, x, y, z) denote the projection-valued measure associated to the spectral de-

composition of the self adjoint operator Φ. By the spectral theorem and Taylor’s



30 JOHN HAGA

theorem, and referring again to (5.4) we see that

‖(π(w, x, y, z)− I−iΦ(w, x, y, z))f‖2

=

∫
R4

∣∣eiλ − 1− iλ
∣∣2 ‖P (w, x, y, z)(dλ)f‖2

≤ 1

4

∫
R4

|λ|4‖P (w, x, y, z)(dλ)f‖2

=
1

4

∥∥∥∥2π

[
δI

(
z +

1

2
w2x+

1

2
wy

)
+ δK

(
y +

1

2
wx

)

+

(
βI +

1

2
K2

)
(x) + wD

]2

f

∥∥∥∥∥
2

≤ π2

∥∥∥∥[y1(w, x, y, z)D + y2(w, x, y, z)

(
βI +

1

2
K2

)

+ y3(w, x, y, z)δK + y4(w, x, y, z)δI

]2

f

∥∥∥∥∥
2

≤16π2C2
f · h2(w, x, y, z).

The last inequality follows from Young’s inequality. The Hunt function h corresponds

to the local coordinate functions {yi}4
i=1 and

Cf =((β + δ)2 + δ)‖f‖+ (2δ(β + δ) + 1)‖Kf‖+ (δ2 + β + δ)‖K2f‖

+ δ‖K3f‖+
1

4
‖K4f‖+ 2(β + δ)‖Df‖+ 2δ‖KDf‖+ 2‖K2Df‖

+ ‖D2f‖.

Therefore we have that

‖Lπ3,2f‖ ≤4πCf

∫
B

h(w, x, y, z)ν(dw, dx, dy, dz),

and the latter integral is finite by the defining characteristic of ν. Applying these

bounds for Lπ3,1 and Lπ3,2 and the expressions (5.5) and (5.6) there exist non-negative
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constants ω(f)ij such that

‖Lπf‖ ≤
4∑
i=1

2∑
j=1

ω(f)ij‖KiDjf‖.(5.7)

Let f ∈ Dom(Lπ), then we can find (fn, n ∈ N) in C∞c (R) such that

lim
n→∞

‖fn − f‖ = 0.

Applying (5.7) to the sequence fn − fm, we deduce by integration by parts and the

Schwarz inequality that limm,n→∞ ‖Lπ(fn−fm)‖ = 0. Hence the sequence (Lπfn, n ∈

N) is Cauchy and so convergent to some g ∈ L2(R). The operator Lπ is closed, hence

g = Lπf and the result is established.

�
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Appendix A. Fourier Transforms and Pseudo-differential Operators

in Rn.

For a rigorous treatment of the material in this appendix, the reader may refer

to [7]. We include some results relevant to the subject of this thesis, with proofs

omitted.

Definition A.1. If f : Rn → C is any integrable function, then the Fourier transform

(Ff)(ξ) of f is defined by

(Ff)(ξ) =

∫
Rn
f(x)e−2πix·ξdx

for each ξ ∈ Rn.

Proposition A.2. If f, g ∈ L1(Rn) then

(1) For any complex numbers a and b,

(F(af + bg))(ξ) = a(Ff)(ξ) + b(Fg)(ξ).

(2) For any x0 ∈ Rn, if h(x) = f(x− x0) then

(Fh)(ξ) = e2πix0ξ(Ff)(ξ).

(3) For any ξ0 ∈ Rn, if h(x) = e2πiξ0f(x) then

(Fh)(ξ) = (Ff)(ξ − ξ0).

(4) For any a ∈ R×, if h(x) = f(ax) then

(Fh) =
1

|a|
(Ff)

(
ξ

a

)
.
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(5) If h(x) = (f ∗ g)(ξ) :=

∫
Rn
f(ξ − τ)g(τ)dτ then

(Fh)(ξ) = (Ff)(ξ) · (Fg)(ξ).

In general, the Fourier transform of an integrable function is not Lebesgue inte-

grable (for example, if f(x) = I[−a,a] then (Ff)(ξ) = 2 sin(aξ)
ξ

). We will now identify

a suitable subclass of integrable functions with integrable Fourier transforms. Let

α = (α1, . . . , αn) and β = (β1, . . . , βn) be multi-indices (αi, βi ∈ N ∪ {0} for all i),

and let

xαf(x) :=xα1
1 x

α2
2 · · ·xαnn f(x)

Dβf(x) :=
∂β1

xβ11

∂β2

xβ22

· · · ∂
βn

xβnn
f(x)

for each x = (x1, . . . , xn) ∈ Rn f ∈ C∞(Rn). Define the following family of norms

indexed by α and β:

‖f‖α,β = sup
x∈Rn
|xαDβf(x)|.

