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ABSTRACT

We calculate the top Lyapunov exponent for solutions to linear stochastic differ-
ential equations with non-commuting drift and diffusion matrices. In particular we
consider (1) a class of R%-valued stochastic differential equations arising in the study of
the noisy harmonic oscillator (2) Sp(2,R)-valued stochastic differential equations are
considered. Additionally, numerical bounds are provided and simulation techniques

are discussed with an example.
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Notation

Throughout this thesis we will use the following notation:

e NM(n,R) denotes the set of n x n matrices with real entires
e AT denotes the transpose of the matrix A

e A% denotes the i, j* entry of matrix A

e Ady[B] = ABA™!

e W, is one dimensional standard Brownian motion

e 0V, denotes the Stratonovich differential

e dW, denotes the Ito differential

e log denotes the base e logarithm

e RDS means random dynamical system

e SDE means stochastic differential equation
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Chapter 1

Introduction

Recently, the Lyapunov exponent of solutions to stochastic differential equations
(SDEs) has arisen in many areas. For example, questions related to the propaga-
tion of waves through disordered structures, slowing down light by orders of mag-
nitude [MSO08], power system engineering [HVK12], medicine [SBvD12], ecosystems,
climate change, and finance [Kuell|. In addition, there is an extensive body of math-
ematical literature devoted to stochastic equations and Lyapunov exponents both in
R? [BL85, GM89, Arn03, 1199, PW91,IN93, GMV11] and in non-linear spaces such as
Lie groups [RMO1, Lia04].

Despite its ubiquity and the wealth of the understanding regarding the Lyapunov
exponent, it is difficult to calculate [Vis98]. In fact there are very few cases in which
the Lyapunov exponent has been explicitly calculated. The goal of this work is to
(1) calculate the Lyapunov exponent for vector and matrix valued stochastic differ-
ential equations (2) provide some numerical techniques to approximate the Lyapunov

exponent of solutions to stochastic differential equations.



1.1 Background

It is well known that the dynamics of a deterministic autonomous linear system in

E@d
—.fUt:Al't, (111)

are completely described by the spectral theory of the matrix A. In particular, if
{7V} 1. {Vi}i™ | are the eigenvalues and corresponding eigenspaces of Equation (1.1.1),

then for large enough ¢ we have

Re(vi)t

x(t) =e = x9 € Vi\Vis1.

In 1892, Aleksandr Lyapunov characterized this algebraic concept in terms of dy-
namical systems. In particular, he studied the possible asymptotic exponential growth
rates of Equation (1.1.1) by studying what we now call the Lyapunov exponent of

the system Equation (1.1.1),
= li ! 1 1.1.2
(eo) = Jim +log o (112)
In the case of a linear system such as Equation (1.1.1), we have
Y(xo) = Re(v;) <= xo € Vi\Vii1. (1.1.3)

Furthermore, this definition Equation (1.1.2) can be applied to a much more

general class of dynamical systems in order to study their stability. In this thesis



we are interested in considering the Lyapunov exponent of solutions to stochastic
differential equations.

Now let us formally perturb Equation (1.1.1) in the following way,

d
%.’Et = Al’t + b(t, IL't)ft, (1]_4)

where &; is a Markov process. For most choices of the noise processes, &, Equa-
tion (1.1.4) may not have a useful, rigorous interpretation. And even in the case that
Equation (1.1.4) is well defined, the analysis of such a system may be very difficult.
But if we restrict ourselves to the case when &, is pure white noise, we can interpret
Equation (1.1.4) using the theory of Itd stochastic integration. In applications, the

decision to interpret Equation (1.1.4) with It6 differential

dry = Axydt + b(t, xy) AW, (1.1.5)
or with Stratonovich differential

dxy = Axydt + b(t, xy) OW; (1.1.6)

is subtle and not universally agreed upon [MM12]. In both cases the rigorous inter-
pretation is the appropriate corresponding stochastic integral equation. Both the Ito
and Stratonovich stochastic integrals arise from the same Riemann sums approach
to the construction of stochastic integrals. Ito integral corresponds to choosing left
hand samples, and the Stratonovich integral corresponds to choosing middle samples
points. In fact we can similarly define the stochastic integral for any choice of sample

point « € [0, 1]. But these two choices are the most common because the It6 integral



is a martingale and the Stratonovich integral has the standard chain rule. Now in
general, it is agreed that the Ito stochastic integral best models processes that are
inherently discrete. Whereas the Stratonovich integral is better suited towards the
modeling of naturally occurring continuous processes. Without further comment, in
this thesis we will use the Stratonovich interpretation of the white noise process.
Now consider the case where b(x;,t) = Bz, for some constant matrix B € M(n,R).
Hence our perturbed system is a homogeneous linear stochastic differential equation

with multiplicative noise,

We will call A the drift matrix, B the diffusion matrix, and refer to A, B both as
coefficient matrices. Naively, one might wonder if we can analyze Equation (1.1.7)
using spectral analysis methods like for linear ODEs. Somewhat surprisingly, the
answer is yes. In fact there is well developed analog of this spectral theory specifi-
cally for SDEs (and for random dynamical systems in general). The following famous

theorem of Oceledets [Arn03] provides the necessary link.

1.1.1 Osceledets’s multiplicative ergodic theorem

For a vector valued stochastic process X; consider the expression for the Lyapunov

exponent,

.1
Y(Xo,w) = tlgglo ;log | X (w)]| - (1.1.8)



This quantity depends on the initial condition, Xy. There is clearly a question of
convergence. The multiplicative ergodic theorem of Osceledets (first proven in 1968)
allows the theory of Lyapunov exponents to be rigorously applied to stochastic sys-
tems (and random dynamical systems in general). Here we state a modern version
of this theorem for a very specific case. The multiplicative ergodic theorem is more

general and has a much broader scope. For a more general version see Appendix B.

Theorem 1.1.1 (Oceledets, 1968). Consider the R™ valued linear stochastic differ-
ential equation X; = AX,dt + BX;0W,. Define,

i 1
7(Xo) = limsup — log || X¢| -
t—o00 t

Then with probability one,
1. ~(+) takes at most d many values. Call them {71, ...,vq} where d < n.

2. There exist nested subspaces {V;}™, of R such that
‘/d C---C Vl = R"

and

Y(Xo) =7 = Xo€Vi\Via

3. 7(Xo) = En(Xo)

The largest value taken by the Lyapunov exponent (Equation (1.1.8)) is,

v =y = max v(Xp) (1.1.9)
Xo



is called the top Lyapunov exponent of the system. Understanding the relationship
between the stability of Equation (1.1.1) and its perturbation Equation (1.1.6) is a
common source of investigations. As ~ is determined by the exponential growth
rate of the system, it is related to several notions of the stability of the system. A
common notion for the stability of solutions to SDEs is due to Khasminskii. We say
X, is stochastically asymptotically stable if

lim P (lim |X)] —0) = 1.

Xo—0 t—ro0
It is true that the zero solution is stochastically asymptotically stable if and only if

v < 0.

