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Hypoelliptic Heat Kernel on Nilpotent Lie
Groups

Malva Asaad, Ph.D.

University of Connecticut, 2016

ABSTRACT

The starting point of our analysis is an old idea of writing an eigenfunction expan-

sion for a heat kernel considered in the case of a hypoelliptic heat kernel on a nilpotent

Lie group. One of the ingredients we have is the generalized Fourier transform. The

formula one gets using this approach is explicit as long as we can find all unitary irre-

ducible representations of the group. In this thesis we consider a nilpotent Lie group

of step n as an illustration of this technique. First we apply Kirillov’s orbit method to

describe all unitary irreducible representations for the group. This allows us to write

the corresponding hypoelliptic heat kernel using an integral formula over a Euclidean

space. As an application, we describe a short-time behaviour of the hypoelliptic heat

kernel in our case.



Hypoelliptic Heat Kernel on Nilpotent
Lie Groups

Malva Asaad

M.S. University of Connecticut, 2013

B.S. Damascus University, 2009

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Connecticut

2016



Copyright by

Malva Asaad

2016



APPROVAL PAGE

Doctor of Philosophy Dissertation

Hypoelliptic Heat Kernel on Nilpotent
Lie Groups

Presented by

Malva Asaad, B.S. Math., M.S. Math.

Major Advisor
Maria Gordina

Associate Advisor
Ovidiu Munteanu

Associate Advisor
Lan-Hsuan Huang

University of Connecticut

2016

ii



ACKNOWLEDGMENTS

I owe my deepest gratitude to my supervisor Professor Maria Gordina, who kindly
supported me during the last five years of studies, always sharing her ideas and willing
to be at my disposal. I want to thank my committee members, Professor Ovidiu
Munteanu and Professor Lan-Hsuan Huang, and I would also like to thank Professor
Reed Solomon for his constant support.

iii



Contents

Ch. 1. Introduction 1

1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Ch. 2. Basic theory of nilpotent Lie groups and Lie algebras 7

2.1 Nilpotent Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Coadjoint orbits and polarizing subalgebras . . . . . . . . . . . . . . 8

2.3 An n-step nilpotent Lie group Gn+1 . . . . . . . . . . . . . . . . . . . 12
2.3.1 Coadjoint action, coadjoint orbits and polarizing subalgebras

for Gn+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Ch. 3. Kirillov’s orbit method 20

3.1 Induced representations for nilpotent Lie groups . . . . . . . . . . . . 20

3.2 Irreducible unitary representations of the group Gn+1 . . . . . . . . . 28

3.3 Generalized Fourier transform . . . . . . . . . . . . . . . . . . . . . . 31

3.4 The GFT and the Plancherel formula for nilpotent groups . . . . . . 34

Ch. 4. Sub-Riemannian Geometry 40

4.1 Sub-Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.1 Left-invariant sub-Riemannian structure on Lie groups . . . . 43

4.2 The hypoelliptic Laplacian . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Generalized Fourier transform . . . . . . . . . . . . . . . . . . 49

Ch. 5. The hypoelliptic heat kernel on nilpotent Lie groups and some
applications 54

5.1 The hypoelliptic heat kernel on nilpotent Lie groups . . . . . . . . . . 54

5.2 Hypoelliptic heat kernel on the group Gn+1 . . . . . . . . . . . . . . . 64

iv



5.3 Short-time behavior of the hypoelliptic heat kernel and the Trotter
product formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1 Application to the n-step nilpotent Lie group Gn+1 . . . . . . 73

Bibliography 77

v



Chapter 1

Introduction

1.1 Generalities

Sub-Riemannian spaces are spaces whose metric structure is viewed as a constrained

geometry, with motion only possible along a given set of directions, changing from

point to point. Sub-Riemannian geometry emerged through various subjects, includ-

ing Riemannian geometry, optimal control theory, quantum physics, and classical

mechanics. Very recently, it appeared in the field of cognitive neuroscience to model

the functional architecture of the area V1 of the primary visual cortex, as proposed by

Petitot in [37], and then by Citti and Sarti in [12]. In this context, the sub-Riemannian

heat equation has been used as basis for new applications in image reconstruction (see

[7]). From the analytical point of view, sub- Riemannian geometry is the geometry

underlying the theory of hypoelliptic operators (see [6, 21, 32, 40] and references

therein) and many problems of geometric measure theory ([10], [3]).

Roughly speaking, a sub-Riemannian manifold is a C∞ manifold M together with

1
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a smoothly varying distribution H endowed with a positive definite quadratic form

at each point. Riemannian manifolds are special cases where H = TM . From this

structure, one derives a distance on M , the so-called Carnot-Carathéodory distance.

For every pair of points p and q, the distance between p and q is defined as the infi-

mum of the length of horizontal curves (curves on the manifold whose tangents are

in H) joining p and q. Of course, a natural question is whether every pair of points

can be joined by a horizontal curve. At the end of the 30’s, Raschevsky [39] and

Chow [11], proved that a sufficient condition for the existence of horizontal curves is

that the Lie algebra generated by the horizontal vector fields is equal to the all tan-

gent space to the manifold at every point. This condition usually called a Lie bracket

generating condition, played subsequently a key role in different areas of mathematics.

Forty years later, in the celebrated work of Hörmander [28], the Lie bracket gen-

erating condition was proved to be a sufficient condition for the hypoellipticity of the

second order differential operator in the form sum of squares, even if the operator is

not elliptic (for this reason this condition is also known as Hörmander’s condition).

Starting from this work, the interplay between sub-Riemannian geometry and the

analysis of PDEs become stronger. Since then, many estimates and properties of the

kernel in terms of the sub-Riemannian distance have been established (see for exam-

ple [6, 8] ). For some particular structures, it is moreover possible to find explicit

expressions of the hypoelliptic heat kernels. In general, this computation can be per-

formed only when the sub-Riemannian structure and the corresponding hypoelliptic

heat operator have symmetry properties. For this reason, the most natural choice in

this field is to consider invariant operators defined on Lie groups.

The heat equation on a sub-Riemannian manifold is a natural model for the descrip-
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tion of a non isotropic diffusion process on a manifold. It is defined by the second

order PDE

∂tφ(t, x) = ∆Hφ(t, x), t > 0, x ∈M

φ(0, x) = φ0(x)

where ∆H is the sub-Riemannian Laplacian, which is a hypoelliptic, but not elliptic,

second order differential operator, and will be called a hypoelliptic Laplacian or sub-

Laplacian.

In this thesis, we will consider the case when M = G is a nilpotent Lie group equipped

with a natural sub-Riemannian structure, and it will be shown that the subLaplacian

∆H is the sum of squares of left-invariant vector fields, considered as differential op-

erators. In this case, the solution to the heat equation will admit a right-convolution

kernel, i.e. there exists a function pt, called hypoelliptic heat kernel, such that

φ(t, x) = et∆Hφ(0, x) = φ0 ? pt(x)

The goal of this thesis is to describe such a hypoelliptic heat kernel in a way that

allows to study further its properties such as short and long time behavior of such

kernels. Results of this kind have been first provided in [29] in the case of the 3D

Heisenberg group and for 2-step nilpotent free Lie groups, and then for general 2-step

nilpotent Lie groups (see [5]), and more abstract expansion has been presented in

[1] of heat kernels for 2-step groups that are not nilpotent, namely SU (2), SO (3),

and SL (2). An eigenfunction expansion for the hypoelliptic heat kernel on SU (2)

has been also studied in [4]. Moreover, in [9] the authors present expression of the
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hypoelliptic heat kernel on the following 3-step Lie groups: Engel group that is the

nilpotent group with the growth vector (2, 3, 4), and Cartan group that is the free

nilpotent group with the growth vector (2, 3, 5).

