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Abstract

In this work we study linear control systems as recently addressed by Cardetti
and Mittenhuber, 2005. In particular, we present local controllability results in the
case when the Lie group G is a matrix Lie group. In the matrix Lie group case
the subgroup π(Ĥ) where local controllability holds can be computed explicitly in
terms of the control vector fields, using system theory on group manifolds. We give
an example on the special linear group SL(2, R) which shows that the identity of
G is properly contained in π(Ĥ), i.e., π(Ĥ) can be nontrivial.
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1 Introduction

In this note we consider linear control systems of the type

ẋ = X(x) +
k∑

j=1

ujY
j(x), (1.1)

evolving on a real finite dimensional Lie group G. Here the drift vector field
X is an infinitesimal automorphism, that is, a vector field whose flow Xt is a
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one-parameter group of automorphisms of G. The input functions u = (uj) are
piecewise constant functions, and the control vector fields Y j are left-invariant.

The above definition, introduced in [2], generalizes the classical notion of lin-
ear systems on the Euclidean space Rn. In [2], Ayala and Tirao consider the
ad-rank condition, which is an extension of the Kalman rank condition, for
controllability of the system Σ defined by (1.1). In fact, they prove that the
ad-rank condition is sufficient for local controllability of Σ at the group identity
e. Recently, in [4], the same result has been shown using a different approach,
namely, Lie theory of semigroups (see [5]). The result is obtained by first con-
structing an augmented Lie group Ĝ, and then choosing a closed subgroup T
of Ĝ such that controllability properties of Σ on the homogeneous manifold
M = Ĝ/T correspond to controllability properties of Σ on G. Moreover, the
authors prove that Σ is locally controllable at every point on π(Ĥ), where
π(Ĥ) is a certain subgroup of G. In general, this subgroup cannot be easily
described. The aim of this work is to present the local controllability results
in the case when G is a matrix Lie group. In this case the subgroup π(Ĥ) can
be computed explicitly in terms of the control vector fields. Assuming that G
is a matrix Lie group is not too restrictive since these groups provide most of
the interesting examples of Lie groups.

The question of whether local controllability on π(Ĥ) is really an extension
of local controllability at the identity e was not addressed in [4]. In this note,
we show an example on the special linear group SL(2, R) in which {e} is
properly contained in π(Ĥ). In other words, π(Ĥ) is nontrivial. In this sense,
the aforementioned result in [4] is indeed an extension of the main result in [2].

This work is organized as follows: in Section 2, we set up the notation and
recall the results from [2] and [4]. Section 3 contains Theorem 3.1 which is
the main result of this work, and in Section 4 the example on SL(2, R) is
presented.

2 Local Controllability

In this section we introduce some of the terminology, notation, and results
from [2] and [4] that will be used in the subsequent sections.

The reachable set of Σ from a point x0, denoted by R(x0), is the set of all
end-points of solutions of (1.1) that have initial condition x0.
Definition 2.1. A control system is said to be locally controllable at a point
x0 if the point belongs to the interior of its reachable set: x0 ∈ IntR(x0).

Throughout this work we identify the Lie algebra g of G with the left-invariant
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vector fields. The main hypothesis for local controllability is defined in terms
of the dimension of the subspace of g defined as

HX = span{adi(X)(Y j) : i ≥ 0, 1 ≤ j ≤ k},

where ad X is the inner derivation ad(X)(Y ) = [X, Y ].

Ayala and Tirao proved in [2] that the linear control system Σ as defined in
the introduction is locally controllable at the group identity e provided the
system satisfies the following condition:
Definition 2.2 (ad-rank condition). A linear control system satisfies the ad-
rank condition if HX has full rank, that is,

dim(HX) = dim(G).

Remark 2.3. This property is a generalization of the well-known Kalman
condition when G = Rn. (See [1], or [4]).
Theorem 2.4 (Theorem 3.5 in [2]). Let G be a real finite-dimensional con-
nected Lie group and let Σ be the linear control System (1.1). If Σ satisfies the
ad-rank condition, then it is locally controllable at the identity e of G.