1.2 Outline

This thesis is constructed of three main sections. In Chapter 2 an integral expression
is calculated for the Lyapunov exponent of a class of R2-valued stochastic differential

equations Equation (2.1.9). The main result is Theorem 2.3.1.

In Chapter 3 the Lyapunov exponent is calculated for a few specific Sp(2, R)-valued
stochastic differential equations. The main results are Proposition 3.3.1, Proposi-

tion 3.3.2 and Proposition 3.3.3.

In Chapter 4 we provide a technique to numerically approximate the Lyapunov

exponent of systems similar to those in Chapter 2 and Chapter 3. The main result



is Theorem 4.2.1. In addition, in Section 4.3 a specific example is discussed in detail

and numerical simulations are carried out.



Chapter 2

Vector Valued SDEs

2.1 Background

We fix without further mention a filtered probability space (2, F, F;,P). In this work,
a stochastic process is a collection of random variables {X; : ¢t > t} taking values in
either R? or M(n,R) the choice of which will be clear in context. A process is said
to be adapted if X; € F; for each t > 0. A path of a stochastic process is a function,

w(t) defined by
w(t) = Xy(w), (2.1.1)

for a fixed w € €. In this work we will consider strong solutions to SDEs.

Consider the formal equation for the 1-dimensional harmonic oscillator with a



white noise potential studied in [PW91,11.99, GMV11]

(1) + W (t)p(t) = —p(1). (2.1.2)

In [GMV11, Theorem 2| an integral expression for the top Lyapunov exponent is
calculated.

If we define

then we can rigorously interpret this as the R%-valued SDE

0
(SXt — Xt dt‘I‘E Xt (SWt, (213)
-1 0 10

where W, is a standard R-valued Brownian motion. This Stratonovich stochastic

differential equation is equivalent to the Ito stochastic differential equation,

0 1 00
dXt — Xt dt + € Xt th (214)
-1 0 10

Notice that the drift and diffusion matrix do not commute. In general, if the drift
and diffusion matrix of a linear stochastic differential equation do not commute there
is no known technique to calculate or algorithm to approximate the Lyapunov expo-
nent of the resulting system. In this case we will use some algebraic properties of the

diffusion matrices to study this system.
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The real symplectic Lie algebra of dimension 2n is

sp(n,R) := {B € M(2n,R) : JBJ = B} (2.1.5)
where,
0 I,
J = : (2.1.6)
I, 0

B = Iy = By = , (2.1.7)

form a linear basis for sp(2,R). Using this basis we can rewrite Equation (2.1.3) as
6Xp:&Xﬂﬁ+%@g—EﬁXJW@ (2.1.8)

Now we consider the following generalization of the noisy harmonic oscillator, Equation (2.1.3),

3 3
=1

i=1

where a;, b; € R. The choice of Itd vs. Stratonovich differential does make a difference
and this distinction can be quite subtle [MM12]. This generalization serves two

purposes. First, it will allow us to consider perturbations of stable ODE systems
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(i.e., small b;). Secondly, it will allow us compute the Lyapunov exponent in the
case of some non-commuting drift and diffusion matrices. Define the top Lyapunov

exponent of the system Equation (2.1.9),

1
(b1, ba, b3, c1, ca, ¢3) := max lim — log || X¢]| . (2.1.10)

XoeR2 t—oo §

As discussed earlier, the convergence of this quantity is ensured by Osceledets’s mul-

tiplicative ergodic theorem.

Calculating the Lyapunov exponent of systems with non commuting drift and
diffusion matrices is an active area of research. In 1979 the mathematician John
Kingman was studying similar ergodic properties of discrete time difference equations.
When considering non commuting drift and diffusion matrices he wrote that “pride
of place among the unsolved problems of subadditive ergodic theory must go to the

calculation of the constant 4. For our current system Equation (2.1.9) we have

2(a+c)d 0
[aE1 + bEQ + CE'?,7 —dEl + dEg] = . (2111)
—4bd  —2(a+c)d
This commutator is the zero matrix in exactly two cases. The first case is when d = 0,
which means that the diffusion matrix is zero. The second case is when a = b = ¢ = 0,

which means that the drift matrix is zero. In particular, as long as the drift and dif-

fusion matrices are nonzero they do not commute.
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In [GMV11,PW91] an integral expression for

~ <w,0, 0,;—5,0, %) (2.1.12)

was calculated. In particular, it was shown in [GMV11] that

-0 0 o
where

p(z) = Ceq)(z)/ e~ 0 qt, (2.1.14)
2

O(t) = 20%(75 ), (2.1.15)

c! :/ p(2)dz, (2.1.16)
2 1 _ .2

flo)= L 127 (2.1.17)

Tt 2

In Section 2.3 we calculate an integral expression for v(a, b, ¢, —d, 0, d) for all a, b, ¢, d €

R, thus generalizing the above results.

2.2 Preliminaries

In this section we prove a few preliminary results that simplify the proof of the
main result of this chapter, Theorem 2.3.1. First we consider the choice of norm in
Equation (2.1.10). As stated, the definition of the top Lyapunov exponent seems to
depend on the choice of norm. But for finite dimensional vector spaces all norms are

equivalent. Hence we have the following result.
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Lemma 2.2.1. In a finite dimensional vector space, the value of the Lyapunov expo-

nents Equation (2.1.10) are unaffected by the choice of norm.

Proof. Consider two norms ||-||, and [|-||z for the finite dimensional vector space V.

Then there exist constants «, 5 € R such that a||v]| , < |Jv||g < B|v]| 4 for all v e V.

Define
— lim + log ||
vA _tggot 0og tha
o1
B = tligloglogHXt”B
Hence,

o1
VB — VA = tlgglo ;(1095 [ Xell 5 — log [[ Xl 4)

- i g (100

t—oo 1 1 X¢ll 4
X

< s g (5

t—oo ¢ R

1

= lim - log()

t—o00
=0

Similarly, vg — v4 > 0. Hence, v4 = 5.

For the system Equation (2.1.9) the expression

.1
}E&;log”Xt“

(2.2.1)
(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)
(2.2.6)

(2.2.7)

(2.2.8)

(2.2.9)
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can take at most two distinct values which we will call v; > 5. This follows from the
random splitting of R? into nested linear subspaces from Osceledets’s multiplicative

ergodic theorem. In particular, we have the linear subspaces

{0} € Vo(w) CVi(w) CR?

such that,

Yw,z) = N(w) <= =€ Vi(w)\Va(w) (2.2.10)

Yw, z) = Y(w) <= = € Vo(w)\{0}. (2.2.11)

The symplectic structure of the coefficient matrices also provides further constraints
on the possible values of the the Lyapunov exponent. In particular, we make use of

the following result, the proof of which can be found in [Arn03, Example 3.4.19]

Remark 2.2.2. For the system in Equation (2.1.9), v = —7s.

2.3 Result

In this section we calculate an integral expression for

v(a,b, ¢, —d,0,d), (2.3.1)



15

the top Lyapunov exponent of the solution to the following R2-valued stochastic

differential equation,

(SXt = (CLEl + bEg + CEg)Xt dt + <—dE1 + dEg)Xt (SWt,

where a, b, c,d € R and W, is a standard one-dimensional Wiener process.