The method to find an explicit formula for pt on nilpotent Lie groups is based on

a generalized Fourier transform (GFT). The idea of using the GFT to compute the

hypoelliptic heat kernel is not new: it was already used on the Heisenberg group in

[29] at the same time as the Gaveau formula was published in [23] and also in the

paper by Agrachev et al paper [1]. Informally speaking, GFT can be viewed as a

generalized eigenfunction expansion. This requires a complicated machinery such as

direct integrals, therefore applying it to an object such as an unbounded operator is

not possible in general. This fundamental difficulty has not been addressed in [1], but

we make it precise in the case of a connected simply connected nilpotent Lie group

G. We also want to point out that even though there are choices to be made for

an appropriate measure on a general sub-Riemannian manifold, the use of the GFT

forces one to use a Haar measure. This complicated interplay between algebraic and

sub-Riemannian structure in the case of Lie groups still needs more study.

The main ingredient in our analysis is Kirillov’s orbit method. This technique

allows us to describe explicitly the unitary dual of G, that is, the space of equivalency

classes of irreducible unitary representations of G. We address the domain issue in

Theorem 4.2.12 which does not assume that G is nilpotent. But the description using

the orbit method reduces this abstract description to function spaces over a Euclidean

space as can be seen in the proof of Theorem 5.1.1. This is our main result, and the

explicit formula for the hypoelliptic heat kernel on a nilpotent group in this theorem

is the result of applying the GFT to the hypoelliptic Laplacian on G, and then using

the inversion formula for this transform. In particular, this formula uses a heat kernel



5

for a certain differential operator on a Euclidean space. This operator is a second

order differential operator with polynomial coefficients and a polynomial potential.

We present the ingredients of both Kirillov’s orbit method and this Schrödinger-like

operator in the case of the Heisenberg group and an n-step nilpotent group. In these

cases this operator is the Schrödinger operator with a quadratic potential on a certain

RN . For related results we refer to [30, 31]. The dimension of this Euclidean space

and the degree of the potential depend on the structure of G in terms of the orbit

method. This connection with the heat kernel for such operators provides a way to

prove bounds and functional inequalities for the hypoelliptic heat kernel. We only

mention a simple estimate in the paper, but we expect that this approach will be used

in the future. Moreover, it would be interesting to see if the short time estimates one

gets from this analysis can be formulated in terms of the sub-Riemannian distance.

Our main new example in the current paper is an n-step nilpotent group, though we

also mention previously studied examples, such as the Heisenberg group.

1.2 Outline of this thesis

This thesis is organized as follows: in Chapter 2, we start by reviewing some elemen-

tary definitions. In particular, we present our main example Gn+1 that is an n-step

nilpotent Lie group of the growth vector (2, 3, ..., n + 1). In Chapter 3, we review

Kirillov’s orbit method for nilpotent groups and illustrate it by describing explicitly

the irreducible representations of the group Gn+1. This turns out to be an inductive

generalization of the computations carried out in [34] for the Heisenberg group. In

Chapter 4, we recall basic definitions from sub-Riemannian geometry, in particular
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for left-invariant structures on Lie groups. Moreover, we present definition of the

hypoelliptic operator ∆H and show how to compute the generalized Fourier trans-

form of such operator. In Chapter 5, we present our main theorem which gives an

explicit formula for the hypoelliptic heat kernel on nilpotent Lie gropus. Then we use

the generalized Fourier transform and its properties to describe the hypo-elliptic heat

kernel on the group Gn+1. Finally, we use the formula for the hypo-elliptic kernel

to study the short-time behaviour of heat kernels. In that we are motivated by the

approach introduced by Séguin and Mansouri [41]. Note that we avoid introducing

assumptions as in [41, p.3904], as we can use the explicit expressions we derive using

the orbit method, and thus avoid ambiguities in their assumptions.

The research presented in this PhD thesis appears in [2].



Chapter 2

Basic theory of nilpotent Lie
groups and Lie algebras

In this chapter we go over some basic definitions that we will need for the next

chapter. Mainly we go over some elements of Kirillov theory. Also we describe our

main example Gn+1 which is an n-step nilpotent Lie group.

2.1 Nilpotent Lie groups

Consider a Lie algebra g. We define the descending central series of g to be the

series of subalgebras g(i), i ∈ N, where g(1) = g, and g(i+1) = [g, g(i)] and therefore

verifying: g = g(1) ⊇ g(2) ⊇ . . . . We say that g is a nilpotent Lie algebra if there

exists an n ∈ N such that g(n+1) = 0. If in addition we have that g(n) 6= 0, we say

that g is step-n nilpotent. A nilpotent Lie group G is the unique simply connected

Lie group with nilpotent Lie algebra g. In the nilpotent case the exponential map

exp : g→ G becomes an analytic diffeomorphism, which enables us to identify G with

7
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Rn where n = dim g. Indeed, we define coordinates on G by exp(t1X1 + · · · tnXn) ∼

(t1, · · · , tn), and by the Baker-Campbell-Dynkin-Hausdorff formula exp(X) exp(Y ) =

exp(Z), where:

Z = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + · · ·

(see for example [14, Section 1.2] for the exact formula), which is a finite expression

when G is a nilpotent group.

2.2 Coadjoint orbits and polarizing subalgebras

Let G be a nilpotent Lie group with Lie algebra g, and denote the dual of g by g∗.

Recall that a Lie group G acts on its Lie algebra g by the adjoint action

AdgX := gXg−1, g ∈ G,X ∈ g,

and G acts on the dual space g∗ by the coadjoint action as follows

Ad∗gl (X) := l
(
g−1Xg

)
, g ∈ G, l ∈ g∗, X ∈ g.

This map is of central importance in the reprentation theory of nilpotent Lie groups.

It will turn out that the set of (equivalence classes of ) irreducible unitary represen-

tations of G is naturally parametrized by the orbits of g∗ under the coadjoint map.

The orbit of l in g∗ under the coadjoint action Ad∗ is denoted by Ol.
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The differential d(Ad∗)e of the coadjoint map at the unit e ∈ G may be written

ad∗ : g→ End(g∗)

and given by

((ad∗X)l)(Y ) = l([Y,X]), X, Y ∈ g, l ∈ g∗.

Definition 2.2.1. For an element l ∈ g∗ we define its radical by

radl := {Y ∈ g : l[X, Y ] = 0 for all X ∈ g} .

An equivalent description of the radical is given by

radl = {Y ∈ g : ((adY )∗ l) (X) = 0 for all X ∈ g} ,

and radl is a subalgebra of g.

Proposition 2.2.2. If g is a Lie algebra and l ∈ g∗, its radical radl has even codi-

mension in g. Hence coadjoint orbits are of even dimension.

Proof. See [14, lemma 1.3.2]

The next step in Kirillov’s method is to find a polarizing subalgebra.

Definition 2.2.3. An ideal m ⊂ g is called a polarizing (or maximal subordinate)

subalgebra for l if it satisfies

1. radl ⊂ m;

2. dimm = dim radl+dim g
2

;
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3. l ([m,m]) = 0.

The last property means that this subalgebra is subordinate for l, and the second

one indicates that the subalgebra is of maximal dimension. The first property is

actually a result proven first by Pukánszky in [38, p. 157]. Recall that for a nilpotent

Lie algebra such a subalgebra always exists by [14, Theorem 1.3.3 ].

Remark 2.2.4. As [14, p.30] says for each l ∈ g∗ its radical is uniquely determined,

but there might be more than one polarizing subalgebra for l. When one wants to

avoid this ambiguity, one can use Vergne’s construction in [45, 46] which gives a

canonical way to choose a polarizing subalgebra for l ∈ g∗ and a strong Mal’cev basis

in g.