Local controllability of these type of systems was also studied in [4] using Lie
theory of semigroups. In this note, we adopt the notation and constructions
from that paper. Specifically, the Lie group Ĝ is defined as the semidirect
product G oX R, with group multiplication given by

(g1, t1) · (g2, t2) = (g1Xt1(g2), t1 + t2), for gi ∈ G, ti ∈ R, and i = 1, 2. (2.1)

The Lie algebra ĝ is isomorphic as a vector space to g×R. Let X̂, and Ŷj be the

right-invariant vector fields in Ĝ defined at the identity as X̂ = (0, 1) and Ŷj =

(Yj, 0). The corresponding flows are the left translations by exp(tX̂) = (e, t)

and exp(tŶj) = (exp tY j, 0) respectively, where exp : ĝ → Ĝ is the exponential
map.

Let T be defined as the closed subgroup T = {e}oR, which is also equal to the
orbit of the identity under the flow of the vector field X̂, namely T = exp(RX̂).
The map η defined by

η : Ĝ×G → G, ((g1, t1), g) 7→ g1Xt1(g),

is a transitive action of the Lie group Ĝ on G. Furthermore, η is a flow, and
under the action η, T is the isotropy group of the identity e ∈ G, hence the
mapping

Ĝ/T → G, (g1, t1)T 7→ η(g1,t1)(e) = g1
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is a Ĝ-flow isomorphism, i.e. an isomorphism of transformation groups. Denote
by π the natural projection

π : Ĝ → Ĝ/T

which induces a linear surjection

dπ(1) : T1Ĝ → Tx0Ĝ/T

where x0 = π(1) is the base point in Ĝ/T .

Let ĥ be the subalgebra generated by the lifted control vector fields. We use
the subindex L.A. to express that it is generated as a Lie algebra, thus in
symbols ĥ = spanL.A.{Ŷ1, . . . , Ŷk}. Also let Ĥ be the subgroup of Ĝ defined
by Ĥ = 〈exp ĥ〉. The main result of [4] is stated in the following theorem:
Theorem 2.5 (Theorem 4.9 in [4]). Let G be a real finite-dimensional con-
nected Lie group and let Σ be the linear control System (1.1). If Σ satisfies
the ad-rank condition (2.2), then it is locally controllable at p = π(h) for all
h ∈ Ĥ.

3 Local controllability on a matrix Lie group

In this section we present the local controllability result for the case when G
is a matrix Lie group. It is important to remark here that in this case, the
natural projection π, defined in the previous section, is the projection on the
first coordinate of the semidirect product pr : Ĝ → G (see [4]).
Theorem 3.1. Let G be a connected matrix Lie group and let Σ be a linear
control system defined by

ẋ(t) = X(x(t)) +
k∑

j=1

uj(t)Y
j(x(t)), x(t) ∈ G,

where the drift vector field X is an infinitesimal automorphism, that is, a
vector field whose flow Xt is a one-parameter group of automorphisms of G.
The input functions u = (uj) are piecewise constant functions, and the control
vector fields Y j are left-invariant. If Σ satisfies the ad-rank condition (2.2),
then Σ is locally controllable on the subgroup 〈exp h〉.

Proof. The system Σ satisfies the ad-rank condition, thus by Theorem 2.5 we
know the system is locally controllable on π(Ĥ). Recall that each Ŷj is defined

as Ŷj = (Y j, 0) with flow given by exp(tŶj) = (exp tY j, 0). It is clear that if
k = 1, that is, if there is only one control vector field,then
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π(exp tŶj) = exp tY j for all t ∈ R,

and the theorem clearly holds true.

If k > 1, we use the following theorem:

Theorem 3.2 (Theorem 1 in [3]). Let A1,A2, · · · ,Ap be a collection of linear
subspaces of Rn×n. Then 〈expA1, expA2, · · · , expAp〉 = 〈exp(spanL.A.{A1,A2, · · · ,Ap})〉.