Theorem 2.3.1. Assume that d # 0.
1. If any of the following conditions hold:

(a) a+c>0,
(b) a+c=0andb>0,

(c) a+c=0andb=0anda—c>0,

then the following formulas for the top Lyapunov exponent hold,

N

v(a,b,c,—d,0,d) = ‘/_C: f(z)p(z)dz

where

o
p(z) = C’e@(z)/ e ®® qt,

1 a+c

d(t) = 4—d2[(a — o)t + bt* + t%],
c™t = /OO p(z) dz,

C26(1 = 2%) 4 4cz AdP(1 - 27)
f(Z)— 1+ 22 (1+22)2 :

2. If any of the following conditions hold:

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)



(a) a+c <O,
(b) a+c=0andb<0,

(c) a+c=0andb<0anda—c<O0,

then the following formulas for the top Lyapunov exponent hold,

Y

*ﬂmbg;—dJLd)—‘/ﬁ:f@ﬂp@)dz

where

p(z) = C’e@(z)/ e®® dt,

b _ 9  a+cC 5
O(t) = 4d2[(a c)t + bt +—3— t°],
ol = / p(z)dz,

20(1 — 22) +4cz  4d?(1 — 22
iy =2 (-2

1+ 22 (1+227

16

(2.3.8)

(2.3.9)

(2.3.10)

(2.3.11)

(2.3.12)

Proof. 1f we write X; = (x4, ,), then Equation (2.3.2) can be written in coordinates

as

dxy = (bx + (a+ c)y)dt

e = ((c — a)xr — by) dt + 2dx, W

And similarly, can be converted into Ito differential form as

dvy = (bx + (a + c)y)dt

dy; = ((¢ — a)x — by) dt + 2dx; dW;.

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.16)
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Consider the change of coordinates z; := y;/x;. Notice that by It6’s lemma,

20(1 — 22) +4cz  4d*(1 — 2?) dez
dlog || Xl = | | @t + == am. 2.3.17
og || Xl 1+ 22 (14 22)2 +1—l—z2 ¢ ( )
Now,
1
~v(a,b,c,—d,0,d) = tll)m . log || X3 (2.3.18)
t _ 2 2(1 _ .2
— lim 1 [26(1 25) +4czs  4d(1 zs)] (2.3.19)
oo £, 1+ 22 (1+ 22)2
1 [* 4c
+ lim - s (2.3.20)

t—oo T Ol—l—zg 5

N E[ o L /t [25(1 — 23) + 4z, N 4d?(1 — zf)] ds] (23.21)
JO

= R A ()
o1 [t dez,
*E[}E?o ?/o o dWS], (2.3.22)

where the last equality follows from Oceledets’s multiplicative ergodic theorem. First,
consider the second expression in Equation (2.3.22). Notice that the integrand in

bounded. In particular,

dez,
< 2c. 2.3.23
1+22 7~ ¢ ( )
Hence we can apply the dominated convergence theorem and use the fact that the

Wiener integral is a martingale,
1 [" 4 1 !
E[ lim - / idws] — lim -E / 5w, (2.3.24)
tooo t Jy 1+ 22 t—c0 o 1422

— 0. (2.3.25)
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Now consider the first expression in Equation (2.3.22). Since the metric DS induced

on Wiener space is ergodic [Arn03| we have,

E[M1{£[4% +M1_£q@}—él AN de (23.26)

oot Jo L1422 (14 22)2 1+22 (14 22)2

where p is the invariant density of the process z;. We calculate p directly by inspect-

ing the appropriate Fokker-Planck equation for z;.

Let £ denote the generator of z;. The density for z; is the solution to following

partial differential equation,

=8, (2.3.27)

and the invariant density for z; is the solution to

£ =0. (2.3.28)

By Ito’s lemma we have

dz = [(a—c)+ (2b+ d*)z + (a+ )% dt + [d + (a + ¢)2*] dW,. (2.3.29)

And so the formula for the adjoint of its generator is

L*p(2)] = [=2b—2(a + c)]p(2) — [a — ¢ + 2bz + (a + c)22|p'(2) + 4d*p"(2). (2.3.30)

One can check that Equation (2.3.4) and Equation (2.3.9) both satisfy this Fokker-



19

Planck equation under their respective conditions. Furthermore, they are indeed

probability densities. The result follows.



Chapter 3

Matrix Valued SDEs

As an extension of the linear model discussed in Chapter 2, we also consider matrix

valued solutions to the stochastic differential equation
0X; = AX,dt + BX, 6W,. (3.0.1)

Due to properties of the matrix exponential we will show that X is Sp(2, R)-valued
with probability 1. We will then use a structural decomposition of Sp(2, R) known as

the Iwasawa decomposition in order to simplify our analysis of the process Xj.

20



21
3.1 Background

Let X; be a M(n,R) valued, adapted stochastic process and write

1,1 1,n
Ty Ty
X, =
n,l n,n
Ty Ty

Each coordinate entry, a:ij , is an R-valued stochastic process and is adapted to the
same filtration. We will refer to the 2/ as the coordinate processes of X;. We will
say that X, has a certain property (continuity, martingale property, etc.) if and only
if each 7 has the property. We will adhere to the following formal coordinatewise

differential notion,

1,1 1 1,1 1
xy a dxy .. "

1 , 1 )

In addition we will use the following one dimensional notation convention,

(04)ys := Yy Oy (3.1.1)

whenever x; and y; are one-dimensional processes for which the right hand side is well

defined. Now consider the following matrix valued SDE with X; € M(n,R),

5X, = a(Xy,t) dt + b( X, ) SW,. (3.1.2)
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By inspecting the matrix entries we can interpret this as a system of n?, one-dimensional

SDEs,
O[ X" = [a( Xy, t)]™ dt + [b( Xy, t)]™7 OW,. (3.1.3)
Which is shorthand for the rigorous integral equation
xy? —xg’ = / [a( X5, )] ds —I—/ [b( X, 8)]"7 OW.
0 0

We have the following matrix valued product rule.

Proposition 3.1.1. If the entries of the matrix valued process X, Y; are continuous

semimartingales, we have the product formula
0(XiYr) = (6X4)Y: + Xi(0Y7). (3.1.4)

Proof. For each coordinate process of the product X,;Y; we can directly calculate that,

SX YT =0 (XPHYE) (3.15)
k=1
= (XYM (3.1.6)
k=1
= XRovH 4y eX (3.1.7)
k=1
= [X 0V + [(V (6X,) )] (3.1.8)
= [ X0V + [(0X,) Vi)™, (3.1.9)

Where Equation (3.1.7) follows from the one-dimensional Stratonovich product rule



23

[Yor01]. O

If the coordinate functions [a(Xy,t)]™, [b(Xy,t)]* in the stochastic differential
equation Equation (3.1.2) are well behaved, the existence and uniqueness of the coor-
dinate solutions are guaranteed by standard one-dimensional existence and uniqueness
theorems [Yor01|. Hence the existence and uniqueness of the solution X; is guaran-

teed. For example if we take A, B € M(n,R) and define

a(Xp,t) = AX,, (3.1.10)

b(X;,t) = BX,, (3.1.11)

we recover the time homogeneous linear stochastic differential equation with constant

coefficient matrices Equation (3.0.1),

§X, = AX,dt + BX,5W,. (3.1.12)

In the case that A and B commute it is well known [KP92] that the fundamental

matrix,

(I)t = exp(At + BWt)X(), (3113)

is the strong solution to Equation (3.1.12). In particular this can be interpreted

coordinatewise,

S[@]" = [AD,)"™ dt + [BP]™ 6W,. (3.1.14)
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But in general, for non-commuting drift and diffusion matrices the situation is more
complicated and a closed form solution may not be possible to derive. Writing a
formula for the solution to Equation (3.1.12) would require using the Trotter prod-
uct formula or the Baker-Campbell-Hausdorff formula, neither of which are discussed

here. For example see [FJ12, Section 7.3].