Definition A.3. The set of functions

S (Rn) =
{
f :∈ C∞(Rn)

∣∣∣ ‖f‖α,β <∞ for all multi-indices α and β
}
.

is called the Schwartz class of functions on Rn. We have that S (Rn) ⊂ Lp(Rn) for

each 1 ≤ p, and so in particular we may equip S (Rn) with the standard norm of

L2(Rn).

Proposition A.4. Suppose f ∈ S (Rn, x).

(1) (Ff)(ξ) ∈ S (Rn, ξ).
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(2) (Inversion) The transformation F−1 : L1(Rn, ξ)→ L∞(Rn, x) defined by

(F−1g)(x) =

∫
Rn
g(ξ)e2πiξ·xdξ

satisfies that (F−1g)(x) ∈ S (Rn, x) whenever g ∈ S (Rn, ξ) and moreover

(F−1(Ff))(x) = f(x).

(3) (Plancherel Theorem) F : S (Rn, x)→ S (Rn, ξ) is a isometric linear isomor-

phism with respect to the standard norm on L2(Rn).

If f ∈ S (Rn) then it can be easily shown by repeated integration by parts that

F(Dαf) = i|β|ξβF(f).(A.1)

By taking the inverse Fourier transform of both sides of (A.1) we have that

Dαf = F−1
(
i|β|ξβF(f)

)
.(A.2)

The function σD = |i||β|ξβ is said to be the symbol of the differential operator D.

In principle, any function σ(x, ξ) for which σ(x, ξ)(Ff)(ξ) ∈ S (Rn, ξ) (for all x)

corresponds to an operator Pσ : S (Rn, x)→ S (Rn, x) defined by

(Pσf)(x) := F−1(σ(x, ξ)(Ff)(ξ))(x)(A.3)

Definition A.5. The operator Pσ is said to be a pseudo-differential operator with

symbol σ(x, ξ).

By restricting σ(x, ξ) to functions of specified class, one can often make statements

about the domain of Pσ. Indeed, one commonly chosen class is the Hormänder class

H defined by

H =
⋂
α,β

Hα,β
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where α and β are multi-indices and

Hα,β =

{
σ(x, ξ)

∣∣∣ ∣∣∣∣ ∂α∂xα ∂β

∂ξβ
σ(x, ξ)

∣∣∣∣ ≤ Cα,β(1 + |ξ|)m for some m ∈ R
}
.

We have the following result.

Proposition A.6. If σ(x, ξ) ∈ H then Pσ : S (Rn)→ C∞(Rn).

Refer to [12] for a comprehensive development of the theory of psuedo-differential

operators in Rn.
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Appendix B. Lévy Processes in Rn.

This appendix contains material from [1] and [5].

Definition B.1. A stochastic process ρ(t) his said to be a Lévy process if

(1) ρ(0) = 0 almost surely.

(2) (Independent Increments) For any 0 ≤ t1, < t2 < · · · < tn < ∞ the random

variables ρ(t2)− ρ(t1), ρ(t3)− ρ(t2),..., ρ(tn)− ρ(tn−1) are independent.

(3) (Stationary Increments) For any s < t, the random variable ρ(t)−ρ(s) is equal

in distribution to the random variable ρ(t− s).

(4) ρt is almost surely right continuous with left limits.

Example B.1. The process B(t) is said to be a Brownian motion if

(1) B(0) = 0 almost surely.

(2) B(t) is almost surely continuous.

(3) B(t) has independent increments as in B.1.2, and moreover for each s, B(s)

is a random variable with distribution N (0, s).

Brownian motion is perhaps the most well-known example of a Lévy process.

Example B.2. The process P (t) is said to be a homogeneous Poisson process if

(1) P (0) = 0 almost surely.

(2) For each 0 ≤ s ≤ t <∞

P(P (t)− P (s)) =
e−λ(t−s)(λ(t− s))k

k!
with k = 0, 1, . . .

The parameter λ is a non-negative real number, called the intensity of the process P .