Using Theorem 3.2, the subgroup Ĥ = 〈exp ĥ〉 = 〈exp Ŷ1, exp Ŷ2, · · · , exp Ŷk〉.
Elements in 〈exp ĥ〉 consist of all the possible products of the different one-
parameter subgroups. For simplicity we consider h ∈ 〈exp ĥ〉 expressed as

h = (exp t1Ŷ1)(exp t2Ŷ2) · · · (exp tlŶl)

= (exp t1Y
1, 0) · (exp t2Y

2, 0) · · · (exp tlY
l, 0)

= (exp t1Y
1X0(exp t2Y

2)X0(exp t3Y
3) · · ·X0(exp tlY

l), 0)

= (exp t1Y
1 exp t2Y

2 exp t3Y
3 · · · exp tlY

l, 0)

where l = 1, . . . , k and the multiplication in Ĝ is as defined in (2.1).

From the above calculation we have that π(h) = exp t1Y
1 exp t2Y

2 exp t3Y
3 · · · exp tkY

k.
The same calculation holds when considering the more general form of h; there-
fore, the projection π(Ĥ) is contained in the subgroup 〈exp Y 1, exp Y 2, · · · , exp Y k〉.
To show π(Ĥ) ⊆ 〈exp h〉 we use Theorem 3.2 again and obtain

π(Ĥ) ⊆ 〈exp Y 1, exp Y 2, · · · , exp Y k〉 = 〈exp{Y 1, Y 2, · · · , Y k}L.A.〉
= 〈exp h〉.

Clearly, working the above steps backward we see that 〈exp h〉 ⊆ π(Ĥ) also
holds true and the proof is finished.

4 Example on SL(2, R)

In this section we present an example on a matrix Lie group which shows that
Theorem 2.5 is really an extension of Theorem 2.4. In other words, π(Ĥ) is a
nontrivial subgroup of G.

Let G be the Lie group SL(2, R) of all 2 × 2 real matrices with determinant
one, and let sl2(R) denote its Lie algebra; that is, the vector space of all 2× 2
real matrices with trace zero. Consider a fixed matrix A in sl2(R), and define
the vector field X by

X(g) = Ag − gA, for all g ∈ G.
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Then X is the infinitesimal generator of the 1-parameter group Xt given by

Xt(g) = etA g e−tA.

Clearly, Xt is a diffeomorphism and it preserves the group operation. Thus,
X is an infinitesimal automorphism of G. Systems with the drift vector field
defined in this form were studied by Markus in [6].

Now, let {E, F, H} be the standard basis of sl(2, R) given by

E =

0 1

0 0

 , F =

0 0

1 0

 , and H =

1 0

0 −1

 .

Then the following Lie bracket identities are satisfied: [H, E] = 2E, [H, F ] =
−2F, and [E, F ] = H. Consider the following linear control system

ẋ(t) = X(x(t)) + u(t)E(x(t)), x(t) ∈ SL(2, R), (4.1)

where X is the vector field associated to the matrix A =

1 0

1 1

 and E =

0 1

0 0

 .

Statement 4.1. π(Ĥ) =


1 t

0 1

 : t ∈ R


Proof. Using the Lie bracket identities, we have

dimHX = dim〈{adi(X)(Y j)| i ≥ 0, 1 ≤ j ≤ k}〉
= dim〈{E, [X, E] = H, [X, H] = 2F}〉
= dim(G).

Thus System (4.1) satisfies the ad-rank condition. Hence by Theorem 3.1, Sys-
tem 4.1 is locally controllable on the subgroup π(Ĥ). Recall that the subgroup
Ĥ is defined as Ĥ = 〈exp RŶ 〉, and in this example Y = E; therefore, after
some computations, we have

exp tŶ = (exp tE, 0) =


1 t

0 1

 , 0

 .

Consequently, the system is locally controllable on the upper triangular group
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π(Ĥ) =


1 t

0 1

 : t ∈ R

 .

Clearly, the identity matrix is properly contained in this subgroup, that is,
π(Ĥ) is nontrivial.
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