Example 2.2.5 ( The abelian case G = Rn). Here g ∼= Rn, with all brackets trivial.

For x ∈ G and X ∈ g, we have

(Adx)X = X

thus Adx = I; hence Ad∗ = I, all x ∈ G, and the Ad∗-orbits in g∗ are points. For

all l ∈ g∗, we have radl = g and the only polarizing subalgebra for l must be g, since

dim radl = dim g.

Example 2.2.6 (The Heisenberg group). The Heisenberg group is the unique simply

connected Lie group G3 whose Lie algebra g3 is spanned by elements X, Y1 and Y2,

where [X, Y1] = Y2 is the only non-zero bracket relation between these generators.

Hence g3 is a two-step nilpotent Lie algebra. The corresponding Lie group G3 can

be identified with R3 endowed with the operation (a, b1, b2).(a′, b′1, b
′
2) = (a + a′, b1 +

b′1, b2 + b′ + 2 + 1
2
(ab′1 − b1a

′)) One way to realize g3 as a matrix algebra is to let



11

W = aX + b1Y1 + b2Y2 ∈ g3 correspond to the 3× 3 matrix


0 a b2

0 0 b1

0 0 0

 ∈ g3.

On the other hand, an element w = exp(xX + y1Y1 + y2Y2) of the Lie group G3 can

be view as 
1 x z

0 1 y1

0 0 1

 , where z = y2 +
1

2
xy1.

The adjoint action is give by

AdwW := wWw−1 =


0 a b2 + xb1 − ay1

0 0 b1

0 0 0


Let l ∈ g∗3, then l can be written in terms of the dual basis {X∗, Y ∗1 , Y ∗2 } and we have

l = αX∗ + β1Y
∗

1 + β2Y
∗

2 := lα,β1,β2
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therefore we have the coadjoint action

Ad∗w(l)(W ) = l(Adw−1W ) = l[aX + b1Y1 + [b2 + (ay1 − xb1)]Y2]

= αa+ β1b1 + β2[b2 + (ay1 − xb1)]

= a(α + y1β2) + b1(β1 − xβ2) + b2β2

= lα+y1β2,β1−xβ2,β2

We have now two cases:

Case 1: β2 = 0 then (Ad∗G3)lα,β1,β2 = {lα,β1,0} and we get zero dimensional orbits

which are points in Z⊥ = RX∗ + RY ∗1 = {l ∈ g∗3, l(Y2) = 0} . In this case, g3 is the

radical and the only polarizing subalgebra.

Case 2: β2 6= 0 then (Ad∗G3)lα,β1,β2 = {lα′,β′1,β2 , α, β′1 ∈ R} and we get in this case

two dimensional orbits of the form

β2Y
∗

2 + Z⊥.

and in this case radl = RY2, and as examples of polarizing subalgebras we have

m = Span {Y1, Y2} or m = Span {X, Y2}

2.3 An n-step nilpotent Lie group Gn+1

We would like to illustrate how to find these objects by considering an n-step nilpotent

Lie group Gn+1 also known as a thread-like group. Let gn+1 be an (n+1)-dimensional
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Lie algebra generated by X, Y1, . . . , Yn satisfying

[X, Yi] = Yi+1, [X, Yn] = 0, and [Yi, Yj] = 0 for all i, j.

This is an n-step nilpotent Lie algebra. A realization of gn+1 as a matrix algebra is

obtained by letting W = aX+
∑n

i=1 biYi corresponding to the (n+1)× (n+1) matrix

of gn+1



0 a 0 0 · · · 0 bn

0 0 a 0 · · · 0 bn−1

0 0 0 a · · · 0 bn−1

...
...

...
...

. . .
...

...

0 0 0 0 · · · a b2

0 0 0 0 · · · 0 b1

0 0 0 0 · · · 0 0



.

Let Gn+1 be a connected, simply connected nilpotent Lie group, with the Lie algebra

gn+1, then the exponential map exp : gn+1 → Gn+1 is an analytic diffeomorphism.

Moreover, if

W = aX +
n∑
i=1

biYi ∈ gn+1,

then

w = exp

(
aX +

n∑
i=1

biYi

)
∈ Gn+1
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can be written as

w =



1 a a2

2!
a3

3!
· · · zn

0 1 a a2

2!
· · · zn−1

0 0 1 a · · · zn−2

...
...

...
...

. . .
...

0 0 0 0 · · · z1

0 0 0 0 · · · 1


, (2.3.1)

where

zj :=

j−1∑
k=0

akbj−k
(k + 1)!

, j = 1, ..., n. (2.3.2)

2.3.1 Coadjoint action, coadjoint orbits and polarizing sub-
algebras for Gn+1

Suppose

W = aX +
n∑
i=1

biYi ∈ gn+1,

w = exp(xX +
n∑
i=1

yiYi) ∈ Gn+1,
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then the adjoint action is given by

AdwW = wWw−1 =



0 a 0 0 · · · 0 ξn

0 0 a 0 · · · 0 ξn−1

0 0 0 a · · · 0 ξn−1

...
...

...
...

. . .
...

...

0 0 0 0 · · · a ξ2

0 0 0 0 · · · 0 ξ1

0 0 0 0 · · · 0 0



,

where

ξj = bj +

j−1∑
k=1

xk−1

k!
(xbj−k − ayj−k).

Finally using the basis {X, Y1, ..., Yn} of gn+1 and the dual basis {X∗, Y ∗1 , ..., Y ∗n } of

g∗n+1, to see that the co-adjoint action is given by

Ad∗w(l)(W ) = l(Adw−1W ) = a

(
α +

n∑
i=2

βi

(
i−1∑
k=1

(−1)k+1yi−k
xk−1

k!

))

+
n∑
j=1

(
bj

n∑
k=j

βk(−1)k−j
xk−j

(k − j)!

)
,

for any l = αX∗ +
∑n

i=1 βiY
∗
i ∈ g∗n+1.

For m ∈ N we define the polynomial function

fj(x; Bm) :=
m∑
k=j

(−1)k−j
βk

βk−jm

(βm−1 − x)k−j

(k − j)!
, (2.3.3)

where x ∈ R, Bm = (β1, β2, ..., βm) ∈ Rm, βm 6= 0.

Observe that the orbit Ol of l = αX∗ + β1Y
∗

1 + · · · + βmY
∗
m with βm 6= 0 under
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the coadjoint action is two-dimensional if m > 3 and is given by

Ol = O(α,Bm,0,...,0) ={
yX∗ +

m−2∑
j=1

fj(x; Bm)Y ∗j + xY ∗m−1 + βmY
∗
m, x, y ∈ R

}
.

Here we identified l ∈ g∗ with (α,Bm, 0, ..., 0). In case of m = 2 then the orbit of

l = αX∗ + β1Y
∗

1 + β2Y
∗

2 is again two-dimensional and has the following form:

Ol = O(α,β1,β2,0,...,0) = {pX∗ + qY ∗1 + β2Y
∗

2 , p, q ∈ R} .

and in this case

radl = {b2Y2 + · · ·+ bnYn, bi ∈ R}

Finally, in the case where m = 1 then the orbit of l = αX∗+β1Y
∗

1 is a zero-dimensional

orbit (point orbits)

Ol = O(α,β1,0,...,0) = {αX∗ + β1Y
∗

1 } .

and in this case radl = g.

Proposition 2.3.1. For any l ∈ g∗n+1 and m > 3

radl ={
m−3∑
j=1

bj

(
Yj −

fj+1(0; Bm)

βm
Ym−1

)
+ bm−2Ym−2 + bmYm + · · ·+ bnYn

}

for some Bm, where fj+1(0; Bm) is defined by (2.3.3).