Another closely related example would be

a(Xt, t) = XtA, (3115)

This generates the stochastic differential equation

Now consider a matrix Lie group, G, and its Lie algebra, g. For definitions and

discussion see Appendix A. Due to some well known properties of exponential map,

exp: g — G, (3.1.18)

matrix Lie groups and matrix Lie algebras provide a natural framework to study
matrix valued linear SDE. In particular, if the diffusion matrices are elements of g,

the solution X; will be G-valued. The following proposition clarifies this relationship.



25

Proposition 3.1.2. Assume that A, B € sp(2,R). Consider the matriz valued SDEs

Y, = Y, Adt + Y, B 6W,. (3.1.20)

If Xo € Sp(2,R) then X, € Sp(2,R) with probability one for all t > 0. Similarly, if
Yo € Sp(2,R) then Y; € Sp(2,R) with probability one for all t > 0.

Proof. We'll prove the result for X;. By the product rule,

S(XTIX) = (6XD)JIX, + X J(6X,) (3.1.21)
= (AX,dt + BX; oW)T I X, + X[ J(AX, dt + BX, W) (3.1.22)

= X [(Adt 4+ BsW)TJ + J(Adt + BW,)| X, (3.1.23)

And since A, B € sp(2,R), we know that At+ BW, € sp(2,R). Hence d( X[ JX;) = 0.

Which means in particular,

X'Jx, — X JX, =o.

Therefore since Xy € Sp(n,R) we have X[ JX; = J for all ¢ > 0. O
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3.2 Iwasawa decomposition of Sp(2, R)

Recall that the coefficient matrices discussed in Chapter 2.

B = By = By = (3.2.1)

form a basis for the Lie algebra sp(2,R). As a direct result of Proposition 3.1.2
we know that if X; is the solution to a linear stochastic differential equation with
coefficient matrices from sp(2,R) then X; will be Sp(2,R) valued with probability

one. More specifically,
X; € exp(sp(2,R)) C Sp(2,R) (3.2.2)

for all £ > 0. To simplify our analysis of X; we will utilize an algebraic decomposition
of Sp(2,R) known as the Iwasawa decomposition. First we notice that in this low-

dimensional case of 2 x 2 matrices
Sp(2,R) = SI(2,R), (3.2.3)
a fact that can be verified directly from the definition of the two spaces.

Consider the following Iwasawa decomposition (Theorem A.0.6) of Sp(2,R),

Sp(2,R) = KAN,



where
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cosk sink
keRy, (3.2.4)
—sink cosk
e 0
a€R, (3.2.5)
0 e @
1 n
n >0 (3.2.6)
0 1

Specifically this means that for all X € Sp(2,R) there exist K € K, A € A/N € N*

such that X = KAN. So if we take an arbitrary X € Sp(2,R) there exists k,a € R

and n > 0 such that

cosk sink e 0 1 n
X = (3.2.7)
—sink cosk 0 e @ 0 1
e?cosk e*ngcosk +e %sink
_ (3.2.8)
—e%sink e ®cosk — e*nsink

Now, since we are dealing with finite dimensional matrices, our choice of norm will

not affect the numerical value of the Lyapunov exponent (see Lemma 2.2.1). Hence

it will suffice to use the Hilbert Schmidt norm of a matrix X,

| X || ;7 := trace(X™X).

(3.2.9)

In these Iwasawa coordinates a direct calculation shows that the Hilbert-Schmidt
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norm of a matrix X € Sp(2,R) is given by,

1 X ||y = €+ e (1 4 n?). (3.2.10)

3.2.1 Iwasawa coordinate processes

Consider X, the solution to Equation (3.1.12). Now we discuss how the Iwasawa
decomposition of Sp(2, R) induces one-dimensional Iwasawa coordinate processes from

X;. Foreach t > 0, X; € Sp(2,R) has an Iwasawa decomposition X; = K;A;N; where

cosk;, sink;
Kt - : l{?t S R 5 (3211)
—sink; cosk;
\
(
e’ 0
At = Tay € R y (3212)
0 e
\
(
1 n
N = im0, (3.2.13)
0 1

Hence we have the following three parameter decomposition of X;,

e cosk, e%ngcosk; + e sin ky
Xt —
—e%gsink;, e “cosk; — e*n,sin k;
So we can study the matrix valued process X; by studying the one-dimensional co-
ordinate processes ki, a;, n;. In particular the SDE that the matrix valued process,

X, satisfies will induce three stochastic differential equations satisfied by k;, a;, n;

respectively.
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3.2.2 Previous Results

In [RMO1] the Lyapunov exponent is calculated for certain matrix valued linear
stochastic differential equations. A much broader class of Lie groups is considered.
In fact the class of semi-simple matrix Lie groups are considered. The stochastic

differential equations considered is

0X, =) A'X, oW, (3.2.14)

=1

where {Al ..., A"} is an orthonormal basis of the symmetric space a @ n. In this
work we will consider some stochastic differential equations that do not fit this model.
In particular we will consider an example in which the diffusion matrices do not form
a full basis for a @ n. In addition we will consider a case which has a nonzero drift

coeflicient matrix.

3.3 Results

Here we calculate the top Lyapunov exponent for a linear system with non-symmetric

diffusion matrix Fj.

Proposition 3.3.1. Consider the matrix valued stochastic differential equation
(SXt = Xt(CEl) 5Wt (331)
where W, is a 1-dim Brownian motion and ¢ € R. Then

!
fim — log | X[ = 0.
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Proof. 1f we write X; = N;A;K; we can explicitly calculate the Iwasawa coordinate
processes (ng, az, k¢). Due to Proposition 3.1.2, X; € Sp(2,R) with probability one.