The Poisson process is another well-known example of a Lévy process.
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One way to characterize a stochastic process is to compute its characteristic func-

tion. The characteristic function of a Lévy process ρ(t) in Rn can be expressed by

the Lévy-Khintchine formula

E(eiu·ρ(t)) = etϕ(u)

where for all u ∈ Rn

ϕ(u) = i(m · u)− 1

2
u · Au+

∫
Rn−{0}

(
eiu·y − 1− i u · y

1 + |y|2

)
ν(dy),(B.1)

with m ∈ Rn, A an n × n non-negative symmetric matrix and ν is a measure on

Rn − {0} satisfying ∫
Rn−{0}

(|y|2 ∧ 1)ν(dy) <∞.

Such a measure is called a Lévy measure.

Let C0(Rn) denote the Banach space of continuous functions on Rn which vanish

at infinity. We obtain a semigroup (T (t), t ≥ 0) on C0(Rn) by defining

(T (t)f)(x) = E(f(x+ ρ(t))).

Define the infinitesimal generator of ρ(t) to be the operator

Aρf = lim
t→0

(T (t)− I)f

t

taking the domain of Aρ to be the collection of f for which the above limit exists.

The following proposition appears in [2].

Proposition B.2. A is a pseudo-differential operator of the form

A = ϕ(D).



38 JOHN HAGA

Proof. We have the following Fourier inversion formula:

f(x) =
1

(2π)n

∫
Rn
eiu·x(Ff)(u)du.

Applying the definition

(T (t)f)(x) = E(f(x+ ρ(t)))

= E

(
1

(2π)n

∫
Rn
eiu·(x+ρ(t))(Ff)(u)du

)
.

Applying Fubini and subsequently the Lévy-Khintchine formula we obtain

=

∫
Rn
eiu·(x)E(eiu·ρ(t))(Ff)(u)du

=

∫
Rn
eiu·(x)etϕ(u)(Ff)(u)du.

We have that by direct substitution the dominated convergence

Aρf = lim
t→0

(T (t)− I)f

t

= lim
t→0

1

t

(∫
Rn
eiu·(x)etϕ(u)(Ff)(u)du− 1

(2π)n

∫
Rn
eiu·x(Ff)(u)du

)
=

∫
Rn
eiu·(x)

(
lim
t→0

1

t

(
etϕ(u) − 1

))
(Ff)(u)du

=

∫
Rn
eiu·(x)ϕ(u)(Ff)(u)du

= ϕ(D)f.

�
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Appendix C. Manifolds, Lie Groups and Lie Algebras.

Lie groups are manifolds that have group structure with a multiplication operation

that is in some sense smooth. We begin this section with general information about

manifolds and then proceed to elementary theory of Lie groups and Lie algebras.

The material below, including all omitted proofs, can be found in greater detail

in [10, Ch.1-4].

Definition C.1. Suppose that K is a topological space. K is a topological manifold

of dimension n (or simply an n-manifold) if the following properties are satisfied:

• K is Hausdorff. For each points k1, k2 ∈ K there exist open subsets U1 and

U2 such that k1 ∈ U1, k2 ∈ U2 and U1 ∩ U2 = ∅.

• K is second-countable. There exists a countable base for the topology of K.

• K is locally homeomorphic to Rn. For every point k ∈M there exists an open

neighborhood Uk of k and a homeomorphism ϕk : Uk → Rn (called a local

coordinate chart).

Suppose that I ⊆ K. If {Uk : k ∈ I} covers K then the collection A = {(Uk, ϕk) :

k ∈ I} is called an atlas. Suppose (U,ϕU) and (V, ϕV ) are elements of A with

U ∩ V 6= ∅. The map ϕV ◦ ϕ−1
U : ϕU(U ∩ V ) → ϕV (U ∩ V ) is called the transition

map from U to V . If ϕV ◦ ϕ−1
U is smooth for each U, V with (U,ϕU), (V, ϕV ) ∈ A

and U ∩ V 6= ∅ then A is said to be a smooth atlas. The manifold K is said to be a

smooth manifold if K has a smooth atlas.

Suppose k is a point on a smooth manifold K, that k ∈ Uk ∈ K and ϕk is the

coordinate chart corresponding to Uk. Let Cm(k) denote the set of complex valued

functions f on K satisfying that f ◦ϕ−1
m has m continuous derivatives at ϕk(k) ∈ Rn.
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Any such function is said to be m times differentiable at the point k. The set

Cm(K) =
⋂
k∈K

Cm(k)

is the collection of functions of K which are smooth up to mth order, and

C∞(K) =
⋂
m∈N

Cm(K)

is the collection of smooth functions on K.