Proof. Note that the definition of the radical is independent of the representative in
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the orbit, therefore it is enough to compute the radical for elements

l =
m−2∑
j=1

fj(0; Bm)Y ∗j + βmY
∗
m. (2.3.4)

An arbitrary element of gn+1 is of the form

Z = aX +
n∑
i=1

biYi

and therefore

[X,Z] = b1Y2 + · · ·+ bn−1Yn,

[Ym−1, Z] = −aYm.

Thus

radl = {Z ∈ gn+1 : l[X,Z] = l[Y1, Z] = · · · = l[Yn, Z] = 0},

and so we get the relations

βma = 0,

β3b2 = 0 if m = 3,

βmbm−1 +
m−2∑
j=2

bj−1fj(0; β1, ..., βm) = 0 if m > 4.

Recall that βm 6= 0, and therefore it is enough to consider two cases as follows.

Case 1: m = 3. In this case a = b2 = 0 and the radical is

radl = Span {Y1, Y3, Y4, ..., Yn} .
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Case 2: m > 4. In this case we get a = 0 and

bm−1 = −
m−2∑
j=2

bj−1

βm
fj(0; Bm).

Now we can describe polarizing algebras for gn+1 explicitly.

Proposition 2.3.2. Suppose l = αX∗ + β1Y
∗

1 + · · · + βmY
∗
m ∈ g∗n+1 with βm 6= 0 for

some m > 3, then a polarizing algebra for l is unique, and is given by

m = Span {Y1, ..., Yn} .

Proof. By proposition 2.3.1 we see that dim radl = n− 1 and since dim gn+1 = n+ 1,

we have dimm = n. This means that to find a polarizing subalgebra it is enough to

add one element Y ∈ gn+1 to radl such that Y is linearly independent of radl and the

ideal generated by radl and Y is not the whole algebra gn+1. It can be easily seen

that such an m is unique and it is equal to

m = Span {Y1, ..., Yn}

as long as m > 3 in (2.3.4).

For the case m = 2 the orbit is again two-dimensional, but the polarizing subal-

gebra is not unique. For example, the following two ideals are polarizing subalgebras

m1 = Span {Y1, Y2, ..., Yn} , or

m2 = Span {X, Y2, ..., Yn} .
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Finally, for m = 1 the zero-dimensional orbits are one–point orbits, namely,

O(α,β1,0,...,0) = {lα,β1,0,...,0} ,

in which case radl = m = gn+1.



Chapter 3

Kirillov’s orbit method

Kirillov’s theory gives an explicit description of irreducible unitary representations

of a nilpotent Lie group. The main ingredient of Kirillov’s theory is the set of the

orbits of the coadjoint action. Namely, the coadjoint map allows to describe all

irreducible unitary representations ofG: the set of equivalency classes of all irreducible

unitary representations of G are naturally parameterized by the orbits of g∗ under

the coadjoint action. In this chapter, we first review Kirillov’s orbit theory following

[34], [14, Section 3.1], and then apply it to an n-step nilpotent Lie group Gn+1 which

allows us to describe explicitly all irreducible representations of Gn+1.

3.1 Induced representations for nilpotent Lie groups

To apply Kirillov’s orbit method to the representation theory of nilpotent groups

we first recall some basic facts about induced representations which can be found in

[14, 22] among many other references.

20
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Definition 3.1.1. The set Ĝ of equivalence classes of irreducible unitary representa-

tions of a locally compact group G is called the (unitary) dual space of G.

If M is a closed connected subgroup of G, we can use the induction procedure

to describe representations of G via representations of M . Suppose (χ,Hχ) is a

representation of M . Then (χ,Hχ) yields a natural representation π = Ind(M ↑ G,χ)

of G in a new Hilbert space Hπ. We start by constructing the representation Hilbert

space Hπ. This space is defined as a Hilbert space of equivalence classes of Borel

measurable vector-valued functions f : G→ Hχ such that

f(mg) = χ(m)−1f(g),m ∈M, g ∈ G,∫
G/M

‖f(g)‖2dµ (g) <∞, (3.1.1)

where µ (g) is a left-invariant measure on G/M .

Note that in our case both G and M are nilpotent and thus unimodular, and

therefore such a measure always exists on the homogeneous space G/M (e.g. [14,

Lemma 1.2.13]). In measure–theoretical terms the measure µ is the pushforward of

the Haar measure dg by the quotient map

q : G −→ G/M,

q (g) := gM. (3.1.2)

For nilpotent groups the induction procedure described above is applied to a
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particular choice of the representation χ, namely, for a fixed l ∈ g∗ we define the

character of M by

χl (exp (X)) := exp (2πil (X)) , X ∈ m, (3.1.3)

where we used the fact that exp : m −→ M is a (global) diffeomorphism. In this

case we choose the Hilbert space Hπl,m to be the Hilbert space of equivalence classes

of Borel measurable functions f : G → C satisfying (3.1.1). Note that the map

g 7→ ‖f(g)‖2 is constant on each left coset, so the integral in (3.1.1) exists. The space

Hπl,m is a completion of the space of such functions with respect to the inner product

〈f1(g), f2(g)〉 :=

∫
G/M

〈f1(g), f2(g)〉dµ (g)

which is again well-defined since 〈f1(g), f2(g)〉 is constant on each left coset.

Finally the induced representation πl,m is defined by letting G act on the right as

follows

πl,m(x)f(g) := f(x−1g), for all x ∈ G, f ∈ Hπl,m ,

which is a unitary operation. This is an irreducible representation of G on Hπl,m , and

any irreducible representation of G can be written as an induced representation for

some l ∈ g∗ and any polarizing subalgebra m for l by 3.1.4 . That is, for any l ∈ g∗

and two polarizing subalgebras these representations are unitarily equivalent.

By [14, pp. 124-125] and [22, p. 159] there is an isometry between Hχ and

L2
(
Rk, dx

)
for some k with respect to the Lebesgue measure dx. This allows us to

find a representation on L2
(
Rk, dx

)
which is unitarily equivalent to πl,m. Moreover,

we can identify smooth vectors C∞ of the representation πl,m with the Schwartz space
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on this Rk.

To make these isometries more explicit in the nilpotent case we need to choose

a weak Mal’cev basis of g passing through m, that is, a basis {X1, ..., Xn} of g such

that {X1, ..., Xk} is a basis of m, and Span{X1, ..., Xj} is a subalgebra of g for any

1 6 j 6 n. This basis allows us to have an explicit description of G/M as described

by the following theorem which is based on [14, Theorem 1.2.12 ].

Theorem 3.1.2. Let m be a k-dimensional subalgebra of the nilpotent Lie algebra g,

let M = exp(m) and G = exp(g), and let {X1, ..., Xn} be a weak Mal’cev basis for g

through m. Define φ : Rn−k → G/M by

φ(x1, ..., xn−k) := exp(x1Xk+1) · · · exp(xn−kXn) ·M. (3.1.4)

Then φ is an analytic diffeomorphism which is also a measure space isomorphism

from
(
Rn−k, dx

)
, where dx is the Lebesgue measure, onto (G/M,µ), where µ is the

left-invariant measure on G/M .

Denote

γ : Rn−k −→ G,

γ (x1, ..., xn−k) := exp (x1Xk+1) · ... · exp (xn−kXn) , (3.1.5)

and recall that the quotient map q : G −→ G/M in (3.1.2) is a measure space

isomorphism. Then the map φ in Theorem 3.1.2 can be written as

φ = q ◦ γ.
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Observe that the map

ψ : Rn−k ×M −→ G, (3.1.6)

(x,m) 7−→ γ (x)m

is a diffeomorphism from Rn−k ×M onto G. We denote the inverse of this map by

ψ−1 := (ρ1, ρ2) , where (3.1.7)

ρ1 : G −→ Rn−k,

ρ2 : G −→M

Using the diffeomorphism ψ and the fact that by Theorem 3.1.2 the map φ is a

measure space diffeomorphism from (Rn−k, dx) onto (G, dµ) we can induce a unitary

isomorphism

J : L2(Rn−k, dx) −→ Hπl,m , (3.1.8)

(Jf) (γ (x) ,m) := χl (m)−1 f (x) , for all x ∈ Rn−k,m ∈M, f ∈ L2(Rn−k, dx).