In particular, X; is invertible with probability one and the following identity holds,

X 10X, = cBy oW, (3.3.2)

Furthermore as W, is one dimensional,

Adg,[X;710X:) = Adg, [cEy] §W. (3.3.3)

Now consider the LHS of Equation (3.3.3). By It6’s Lemma,

Adp, [X;10X;) = Ad, [ K AP NT O (NAK)) (3.3.4)
= Ady,[K;"A7ENTH(ON) AKG + Ny(0A) Ky + N A(SK)]] (3.3.5)
= ATINTH SN AL+ ATYOA + (0K K (3.3.6)

day Ok,

- . (3.3.7)
ezat(snt - (Skt 0

Which we can calculate explicitly from,

ATINTHON) A, = : (3.3.8)
e2*dn, 0
1 5(115 0
A 0A = , (3.3.9)
0 —5at




(0K )K=
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0 Ok
(3.3.10)
—8k;, 0

Now let’s consider the RHS of Equation (3.3.3). We have the following commu-

tation relations,

Adg, By =

Ady, By =

Adg, Bs =

0 1

, (3.3.11)
-1 0
cos(2k —sin(2k
(2k:) (2ky) | (3312)
— SiH(th) — COS(th)
sin(2k cos(2k
(2ky) (2ky) (3313)

cos(2k;) —sin(2k;)

In particular, the subspace generated by F; is Adk invariant. Hence the RHS of

Equation (3.3.3) is

Now, by the equality of Equation (3.3.7) and Equation (3.3.14) we have,

5at

Adg, [cF1]6W, = cE W, (3.3.14)
0k 0 oW,
— . (3.3.15)
0 —sW, 0

€2at (5nt - 5](315

From this we can determine the coordinate stochastic differential equations,

ny =0, (3.3.16)
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da, =0, (3.3.17)

Which yield the coordinate processes,

ny = No, (3.3.19)
a; = ao, (3.3.20)
I’Ct = CWt + l{f(). (3321)
Finally,
1

(0X) = Jim }log ;) 3322
= lim ~ log /e + e20(1 4 n?) (3.3.23)

t—oo t t o
= lim 1log \/620’0 + e7200(1 + nd)) (3.3.24)

t—oo ¢ 0 o
~0 (3.3.25)
[l

Now we calculate the top Lyapunov exponent for a system with non-symmetric

diffusion coefficient matrix £ that also has a non-zero drift coefficient matrix.

Proposition 3.3.2. Consider the matrix valued stochastic differential equation,

(SXt - Xt((fEl) dt + Xt(dEl) (SWt
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where W, 1s a 1-dim Brownian motion. Then
lim ~ log || X,|| = 0
i 7 log 1l =0

Proof. Write X; = N;A;K,;. Using the same method as above we can calculate the

coordinate processes,

ny = No, (3.3.26)
at = aop, (3.3.27)
And again since a; and n; are constant, the claim is proven. O

Everything in this section can be done with multiplication on the other side. We
state the result below for completeness. The proofs are nearly identical to those of

Proposition 3.3.1 and Proposition 3.3.2.

Proposition 3.3.3. Consider the matrix valued stochastic differential equation,
5Xt = (CEl)Xt dt + (dEl)Xt 5Wt
where Wy is a 1-dim Brownian motion and c¢,d € R. Then

!
fim — log | X[ = 0.



Chapter 4

Numerical Results

Osceledets’s multiplicative ergodic theorem provides an analogue of the law of large

numbers by stating that under appropriate conditions on X},
1
Zlog||Xt|| (4.0.1)

converges a.s. to a constant. Furthermore, analytically calculating or algorithmically
approximating this constant is difficult. In fact, there is a field of research being
undertaken regarding the theoretical computability of the top Lyapunov exponent
for various systems. For example, in [TB97] it is shown that algorithmically approx-
imating the Lyapunov exponent of related discrete time systems is NP hard. And
in [TB97,Vis98, Vis01], it is shown that for any given degree of accuracy no algorithm

exists that can approximate the Lyapunov exponent of related discrete time systems.
The exponential decay/growth of the solution X; leads to practical computation

34
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issues. Simulated trajectories of X; rapidly approach either 0 or co. Consider the
case when Xp < § for some small 0 < § < 1. There are two possible sources of
computational error. First, if § is smaller than the working precision of the compu-
tational tool being used, the numerical value of X7 will be 0. Secondly, log X7 can
be so close to —oo that its magnitude is larger than the largest number available to
the computational tool used. Due to these facts, naive computations can be very

misleading.

Now if the convergence rate of Equation (4.0.1) were fast enough, we would be
able to effectively approximate v by only simulating X, for relatively small ¢, stopping
the simulation before incorrect values of 0 or co were achieved. To that end we define

the finite time Lyapunov exponent of a stochastic process X; to be
1

Due to the difficulties outlined above we will numerically inspect ;. Now, Osceledets’s
theorem ensures that the limit

lim ~

t—o00

is constant a.s. But no such guarantee is made for the finite time Lyapunov exponent.

So the distribution of )\; is sought after. We will approximate E~,.

In this work we will bypass these difficulties in the following way. We will write
v; as the solution to a stochastic differential equation. This process will not have

exponential growth/decay properties and so we can calculate its Euler approximation,
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7 (see Section 4.1 for definitions). In short, notice that
[Evy; — ge < [Erye — E| + [E7; — gel. (4.0.3)

Theorem 4.2.1 ensures that v, can be made arbitrarily close to [E4; by taking the
time discretization interval as small as necessary. We statistically estimate E7, and

probabilistically bound the second summand using the method of confidence intervals.

4.1 Background

4.1.1 Euler Approximation to SDE

Consider the SDE

In order to define the Euler approximation to the solution X; on the interval [to, T

we will discretize the time interval time and make some related definitions.

Definition 4.1.1. For a time discretization to =79 < 7 < -+ < 7nv = T define

An = Tpn+1 — Tn (412)

AW, =W, o1 — W, (4.1.3)

For example, it is common to consider equidistant time intervals in which case the
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above simplifies to

A, = (T —t)/N = A (4.1.4)
o = to + nA (4.1.5)
AW, ~ N(0, A) (4.1.6)

Definition 4.1.2 (Euler Approximation). Assume that X, satisfies

Then the Euler approximation to X, is the discrete time stochastic process, de-

noted X,,, defined iteratively, {f(n :n=20,1,..., N} as follows,

Xo = Xo, (4.1.8)
Xis1 = X 4 a(X)A; 4 b(X;) AW, (4.1.9)
for i = 0,1,...,N — 1. It is useful to linearly interpolate and consider X; as a

continuous time process with piecewise linear paths.

In practice Bernoulli random variables are another useful means of approximating
the Brownian increments AW,,. In this work we will use the following definition for

AW,

VA wop. 1/2
AW, — p- 1/ (4.1.10)

—VA wp. 1/2

We remark that X; is a stochastic process in its own right, and in particular Osceledets’s
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multiplicative ergodic theorem applies. But unfortunately,

1 1 e
lim —log || ;]| # Jim + log HXt (4.1.11)

The relationship between these two quantities was studied in [Tal99].