Let K1 and K2 be smooth manifolds with respect to smooth atlases K1 and K2

respectively and let Ψ : K1 → K2. Let (U,ϕU) ∈ K2. For each (V, ϕV ) ∈ K1

with V ∩ Ψ−1(U) 6= ∅, let ΨV,U : ϕV (V ∩ Ψ−1(U)) → ϕU(U ∩ Ψ(V )) defined by

ΨV,U = ϕU ◦Ψ ◦ ϕ−1
V . Ψ is said to be smooth if ΨV,U is smooth for each (U,ϕU) ∈ K2

and (V, ϕV ) ∈ K1. If Ψ is a smooth bijective map from K1 to K2 with a smooth

inverse, then Ψ is said to be a diffeomorphism and K1 is said to be diffeomorphic to

K2 and one writes K1
∼= K2.

A linear map X : C∞(K)→ R satisfying

X(fg) = f(k)X(g) + g(k)X(f) f, g ∈ C∞(K)

is said to be a derivation at k. Let TkK be the set of all such X. From [10, Ch. 3]

we have that TkK is a real linear space of dimension n. The set TkK is the tangent

space of K at k.

Suppose that Ψ : K1 → K2 is a diffeomorphism, and let k ∈ K1, X ∈ TkK1. If

f ∈ C∞(K2) then f ◦Ψ ∈ C∞(K1) and X[f ◦Ψ] ∈ C∞(K1).
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Proposition C.2. For each X ∈ TkK1 and f ∈ C∞(K2) define Ψ∗Xf = X[f ◦Ψ] ◦

Ψ−1 ∈ C∞(K1). Then Ψ∗X ∈ TΨ(k)K2 and the map Ψ∗ : TkK1 → TΨ(k)K2 is a vector

space isomorphism.

The map Ψ∗ is called the pushforward of Ψ.

The disjoint union

TK :=
∐
k∈K

TkK

is the collection of pairs (k,X) with k ∈ K and X ∈ TkK. If K is a smooth n-manifold

then there exists a natural topology on TK and a smooth atlas with respect to which

TK is a smooth 2n-manifold, called the tangent bundle of K. There is a natural map

A : TK → K defined by A[(k,X)] = k. For each k ∈ K define Bk : A−1(k) → TkK

by Bk[(k,X)] = X.

A map (resp. smooth map) X : K → TK is called a vector field (resp. smooth

vector field) if X(k) ∈ (k, TkK). For each vector field X and f ∈ C∞(K), we define

the function Xf at each point k by

Xf(k) = Bk(X(k))f(k).

From [10, Lemma 4.6] one can deduce the following proposition:

Proposition C.3. If X is a smooth vector field and f ∈ C∞(K) then Xf ∈ C∞(K).

Moreover, if Y is another smooth vector field then, for each a, b ∈ R, aX + bY is a

smooth vector field defined by (aX + Y )f(k) = a(Xf)(k) + b(Y f)(k) for each k ∈ K.

This proposition allows for the following definition:
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Definition C.4. If X, Y are smooth vector fields then the Lie bracket of X and Y ,

denoted by [X, Y ] is a smooth vector field defined for each f ∈ C∞(K) as

[X, Y ]f = X(Y f)− Y (Xf).

The properties of the Lie bracket are given in the next proposition, the proof of

which is given as [10, Lemma 4.15].

Proposition C.5. The Lie bracket satisfies each of the following properties for all

vector fields X, Y and Z.

(1) Bilinearity: For each a, b ∈ R

[aX + bY, Z] = a[X,Z] + b[Y, Z] and

[X, aY + bZ] = a[X, Y ] + b[X,Z].

(2) Anti-symmetry:

[X, Y ] = −[Y,X].

(3) Jacobi Identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

We now define the notions of Lie group and Lie algebra.

Definition C.6. Suppose that G is a smooth manifold with group structure. G is a

Lie group if the maps

• µg : G→ G given by µg(h) = gh, and

• i : G→ G given by i(h) = h−1

are smooth for all g ∈ G.

It is a straightforward matter to prove the following elementary result:
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Lemma C.7. Let G be a smooth manifold with group structure. G is a Lie group if

and only if

νg : G→ G given by νg(h) = gh−1

is smooth for all g ∈ G.