It is easy to see that Jf ∈ Hπl,m since it satisfies (3.1.1), and the inverse map is given

by
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J−1 : Hπl,m −→ L2(Rn−k, dx),(
J−1h

)
(x) := h (γ (x)) , for all x ∈ Rn−k, h ∈ Hπl,m .

Finally, we can describe a unitary representation of G on L2(Rn−k, dx) which is

unitarily equivalently to πl,m. Namely,

(Ul,m (g) f) (x) := χl (ρ2 (γ (x) g)) f (ρ1 (γ (x) g)) , (3.1.9)

for all f ∈ L2(Rn−k, dx), g ∈ G, a.e.x ∈ Rn−k.

The unitary equivalency of πl,m and Ul,m can be shown by using the map J

J−1πl,mJ = Ul,m.

Note that this unitary representation Ul,m depends on the choice of the weak Mal’cev

basis, but any of these choices gives rise to unitarily equivalent representations.

Remark 3.1.3. We will abuse notation and denote the representation Ul,m by πl,m

whenever it is clear that the representation space is L2(Rn−k, dx).

The following results [14, Section 2.2] describe the unitary dual Ĝ in terms of

these induced representations.

Theorem 3.1.4. 1. Let l ∈ g∗. Then there exists a polarizing subalgebra m for l

such that πl,m is irreducible.
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2. Let l ∈ g∗, and let m,m′ be two polarizing subalgerbras for l. Then πl,m ∼= πl,m′.

(Hence we write πl for πl,m if we are interested only in equivalence classes of

unitary representations.)

3. Let π be any irreducible unitary representation of G. Then there is an l ∈ g∗

such that πl ∼= π.

4. Let l, l′ ∈ g∗. Then πl ∼= πl′ ⇒ l and l′ are in the same Ad∗G-orbit in g∗.

To summarize, the map l→ πl,m is independent of m and gives a bijection between

the orbits g∗/Ad∗(G) and Ĝ

Example 3.1.5. G = Rn. As is well known, Ĝ ∼= Rn with λ ∈ Rn corresponding to

the 1-dimensional representation χλ : G→ S1 defined by

χλ(x) = e2iπλẋ

Furthermore, g = g∗ = Rn and Adx, Ad
∗
x are the identity map for all x ∈ G. Thus

g∗/Ad∗(G) = Rn and it is easy to see that l→ πl is the map l→ χl.

Example 3.1.6. Lets go back again to the Heisenberg case and describe all the

irreducible representations of G3. From Example 2.2.6 we see that the Ad∗G-orbits

in g∗ are given by

1. the hyperplanes β2Y
∗

2 + Z⊥ (β2 6= 0).

2. the elements of the hyperplane Z⊥ (one-point orbits).

If l ∈ Z⊥ then m = g is the only polarizing subalgebra for l, and induction from
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M = expm is trivial. Thus,

πl = χl, where χl(expW ) = e2iπl(W ), W ∈ g.

and these are one-dimensional unitary representations.

The other representations of G, corresponding to the two-dimensional orbits are more

interesting. Since πl,m is independent of the orbit representative l, or the polarizing

subalgebra m, it is convenient to take orbit representatives l = λY ∗2 (λ 6= 0) and

polarizing m = Span {Y1, Y2}. Then

χl (exp (b1Y1 + b2Y2)) = e2iπβ2b2

is a character onM = expm, which induces to a representation πl,m = Ind(M ↑ G3, χl)

on G. Using the argument above we can describe the action of πl,m on L2(R, dt). For

(b2, b1, a) = exp(aX + b1Y1 + b2Y2) we have

(0, 0, t) · (b1, b2, a) = (b2 + tb1 +
ab1

2
, b1, 0) · (0, 0, t+ a)

then

ρ1(γ(t)g) = ρ1((0, 0, t) · (b1, b2, a)) = ρ1(0, 0, t+ a) = t+ a

ρ2(γ(t)g) = ρ2((0, 0, t) · (b1, b2, a)) = ρ2(b2 + tb1 +
ab1

2
, b1, 0) = (b2 + tb1 +

ab1

2
, b1)

Therefore the irreducible representation πl,m is given by

πl,m(b2, b1, a)f(t) = χl (ρ2 (γ (t) g)) f (ρ1 (γ (t) g)) = e2πiβ2(b2+tb1+ 1
2
ab1)f(t+ a).
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3.2 Irreducible unitary representations of the group

Gn+1

Now we apply the induction procedure described in Section 3.1 to the group Gn+1

introduced in Section 2.3.

First we identify a point (b, a) ∈ Rn+1 with a point in the group Gn+1 by

(b, a) := exp(bnYn + bn−1Yn−1 + · · ·+ b1Y1 + aX).

Theorem 3.2.1. Let Gn+1 be the n-step nilpotent Lie group described in Section 2.3,

then all (nonequivalent) unitary irreducible representations of Gn+1 are as follows.

1. The infinite dimensional representations of Gn+1 on the Hilbert space Hπ =

L2(R, dx) are given by

πl(b, a)f(x) := e
2πil

(
n∑
k=1

Bk(x)Yk

)
f(x+ a),

Bk (x) :=
k∑
i=1

zi
(k − i)!

xk−i, k = 1, 2, . . . , n, (3.2.1)

for f ∈ L2(R, dx), x ∈ R, l ∈ O(α,Bm,0,...,0), 3 6 m 6 n.

2. The one-dimensional unitary representations (characters) on Hπ = C are given

by

πl(b, a) = e2πi(αa+β1b1)I, l ∈ O(α,β1,0,...,0)

Proof. First we describe the representations ofGn+1 corresponding to the two-dimensional

orbits, that is,
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O(α,Bm,0,...,0) ={
xX∗ +

m−2∑
j=1

fj(y; Bm)Y ∗j + yY ∗m−1 + βmY
∗
m : x, y ∈ R,m > 2

}

with Bm defined by (2.3.3) and

l =
m−2∑
j=1

fj(0; Bm)Y ∗j + βmY
∗
m

being orbit representatives for βm 6= 0 for the polarizing subalgebra

m = Span {Y1, Y2, ..., Yn} .

Then for W =
∑n

i=1 biYi and this choice of l and m we see that as in (3.1.3)

χl (exp(W )) = e2πil(W )

defines a character of the subgroup M = exp(m). Using (3.1.6) we identify G with

R× exp(m)

via the diffeomorphism ψ. Now we can describe the action of πl,m on L2(R, dx). For

(b, a) = exp(bnYn + bn−1Yn−1 + ...+ b1Y1 + aX) we have
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(0, . . . , 0, x) · (b, a) =(
n∑
i=1

zi
xn−i

(n− i)!
,
n−1∑
i=1

zi
xn−1−i

(n− 1− i)!
, . . . , z1, 0

)
· (0, . . . , 0, x+ a),

where zi are defined 2.3.2. In terms of (3.1.7) this identity can be written as

ρ1 (γ (x) g) = ρ1 ((0, . . . , 0, x) · (b, a)) = ρ1 ((0, . . . , 0, x+ a))

= x+ a,

ρ2 (γ (x) g) = ρ2 ((0, . . . , 0, x) · (b, a)) =

ρ2

((
n∑
i=1

zi
xn−i

(n− i)!
,
n−1∑
i=1

zi
xn−1−i

(n− 1− i)!
, . . . , z1, 0

))
=

(Bn (x) , Bn−1 (x) , ..., B1 (x)) ,

where

Bk (x) =
k∑
i=1

zi
xk−i

(k − i)!
, k = 1, 2, . . . , n.