4.1.2 Confidence Intervals

In general, analysis of the Euler approximation to an SDE is just as difficult as
that of the original SDE. But the iterative nature of its definition allows for simple
simulation and estimation. For example, one way to estimate EX, is the method
of confidence intervals. We will simulate M many batches, each consisting of N
simulated trajectories of X;. Label th’k the k™ simulated trajectory from the ;™
batch for k € {1,2,...,N} and j € {1,2,..., M}. And for each batch, define the

batch sample average

/\

1N
€ = NZ

k=1
for j € {1,2,...,M}. Now define the sample mean and sample variance for the
random variable ¢;,
M
é:MZ@j, (4.1.12)
j=1

M
1
9 A2
0" =y jE_l(EJ &), (4.1.13)
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which are both unbiased estimators. Then the scaled random variable

: —EX
7= 0t (4.1.14)

N

has the Student ¢-distribution with mean zero, variance (M —1)/(M —3) and M —1

degrees of freedom. Hence,

P(j¢ — EX,| < a) = P(|T| < a\/M/52)
Now define #1_, a7—1 to be the quantity that satisfies,
]P(|T| < tl—a,M—l) =1—-a.

And we can conclude that

. ~ o2
P('E — ]Eth < t1,a7M71 M) =1- ,
or
o 52 52
]P’|:EX,§ € (6 - tlfa,Mfl M, €+ t1,a7M,1 M)] =1—-o. (4115)

It should be noted here that the quantity of interest, EX,, is deterministic. It is
the interval that is random. This is because the quantities 62 and ¢ are random
variables. So the statement in Equation (4.1.15) can be interpreted as follows: Every
time that 62 and ¢ are simulated, the interval Equation (4.1.15) is constructed. The

deterministic quantity EX; lies within that interval with probability 1 — a.



40
4.2 Results

Now we will consider the one dimensional noisy harmonic oscillator from Chapter 2.

Specifically, we consider the solution to

0 1 00
dXt = Xt dt +€ Xt th (421)
-1 0 10

The following result is the main content of the chapter. We will prove this result with
Lemma 4.2.2 and Lemma 4.2.3 in this section. Notation conventions and discussion

thereof are contained in Section 4.1.

Theorem 4.2.1. Let v, be the finite time Lyapunov exponent for Equation (4.2.1)

and let 7, be the Fuler approximation to -y, with step size . Then,

2 VAT ERTE [
P{E% € (ﬁt + [tl—a,M_1 % + VA ( t+ C) te / 167 (s> +9) ds])} =1-a.
- 0
(4.2.2)
Where,
o1 L
i= e S (423)
k=1
;Mo
gt = N 9t (4.2.4)
IN —
LM
6" = D @l =@ (4.2.5)
j=1

Lemma 4.2.2. For the system Equation (4.2.1) the finite time Lyapunov exponent
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satisfies,

62 2 t

2 ot
Evy, = 3 + fl_t i E cos 20, ds + ;_t/o E cos 40, ds (4.2.6)

Proof. Consider the change to polar coordinates in Equation (4.2.1). Specifically,

Tt Tt sin 0,5

X, = = . (4.2.7)
(7 Yt cos Oy

Then by Ito’s Lemma we can calculate
80, = —dt + ¢ cos® 0, 6W, (4.2.8)
which we can convert to Stratonovich differential form as
df; = —(1 + € cos® O, sin ;) dt + ¢ cos® O, dW,. (4.2.9)

Then we can apply [td’s lemma directly to v = %log || X¢|| which yields the desired

result. O

2
€
Notice that the constant term, 3 in Lemma 4.2.2 agrees with the asymptotic

results from [GMV11]. Now consider the following bound. The proof techniques are

standard and inspired by [KP92].

Lemma 4.2.3. Let 0, be the Euler approzimation to 0, with step size /A. Then for
all a € R,

E| cos(al;) — cos(aby)| < a\/Z[4616€2(t2+t)\/[(1 +€2)? + 62]] (4.2.10)
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Proof. Define n; = max{0,1,..., N : 7, < t}. By the definition of the Euler approx-

imation,

sup E(!és — 93]2)
0<s<t
ns—1

= sup E(|0n, + > a(03)A, — a(03)A, + b(03) AW, — b(Y,)) AW,

0<s<t n—0

- [Catoyar~ [ atoaw

ns—1
:supE|Za96A +b95AW/ dr—/ a(6,) AW, 2)

0<s<t

_]E|/ )dr+/0 b(0,,) — b(0,) dW,

/Tn <9>dr—/s a(6,) WV, )

s

SIE([|/% ( o dr|+|/ W) — b(0,) dW,|
T dr|+|/

s24E(|/"S () - a0, dr|2+|/ (0,) aw |
+|/ dr|2+|/ dW|

§24(IE/0 la(0,,) — d7|2+IE|/ (0,) dW,|?
+IE/ la( dr|2+E|/ dW|

§24(62TIE/OTn 10, —9|2d7“—|—€2E/0 10, — 6,7 dr
LEA / a0 dr + E / s b0, W)

E]

< 2! (eQ(T +1) / E|0n, — 0, dr + (1 + )2A + 625>,
0

(4.2.11)

(4.2.12)
(4.2.13)
(4.2.14)
(4.2.15)
(4.2.16)

(4.2.17)

(4.2.18)

(4.2.19)

(4.2.20)

(4.2.21)

(4.2.22)

(4.2.23)

(4.2.24)

(4.2.25)



where we’'ve made use of the inequality.
(p 4+ ,)? <2y + - ap).
So we can apply the Gronwall inequality (Theorem C.0.13) with

L=16*(T +1),
o, = |0, — 0,2,

B, = 16A[(1+ €*)? + €.

In particular this means,

sup E|0,, — 0> < "7,
0<s<t

Hence,

E|,, — 0;] < \/E|0,, — 0,]?

< \/sup E|§ns — 0,2

0<s<t

< VelTp

) \/Z[461662(T2+T>\/[(1 + %)% + 62]]’

Finally using the Lipschitz bound, |cos(ax) — cos(ay)| < alx — y|, yields

IE cos af, — E cos af| = |E(cos af;, — cos af)|
< a|E(0, — 0,)]

< aEHét—-QA
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(4.2.26)

(4.2.27)
(4.2.28)

(4.2.29)

(4.2.30)

(4.2.31)

(4.2.32)

(4.2.33)

(4.2.34)
(4.2.35)

(4.2.36)
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< a\/g[4616€2(T2+T)\/[(1 +€2)2 + €2 (4.2.37)

]

Now we can verify a bound between the Lyapunov exponent of the exact system

and that of its Euler approximation.

Proposition 4.2.4. Let ~; be the finite time Lyapunov exponent for the system Equa-
tion (4.2.1). Let 7, be the Euler approximation to ~, with step size A. Then we have

the following bound,

1V/A I+ 32+ [
By, — B4 < — vA (t+€) e /elﬁe?(sQﬂ) ds (4.2.38)
0

Proof. From Lemma 4.2.3 we know that

2t 3 2 gt 3
|Ev; — Eyy| < fl_f/ |E cos 205 — E cos 26| ds + ;—f/ |E cos 405 — E cos 46| ds
o o

(4.2.39)
2 [t 3 2 [t 3
- —/ 2IE0, — Ef,| ds + —/ 4|E0, — B, | ds (4.2.40)
i, 8t J,
2t )
- / B0, — B, | ds (4.2.41)
0

And by Lemma 4.2.3 we have the upper bound

2 - 12VA/ 1+ P+ [t
% / [E0, — Ef,|ds < — VAV t+€) e / 10 9) (g, (4.2.42)
0 0

which completes the proof. O

Now we combine the deterministic bound from Proposition 4.2.4 and the prob-



45

abilistic bound for the confidence intervals for 7; to complete the proof of Theo-

rem 4.2.1.