A vector field X on G is said to be left-invariant if (Xf)(e) = (X[f ◦ µg])(g) for

each g ∈ G.

Proposition C.8. If X and Y are smooth left-invariant vector fields on G then for

each a, b ∈ R aX + bY and [X, Y ] are a smooth left-invariant vector fields on G.

Let g denote the set of smooth left-invariant vector fields on G. Proposition C.8

implies that g is closed under linear combinations and the Lie bracket. In this respect,

g is an algebra with linear combination given in the obvious way and multiplication

given by X · Y := [X, Y ]. The algebra g is said to be the Lie algebra corresponding

to the Lie group G.

Proposition C.9. g ∼= TeG.
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Appendix D. Nilpotent Lie Groups

The material in this section can be found in greater detail in [4] and [9].

Let g be a Lie algebra. Let g0 = g, and for each k ≥ 1 let gk = [g, gk−1]. One has

the following descending central series:

g = g0 ⊇ g1 ⊇ g2 ⊇ · · · ⊇ gk ⊇ · · · .

If there exists some n such that gn = {0}, and if gk 6= {0} for any k < n then g is

said to be step n nilpotent. This is equivalent to the condition that the descending

central series has finite length:

g = g0 ⊇ g1 ⊇ g2 ⊇ · · · gn−1 ) gn = {0}.

A Lie group is said to be nilpotent if its corresponding Lie algebra is nilpotent.

If G is any connected (not necessarily nilpotent) Lie group with exponential map

expG : g→ G and define

X ∗ Y = log(expX · expY ), X, Y. ∈ g

This function is analytic and well-defined near X = Y = 0 and does not depend on

the choice of locally isomorphic connected Lie group associated to the Lie algebra g.

This product is given by a universal power series involving only commutators:

X ∗ Y =
∑
n>0

(−1)n+1

n

∑
pi + qi ∈ N

1 ≤ i ≤ n

(∑n
i=1(pi + qi)

−1

p1!q1! · · · pn!qn!
(D.1)

× (adX)p1(adY )q1 · · · (adX)pn(adY )qnY

)
.
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This expression is known as the Baker-Campbell-Hausdorff-Dynkin formula (BCHD).

The low-order non-zero terms in (D.1) are well known:

X ∗ Y =X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]]

− 1

48
[Y, [X, [X, Y ]]]− 1

48
[X, [Y, [X, Y ]]]

+ (commutators with five or more terms).

The following theorem appears as Theorem 1.2.1 in [4].

Theorem D.1. Let G be a connected, simply connected nilpotent Lie group with Lie

algebra g

(a) exp : g→ G is an analytic diffeomorphism.

(b) The Baker-Campbell-Hausdorff-Dynkin formula holds for all X, Y ∈ g.

Indeed, if G is step m nilpotent then (D.1) reduces to a finite sum. If G is finite

dimensional with ordered basis {Z1, . . . , Zn} then

(a1Z1 + · · ·+ anZn) ∗ (b1Z1 + · · ·+ bnZn) = c1Z1 + · · ·+ cnZn

then for each 1 ≤ j ≤ n we have

cj = pj(a1, . . . , an, b1, . . . , bn)

where pj is a polynomial of degree no more than m+ 1.
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Appendix E. Induced Representations

Important in the calculations presented within this thesis are the unitary irre-

ducible representations of nilpotent groups. When calculating these representations

one makes use of induced representations. We present a short synopsis of this theory.

The results below can be found in [11].

Let H be a closed subgroup of G, and let

M = G/H.

Suppose that M has a G-invariant measure dµ. Let πH be a unitary representation

of H on a Hilbert space HH . Let HG denote the collection of measureable functions

f on G with values in HH , satisfying that

f(gh) = πH(h)[f(g)], h ∈ H,

and ∫
M

‖f([g])‖2
HHdµ([g]) <∞,

where [g] is the element of M corresponding to g ∈ G. Define the following inner

product on HG.

(f1, f2)HG =

∫
M

(f1(x), f2(x))HHdµ(x).(E.1)

Let IndGH,πH denote the representation of G on HG defined by

IndGH,πHf(x) = f(g−1x), g, x ∈ G, f ∈ HG.

Proposition E.1. With respect to the inner product in (E.1) the space HG is a Hilbert

space in which IndGH,πH is a unitary representation of G.
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