Identifying Hπl,m with L2 (R, dx) we see that

πl,m(b, a)f(x) = χl (ρ2 (γ (x) g)) f (ρ1 (γ (x) g))

= e2πil(
∑n
k=1Bk(x)Yk)f(x+ a).

Now, for the one-point orbitO(α,β1,0,...,0) = {αX∗+β1Y
∗

1 }, α, β1 ∈ R, we have seen that

m = gn+1 and induction from M = exp(m) is trivial. Thus πl = χl is one-dimensional
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and is given by

πl(b, a) = e2πi(αa+β1b1)I

with Hπl = C.

3.3 Generalized Fourier transform

We start by reviewing the generalized Fourier transform (GFT) as described in [22,

Section 7.5]. First we assume that G is a separable locally compact unimodular

Lie group of type I (see [14]), and Lp(G,C) denotes the space of complex-valued

functions on G which are square-integrable with respect to the Haar measure dg.

Later we consider this setting in the case when G is an addition nilpotent.

Recall that we defined Ĝ to be the (unitary) dual space of G in Definition 3.1.1.

The structure of the dual Ĝ can be described explicitly for some classes of groups such

as locally compact Abelian or compact groups. Another class of groups for which one

can find an explicit description of Ĝ is of simply connected nilpotent Lie groups as

we described in Section 3.1.

Remark 3.3.1. The GFT is usually defined using the structure of Ĝ as a measurable

space, and therefore Ĝ should have nice properties such as being countably separated,

since not countably separated measurable spaces are pathological. By [22, Theorem

7.6] this is equivalent to G being of type I. In particular, if G a simply-connected

nilpotent Lie group, then by [18, 33] the group G is of type I.

Once we have equipped Ĝ with the structure of a nice measurable space, we can

define a Borel measure P on Ĝ called the Plancherel measure. Then a possible issue

is how to make a measurable selection of πξ for ξ ∈ Ĝ. As observed in [22, p. 230]



32

this can be done if G is of type I. Moreover, if G is a simply-connected nilpotent Lie

group, the Plancherel measure can be identified with the Lebesgue measure with a

density on Rq for some q using the unitary isomorphism J introduced in (3.1.8).

For ξ ∈ Ĝ we will denote by πξ a choice of an irreducible representation in the

equivalency class ξ, and the representation Hilbert space by Hπξ or Hξ.

Definition 3.3.2. For f ∈ L1(G,C) the generalized Fourier transform (GFT) of

f is the map F(f) (or f̂) that takes each element of Ĝ to a linear operator on the

representation space Hπξ by

F(f) (ξ) = f̂ (ξ) = f̂ (πξ) :=

∫
G

f(g)πξ(g−1)dg, for P − a.e.ξ ∈ Ĝ. (3.3.1)

As is known, the Fourier transform F(f), f ∈ L1(G,C) ∩ L2(G,C), is a Hilbert-

Schmidt operator for almost all ξ ∈ Ĝ with respect to the Plancherel measure P , and

the map ξ 7→ f̂ (ξ) is a P -measurable field of operators which allows for use of direct

integrals, and can be used to find a spectral decomposition of differential operators

on L2(G,C). In particular, one can prove the Plancherel Theorem and the Fourier

inversion formula in this abstract setting (e.g. [22, Theorem 7.44]). The Plancherel

Theorem gives rise to an extension of the GFT (which we again denote by F) to an

isometry

F : L2 (G,C) −→
∫
Ĝ

HS (Hπξ) dP (ξ), (3.3.2)

where HS (Hπξ) is the space of Hilbert-Schmidt operators which is a Hilbert space

itself. In the case of G being nilpotent, the Plancherel measure and the space of

Hilbert-Schmidt operators can be described explicitly. As it is done over Euclidean
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spaces, we will use the Fourier transform in Definition 3.3.2 to find a spectral de-

composition for the left-invariant vector field X̃ corresponding to any X ∈ g. In this

we will use the following notation. Let T be a linear operator on L2 (G,C), then we

denote by T̂ the following linear operator

T̂ :

∫
Ĝ

HS (Hπξ) dP (ξ) −→
∫
Ĝ

HS (Hπξ) dP (ξ),

T̂ = FTF∗, (3.3.3)

where F∗ is the adjoint of F

F∗ :

∫
Ĝ

HS (Hπξ) dP (ξ) −→ L2 (G,C) .

Remark 3.3.3. We would like to mention here that some of the standard properties

of the generalized Fourier transform are listed in [1], and a few of them should be

interpreted with caution. For example, [1, Equation (18)] gives a formal expression

for the generalized Fourier transform of the Dirac mass measure, which needs an

introduction of an analogue of tempered distributions. We note here that the theory of

tempered distributions have been studied on nilpotent groups (not general unimodular

groups), see [15, 13, 17].
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3.4 The GFT and the Plancherel formula for nilpo-

tent groups

We start by recalling that for connected, simply connected nilpotent Lie groups the

GFT can be described explicitly. In general for an infinite-dimensional irreducible

representation the operator π (g) , g ∈ G is not necessarily a trace-class operator. Let

S(G) be the space of Schwartz functions on G as defined in [14, Appendix A.2], then

for f ∈ S(G) the operator π (f) defined by (3.3.1) is a trace-class operator.

By [14, Theorem 4.2.1] for the irreducible unitary representation πl,m on L2
(
Rn−k, dx

)
identified with Ul,m by (3.1.9) we have that for any f ∈ S (G) there is an integral kernel

kf ∈ S
(
Rn−k × Rn−k) such that for h ∈ L2

(
Rn−k, dx

)
(
f̂ (πl,m)h

)
(x) =

∫
Rn−k

h (y) kf (x, y) dy.

By [14, proposition 4.2.2] the kernel kf (x, y) is given by

kf (x, y) =

∫
M

χl (m) f
(
γ (x)−1mγ (y)

)
dm, (3.4.1)

where χl is the character on M defined by (3.1.3), γ is a map Rn−k −→ G defined by

(3.1.5), and dm is the Haar measure on M . This is what ter Elst and Robinson call

a reduced kernel in [43, p. 481, (4)].

Now we turn to the Plancherel Formula. Our main goal here is to identify the

Plancherel measure with a measure on a Euclidean space. Let {X1, ..., Xn} be a basis

for a nilpotent Lie algebra g, and let {X∗1 , ..., X∗n} be the dual basis for g∗. We can use

[14, Theorem 3.1.6, Corollary 3.1.8 ] to find a G-invariant set U of generic coadjoint

orbits in g and two disjoint sets of indices S, T that partition {1, . . . , n} in such a way
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that (so-called) jump indices of any l ∈ U is exactly S. For more details on jump

indices etc we refer to [14, p. 84]. Let

g∗S := SpanR{X∗i , i ∈ S},

g∗T := SpanR{X∗j , j ∈ T}.

Note that the skew-symmetric form Bl (X, Y ) := l ([X, Y ]) on g has the radical radl,

and therefore induces a non-degenerate skew-symmetric form on g/radl.

Definition 3.4.1. If l ∈ g∗ and {X1, . . . , X2k} is a basis for g/radl, then the Pfaffian

Pf (l) is defined by

Pf (l)2 := detBl, where

Bl(X, Y ) := l ([X, Y ]) , X, Y ∈ g,

Bl
ij := Bl(Xi, Xj).

First we recall [14, Theorem 4.3.9] combined with [24, p.374, (0.3)], where as

before S(G) is the space of Schwartz functions on G.