Proof of Theorem 4.2.1. By the triangle inequality we have
|Eve — ¢| < [Eyy — EY| + [EY; — G4 (4.2.43)

The upper bound for the first summand is provided by Proposition 4.2.4. And by the
method of confidence intervals discussed in Section 4.1, we know that
52

IP’{IE~—A< e —}:1— .
EY: — 9| < ti—a,m—1 i a

The result follows. [l

4.3 Example

In this section we implement numerical simulations to exemplify the bounds in The-
orem 4.2.1. Specifically we will consider Equation (4.2.1) with ¢ = 1072. Now to get
numerical bounds for Eqy5 we will simulate the confidence interval in Theorem 4.2.1.
Each time a simulation is run, the confidence interval will have potentially different
numerical values. We will construct and simulate the confidence interval for Eqy5 a
total of 100 times. For each confidence interval simulation we ran a total of M = 100
batches each consisting of N = 5000 trajectories per batch, all with A = 1073, We

take a = .02. Hence, our T-value is t1_, p—1 = 3.174.
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Each red vertical lines denote the endpoints of the interval for one of the simulated

intervals from Theorem 4.2.1,

o2 4¢? A/ (1 2)2 2t 202
U_ n € \/_ ( + € ) +e€ / 6165 (s°+s) dS]) (431)
V / ;

(§25 + [tl—a,M—l

Each blue line is a single realization of the 1 — a% = 99.98% confidence interval,

; meﬁiA 3174\/‘}2
(925" ' 1000’ 925 T 1000)'

Each green dotted line represents the deterministic portion of the interval from The-

orem 4.2.1 that is contributed by the Euler approximation. In our current example

that is,
1eVA/ T ER T E [
€ \/_ ( f+€ ) + € / 61662(82+S) dS (432)
4 0

4(1072)2v/10-3 /(1 + (10-2)2)2 + (10-2)2 /25 16(1072)2(s>+5) g (4.3.3)
14 0

~ 4.736 x 107°. (4.3.4)

The grey, horizontal line is the the asymptotic value for v calculated in [GMV11],

62 (10—2)2
TR T TR

4.3.1 MATLAB®) Code

The following MATLAB®) code was used to produce each of the confidence interval

simulations in Section 4.3.
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o\
o
o
o°

oe
oe
o
o
oe
oe
o
o
o

oe
o°

o°
o

Scoefficients

2

oe
oe
oe
oe
oe
o°
o°
o°
o°
oe
oe
oe
oe
oe
oe
o°
o°

o°
o°

%$size of noise

4

.01

o\°
o°
o°
o°

oe
o°
o°
o°
o°
o°
o
o°
o°

oe
o°

o°
oe

$simulation variables

7

oe
o
o°
o°
oe
oe
oe
oe
oe
oe
oe
oe
o
o
oe
oe
oe

oe
oe

$step size

dt=.001;

9

$steps per unit time

4

n=1/dt

10

%$total time length

T=25;

11

$number of batches

M=100;

12

$number of simulations per batch

N=5000;

13

$time vector

:dt : T—dt;

-0

time

14

%preallocate space for theta

zeros (M, N) ;

X =

15

%preallocate space for gamma

zeros (M, N) ;

y:

16

17

o°
o
o
o
o
o\
o
o
o\°
o°
o°

o\°
o\°

18

%preallocate space for simulations

19

o°
o\
o\
o
oe
o
o
o
o°
o°
o°

o°
o°

20

$initial value

$initial value

=O;

23

oe
oe
o°
oe
oe
o°
oe
o°
o
o
oe
oe
oe

o°
oe

24

$Simulation

25

oe
oe
o
o
oe
oe
oe
o°
o

oe
oe

o
o

26

%k counts the batch number

M

=1:

for k

27

28

%$Jj counts the simulation #

N

=1:

for J

29




30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

dW = sqgrt (dt)+randn(l,n«T—1); %discrete approx to of

brownian increments

for i=1:Txn—1 %1 counts the time step in the simulation

X=x(k, J);

Y=y (k, j) 7

x(k,3j) = X + (1+2%xe”2%sin (X) "3*xcos (X)) »dt —

(exsin (X) "2) xdW (1) ;

vy (k, 3) =Y — (.5*%e"2%sin(X) "2* (sin(X) "2—cos (X) ~

+ (exsin(X) *xcos (X)) *dW (1) ;
end
end

end

E= mean (mean (L)) ;

sigSg=1/ (M—1)*sum( (mean (L, 2)—E)."2);
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Appendix A

Lie Goups

For a rigorous treatment of the material in this appendix, the reader is reffered

to [Kna02,Hal03]. We include some results relevant to this thesis, with proofs omitted.

Definition A.0.1. A Lie group is a smooth manifold, G, with group structure such

that the following maps ,
1. g— hg
2. g gt
are C'™ for all g, h € G.
Definition A.0.2. A matrix Lie group is a closed subset of Gl(n,R).

Matrix Lie groups are also referred to as closed linear groups [Kna02]. Some

examples include

Gl(n,R) = {X € M(n,R) : det X # 0}, (A.0.1)
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SI(n,R) = {X € M(n,R) : det X = 1}, (A.0.2)
Sp(2n,R) = {X € M(2n,R) : XTJX = J}, (A.0.3)
where
0 I,
J = : (A.0.4)
I, 0

The proof of the following proposition can be found in [Kna02, Theorem 0.15].
Proposition A.0.3. Every matrix Lie group is a Lie group.

The converse of this statement is false. There are certainly Lie groups that are

not matrix Lie groups. Two such example are R x R x S* and the universal cover of

—_——

SI(2,R), SI(2, R). The Lie algebra of G, denoted by g, is the tangent space of G at

the identity. Specifically,

g="T;,G=1{7(0):~v:R — G is a smooth curve with v(0) = I,,}. (A.0.5)

This is an R—linear space. Some examples include

gl(n,R) = {X € M(n,R) : det X # 0}, (A.0.6)
slin,R) ={X € M(n,R) : det X =1}, (A.0.7)
sp(2n,R) = {X € M(2n,R) : XTJX = J}. (A.0.8)

In fact it carries the algebraic structure of a Lie Algebra. In particular, there is
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a bilinear map
[ ]rexg—g (A.0.9)

satisfying:
1. Anti-symmetry: For all X|Y € g, [X,Y] = —[Y, X],
2. Jacobi identity: For all X|Y, Z € g, [[X,Y], Z] + [[Y, Z], X] + [[Z, X],Y] = 0.

For matrix Lie groups the Lie bracket is the multiplication commutator,
(X,Y]=XY -YX. (A.0.10)

Now, for each X € g there is a small neighborhood about 0 such that there is a

unique integral curve, vy, satisfying:
L 7x(0) = X,
2. yx(t+s) = yx(t)rx(s).
Hence, we can make the following definition.