Theorem 3.4.2 (The Fourier Inversion). Let {X1, . . . , Xn} be a basis for a nilpotent

Lie algebra g, and let {X∗1 , . . . , X∗n} be the dual basis for g∗. Define U, S, T and

Pfaffian as above, then for f ∈ S(G), f(e) is given by an absolutely convergent

integral

f (g) =

∫
U∩g∗T

Tr
(
πl,m

(
g−1
)
f̂ (πl,m)

)
|Pf(l)|dl,

where dl is the Lebesgue measure on g∗T .

Note that l ∈ g∗ can be identified with a point in a Euclidean space by using
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coordinates of l in the dual basis {X∗1 , . . . , X∗n}. The following theorem can be found

in [14, Theorem 4.3.10]

Theorem 3.4.3 (Plancherel Theorem). Let notation be as in the previous theorem.

For f ∈ S(G) we have

‖f‖2
2 =

∫
U∩g∗T

‖f̂ (πl,m) ‖2
HS|Pf(l)|dl,

where ‖A‖HS is the Hilbert-Schmidt norm of an operator A.

Remark 3.4.4. Note that usually we identify U ∩ g∗T with an open subset in a

Euclidean space, and therefore dl is simply the Lebesgue measure.

Definition 3.4.5. The measure dP := |Pf(l)|dl is the pushforward of the Plancherel

measure on Ĝ, namely, P is a Borel measure defined by the identification Ĝ ∼=

g∗/Ad∗G. We will abuse notion and call this pushforward measure the Plancherel

measure.

In our setting we can explicitly identify the ingredients needed for application of

these theorems.

Proposition 3.4.6. For Gn+1 the space g∗T is isomorphic to Rn−1 and the Plancherel

measure is given by

dP = |λn−1|dλ1dλ2 · · · dλn−1.

The Plancherel identity then becomes

‖f‖2
2 =

∫
Rn−1

‖f̂ (πl) ‖2
HS|λn−1|dλ1dλ2 · · · dλn−1,



37

where πl are the unitary representations described in Theorem 3.2.1 and l = (λ1, ..., λn−1)

is identified with a point in Rn−1.

Proof. If {Y ∗n , . . . , Y ∗1 , X∗} is the dual basis for g∗n+1, the indices {1, . . . , n + 1} can

be partitioned as S = {2, n+ 1} and T = {1, 3, 4, . . . , n} so that

(
g∗n+1

)
T

= SpanR{Y ∗n , Y ∗n−2, . . . , Y
∗

1 },

and the generic orbits are of the form

U =

{
n∑
i=1

αiY
∗
i + αX∗ : αn 6= 0

}
.

Thus we see that

(
g∗n+1

)
T
∩ U =

{
λn−1Y

∗
n + λn−2Y

∗
n−2 + · · ·+ λ1Y

∗
1 : λi ∈ R, λn−1 6= 0

}
.

The Pfaffian is a polynomial on g∗n+1 such that

Pf(l)2 = det

 0 l(Yn)

l(−Yn) 0

 = l(Yn)2.

Note that {Y ∗n−1, X
∗} is a basis for gn+1/radl. Identifying (g∗n+1)T with Rn−1 and

letting dλ1 · · · dλn−1 be the Lebesgue measure, we have |Pf(l)| = |λn−1|. If πl,m is the

representation corresponding to

l = λn−1Y
∗
n + λn−2Y

∗
n−2 + · · ·+ λ1Y

∗
1 ,
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the Plancherel formula becomes

‖f‖2
2 =

∫
Rn−1

‖f̂ (πl,m) ‖2
HS|λn−1|dλ1dλ2 · · · dλn−1,

and the Plancherel measure is identified with the following measure on Rn−1

dP = |λn−1|dλ1dλ2 · · · dλn−1. (3.4.2)

Example 3.4.7. For n = 2. We have the Heisenberg group case with the Lie algebra

g3 = Span {Y2, Y1, X} and the dual algebra g∗3 = Span {Y ∗2 , Y ∗1 , X∗}. The indices

{1, 2, 3} partition as S = {2, 3} and T = {1} so that

(g∗3)T = SpanR{Y ∗2 },

and the generic orbits are of the form

U = {l ∈ g∗3, l(Y2) 6= 0} .

Thus we see that

(g∗3)T ∩ U = {β2Y
∗

2 , β2 6= 0} .

The Pfaffian is a polynomial on g∗3 such that

Pf(l)2 = det

 0 l(Y2)

l(−Y2) 0

 = l(Y2)2.
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Identifying (g∗3)T with R and letting dλ be the Lebesgue measure on R, we have

|Pf(l)| = |λ|. If πl,m is the representation corresponding to

l = λY ∗2 ,

the Plancherel formula becomes

‖f‖2
2 =

∫
R
‖f̂ (πl,m) ‖2

HS|λ|dλ,

and the Plancherel measure is identified with the following measure on R

dP = |λ|dλ. (3.4.3)



Chapter 4

Sub-Riemannian Geometry

In this chapter, we start by reviewing some standard definitions in sub-Riemannian

geometry, and in particular, how a natural left-invariant sub-Riemannian structure

on nilpotent Lie groups is constructed.

4.1 Sub-Riemannian manifolds

Let M be an n-dimensional connected smooth manifold, with tangent and cotangent

bundles denoted by TM and T ∗M respectively.

Definition 4.1.1. For m 6 n, let H be a smooth sub-bundle of TM , where each

fiber Hq has dimension m and is equipped with an inner product g which smoothly

varies between fibers. Then

1. the triple (M,H,g) is called a sub-Riemannian manifold of rank m;

40
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2. H is called a horizontal distribution on M , and the inner product g a sub-

Riemannian metric;

3. sections of H are called horizontal vector fields, and curves on M whose velocity

vectors are always horizontal are called horizontal curves, i.e. a Lipschitz conti-

nous curve γ : [0, T ]→M is said to be horizontal (admissible) if γ̇(t) ∈ Hγ(t) for

almost every t ∈ [0, T ]. We use V ecH(M) to denotes the set of horizontal smooth

vector fields on M , i.e. V ecH(M) = {X ∈ V ec(M), X(p) ∈ Hp, p ∈M}.

Assumption 4.1.2 (Hörmander’s condition). Throughout this paper we assume that

the distribution H satisfies Hörmander’s (bracket generating) condition; that is, hori-

zontal vector fields with their Lie brackets span the tangent space TpM at every point

p ∈M .

Given a horizontal curve γ : [0, T ]→M , the length of γ is

l(γ) =

∫ T

0

√
gγ(t)(γ̇(t), γ̇(t))dt

The distance induced by the sub-Riemannian structure on M is the function

d(p1, p2) = inf{l(γ), γ(0) = p1, γ(T ) = p2}

The hypothesis of connectedness of M and Hörmander’s condition guarantee the

finiteness and the continuity of d with respect to the topology ofM (Chow’s Theorem).

The function d(., .) is called the Carnot-Carathéodory distance and gives to M the

structure of a metric space. In turn, this affords us the notion of a horizontal geodesic,

a horizontal curve whose length (locally) realizes the Carnot-Carathéodory distance.
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Theorem 4.1.3 (Chow 1939, Rashevsky 1938). If H is bracket generating and M

is connected, then any two points p1, p2 ∈ M are joined by a horizontal path whose

length is finite. Thus d(p1, p2) <∞, and d is easily seen to be a distance function on

M . The topology induced by d is equal to the manifold topology for M .

Definition 4.1.4. Let H be a distribution. Its flag is the sequence of distributions

H1 ⊂ H2 ⊂ . . . defined through the recursive formula

H1 := H, Hi+1 := Hi + [Hi,H]

A sub-Riemannian manifold is said to be regular if for each i = 1, 2, . . . the dimension

of Hi+1
p = Hi

p + [Hi
p,Hp] does not depend on the point p ∈M .