Definition A.0.4. The exponential map, exp : g — G, is defined to be
exp(tX) = yx(t). (A.0.11)
For matrix Lie algebras the exponential map is simply the matrix exponential,

exp(X) =¥ =) X (A.0.12)
n=0
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which converges for al X € M(n,R). The exponential map is local diffeomorphism in
some small neighborhood of the identity. But in general the map exp is not a global

diffeomorphism. For example consider

1
A= €SI(2,R).
0 -1

It can be shown that there is no X € sl(2,R) such that exp X = A (see [Hal03]).

A.0.2 Semi-Simple Lie groups

Let g be a finite-dimensional Lie algebra. A subspace h C g is called an ideal if
[h,g] C h. Now define g° = g and gft! = [gF, g"] for k € {0,1,...}. We say that g is

solvable if g" = 0 for some n.

Definition A.0.5. A finite-dimensional Lie algebra g is called semisimple if it has
no nonzero solvable ideals. A Lie group is said to be semisimple if its Lie algebra g

is semisimple.

Semisimple Lie algebras and Lie groups admit a structural decomposition known
as the Iwasawa decomposition the details of which are contained in the following

theorem [Kna02].

Theorem A.0.6. For a semisimple matriz Lie algebra g there exists a direct sum

decomposition,

g=t@adn® (A.0.13)
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where

k={Xecg: X" =-X}, (A.0.14)
a := {mazimal abelian subspace of g k}, (A.0.15)
nt=go (ko a). (A.0.16)

For example, let’s consider sl(2,R). We have sl(2,R) = k ® a @ n* where

k = Spcm{ vl }, (A.0.17)
-1 0
a= Span{ bo }, (A.0.18)
0 —1
nt = Span{ 00 } (A.0.19)
10

This Lie algebra structure theorem also provides a decomposition for semisimple Lie

groups. Let K, A and N be the analytic subgroups of G with Lie algebras k, a and

nt.

Theorem A.0.7. For semisimple Lie groups G, the map

(k,a,n) — g = kan

is a diffeomorphism between K x A x N* and G.



Appendix B

Random Dynamical Systems

For a rigorous treatment of the material in this appendix, the reader is reffered to

[Arn03]. We include some results relevant to this thesis, with proofs omitted.

Definition B.0.8. Given a probability space (2, F,P), a Dynamical System (DS)
over {2 is a mapping

0:TxQ—Q
satisfying the following conditions:
1. 6y = idg,
2. Opps = 0,00,

It can be helpful to interpret T as the time index set. For the purpose of this
thesis T' will be either the set of non-negative integers or non-negative real numbers.
The choice will be clear from context.

Definition B.0.9. A dynamical system is called ergodic if the set of #-invariant
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sets,

IT={ACX:0A= A},
is trivial.
Now we describe Brownian motion as a dynamical system. The shift operator,
(0:f)(s) := f(s+1t) — f(t) is an ergodic DS over classical Weiner space,

X = {f € C([0. TI:R") | £(0) = 0}, (B.0.1)

Denote the law of standard one dimensional Brownian motion by IP. This DS preserves
Wiener measure, ;P = P. Furthermore, all shift invariant sets have measure 1 or 0.
And since Brownian motion has stationary, independent increments, the Kolmogorov
0-1 law implies that the tail sigma-algebra, 7, is trivial. And since Z C T*°,

Brownian motion is an ergodic dynamical system.
Definition B.0.10. Given a DS, (2, F,0), a Random Dynamical System (RDS)
acting on the measure space (X, 3) is a mapping

O TxOAxX—=X

satisfying:
1. @0(0}, ) == ldX s
2. @t+5(w7 ) = @t(esw, ) ©) @S(w, )

Condition 2 above is called the cocycle condition.
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Example B.0.1. Take A, B € M(n,R) such that [A, B] = 0. The R%-valued linear
SDE,

5Xt - AXt dt ‘l‘ BXt 5Bt

has the fundamental matriz solution,

@t — eAt+BWt )(07

which generates a RDS over the ergodic DS generated by Brownian motion. We check

the second condition:

Dpps(w) = eMTBWirs () (B.0.2)
— ATTBWL( ) e TBW () (B.0.3)
= @(O,w) o Dy(w). (B.0.4)

In 1968 Oseledets proved a multiplicative ergodic theorem which allowed the the-
ory of Lyapunov exponents to be useful in the study of stochastic systems (and
random dynamical systems in general). The following modern form of Oseledets’s

multiplicative ergodic theorem appears in [Arn03].

Theorem B.0.11 (Oseledets '68). If @ is a linear RDS over a measure preserving
DS 0, satisfying supg<,<ilog™ ||@y(w)|| < oo then there exists a set of full measure

Q € F such that for each w € Q
1. The limit ¥(w) = limy_so0(Py(w)* Py (w)) /2 exists

2. The eigenvalues of U are ev)@) < ... < 7@ with eigenspaces Uny(w), ..., Ur(w)

and multiplicites d;. Write Vi(w) := Up(w) & - - - & U;(w).
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3. For each v € RN\{0} the Lyapunov exponent
J(w.) = lim log |9t )]
exists and,

Yw, ) = nw) = e Viw)\Vin(w) (B.0.5)

4. vi(w), Vi(w), p(w) are invariant under 6.

Due to the last statement, if the underlying metric dynamical system, 0, is ergodic

there are a important consequences for the subject of this thesis.



Appendix C

Stratonovich SDEs

For a rigorous treatment of the material in this appendix, the reader is reffered to
[RY94, @ks10, Pro05, KP92]. We include some results relevant to this thesis, with
proofs omitted. Throughout this section W; is a standard, one-dimensional Brownian

motion.

Definition C.0.12 (It6 and Stratonovich Wiener Integral). For continuous, adapted,

bounded one-dimensional processes f(t,w) we have

/0 ft,w) dWy(w) := lim Zf(tj,w)(Wth(w) - W, (w)) (C.0.1)

/O Fltw) W) = lim S p(UEE D)0, @) W) (C02)

[to’s lemma provides a simple relationship between the It6 and Stratonovich in-
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tegrals. It can be shown that if X and Y are continuous semimartingales then,
t t 1
/ X, 0Y, = / XodYs + §<X, Y. (C.0.3)
0 0

We can use (C.0.3) to convert SDEs between Stratonovich and It6 differential. Take

X, to be a solution to the R%-valued SDE
dXt = G(Xt, t) dt + b(Xt7 t) th (004)

where a,b are well behaved and W, is a one dimensional Brownian motion. The

Stratonovich SDE that corresponds to this I[to SDE is

where the Stratonovich drift vector is defined by

86’

G(X,) = a'(X,) — %Z X,). (C.06)

We include the following well known inequality [KP92] as a reference,

Theorem C.0.13. [The Gronwall Inequality] Let o, 3 : [to, T] — R be integrable with

t
OSOétS@:JrL/ o, ds

to

fort € [to, T| where L > 0. The

t
ar < B+ L / M=) B, ds

to



fort € [to, T).
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