Remark 4.1.5. In this thesis we always deal with regular sub-Riemannian manifolds.

In this case Hörmander’s condition can be rewritten as follows:

there is a minimal k ∈ N such that Hk
p = TpM, p ∈M.

The sequence G = (dimH,H2, · · · ,Hk) is called the growth vector. Under the reg-

ularity assumption, G does not depend on the point and k is said the step of the

structure.

.

Definition 4.1.6. Let (M,H,g) be a sub-Riemannian manifold.

1. Locally we can assign to (H,g) a set of m smooth vector fields spanning H.

Suppose these vector fields can be chosen so that they are orthonormal with
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respect to g

Hp = Span{X1(p), . . . , Xm(p)},gp (Xi(p), Xj(p)) = δij,

then we say that the sub-Riemannian manifold M is trivializable.

2. If M is analytic and the vectors {X1, . . . , Xm} are analytic vector fields, we say

the sub-Riemannian manifold (M,H,g) is analytic.

3. M is regular if for

H1 := H,Hi+1 := Hi + [Hi,H]

the dimension of Hi(p), i = 1, 2, . . . does not depend on the point p ∈M .

4.1.1 Left-invariant sub-Riemannian structure on Lie groups

Let G be a Lie group with Lie algebra g := TeG. As usual we identify TeG with the set

of left-invariant vector fields on G as follows. First consider smooth diffeomorphisms

La and Ra of G, namely, the left and right translations by an element p ∈ G

Lp : h 7→ ph, h ∈ G,

Rp : h 7→ hp, h ∈ G.

Notation 4.1.7. For any X ∈ g we denote by X̃ the unique left-invariant vector

field such that X̃ (e) = X, that is, for any f ∈ C∞ (G)
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X̃f (g) :=
d

dt

∣∣∣∣
t=0

f
(
getX

)
=

d

dt

∣∣∣∣
t=0

f (RetXg) , (4.1.1)

where Rp : G→ G is the right translation by an element p ∈ G

The Lie group G can be equipped with a left-invariant Riemannian metric as

follows. First an inner product 〈·, ·〉e on TeG = g determines a left-invariant metric

on G by the identification dLp : g ∼= TeG→ TpG, for any p ∈ G. Then we can define

the corresponding Riemannian metric 〈·, ·〉 on G by

〈X, Y 〉p := 〈(dLp−1)
p

(X) , (dLp−1)
p

(Y )〉e (4.1.2)

for any p ∈ G and X, Y ∈ g. Another way to write this is as the pull-back (dLp)
∗ g =

g. Conversely, if a Riemannian metric on G satisfies (4.1.2), then it is called left-

invariant.

Now we can describe a similar construction in the sub-Riemannian setting.

Definition 4.1.8. Let G be a Lie group with Lie algebra g, H be a distribution

satisfying Hörmander’s condition (Assumption 4.1.2), and g be a sub-Riemannian

metric. We will say that (G,H,g) is equipped with a left-invariant sub-Riemannian

structure if

1. the distribution H is left-invariant, that is, He is a linear subspace of the Lie

algebra g such that

Hp = LpHe for p ∈ G;

2. the metric g is left-invariant, that is,

gp (X, Y ) = ge

(
(dLp−1)

p
(X) , (dLp−1)

p
(Y )
)
, p ∈ G,X, Y ∈ g.
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Finally, we observe that all left-invariant sub-Riemannian manifolds are regular

and trivializable according to [1, Remark 5, p. 2627].

4.2 The hypoelliptic Laplacian

As we observed in the introduction, there are several choices that need to be made to

define a natural hypoelliptic Laplacian corresponding to the sub-Riemannian struc-

ture at hand. One of these choices is of a measure, and as is seen from [1, Remark

16] in the case of Lie groups equipped with a left-invariant sub-Riemannian struc-

ture the Haar measure is a natural choice: the Popp measure defined in [35] and the

Hausdorff measure are both left-invariant, and therefore are proportional to the left

Haar measure.

Once the measure is chosen, an operator defined as a divergence of the horizontal

gradient is the usual sum of squares operator. Note that the argument in [1] has a

mistake, and for more detailed discussion of related issues we refer to [26, 27]. But

no matter which point of view we use, in the case of a nilpotent Lie group all these

approaches give the same result: the sum of squares operator. A hypoelliptic operator

can be defined as follow:

Definition 4.2.1. A partial differential operator L on a manifold M is said to be

hypoelliptic if Lu ∈ C∞(Ω) implies u ∈ C∞(Ω) for every distribution u on M , and

every open subset Ω ⊂M .

Note that, by standard elliptic regularity results, every elliptic operator is hypoel-

liptic; its corresponding parabolic heat operator is hypoelliptic as well.

In this section we construct the hypoelliptic Laplacian as the natural generaliza-
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tion of the Laplace-Beltrami operator ∆ in the Riemannian setting. Recall that ∆ is

defined as the divergence of the gradient:

∆φ = div(Oφ)

Here the gradient O is the unique operator from C∞(M) to V ec(M) that satisfies:

〈Oφ,X〉(p) = dφ(X)(p), p ∈M, X ∈ V ec(M)

where 〈., .〉 is the Riemannian metric, and the divergence of a vector field is the unique

function satisfying divµX = LXµ where µ is the Riemannian volume form.

Definition 4.2.2. Let (M,H, g) be a sub-Riemannian manifold, the horizontal gradi-

ent is the unique operator gradH from C∞(M) to V ecH(M) satisfying gp(gradHφ(p), v) =

dφp(v), p ∈M, v ∈ Hp.

Locally gradH can be given by

gradHφ =
m∑
i=1

(LXiφ)Xi,

where {X1, · · · , Xm} is a local orthonormal frame for (M,H, g).

As for the sub-Riemannian divergence, denoted by divH , we will need to define a

sub-Riemannian volume form, denote by µH . For detailed construction we refer to

Montgomery’s book in [Mon02] where µH is called the Popp’s measure.

Definition 4.2.3. Let (M,H, g) be a sub-Riemannian manifold. Then the hypoel-

liptic Laplacian is

∆Hφ = divH(gradHφ)
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In local orthonormal frame, ∆H can be written as

∆Hφ =
m∑
i=1

(
L2
Xi
φ+ LXiφTr(adXi)

)
The hypoelliplicity of ∆H follows from Hörmander’s Theorem

Theorem 4.2.4 (Hörmander’s Theorem). Let L be a differential operator on a man-

ifold M , that locally in a neighborhood U is written as L =
∑m

i=1 LXi + LX0 where

{X0, X1, · · · , Xm} are C∞ vector fields. If Lie{X0, X1, · · · , Xm} = TpM, ∀p ∈ U ,

then L is hypoelliptic.

Remark 4.2.5. Note that in the Riemannian case (m = n) the operator ∆H coincides

with the Laplace-Beltrami operator.

Now, Let (G,H, g) be a left-invarinat sub-Riemannina manifold and assume that

{X1, · · · , Xm} ⊂ g is an orthonormal basis for He Then

∆Hφ =
m∑
i=1

(
L2
X̃i
φ+ LX̃iφTr(adXi)

)

where X̃i is the vector field defined by X̃i = gXi for all g ∈ G.

Remark 4.2.6. We say that a Lie group (locally compact ) G is unimodular if the

left Haar measure µL and the right Haar measure µR coincide.

Theorem 4.2.7. Let (G,H, g) be a left-invariant sub-Riemannian manifold. Then,

G is unimodular if and only if ∆Hφ =
∑m

i=1 L
2
X̃i
φ.

See for instance [27].

Let (G,H,g) be a unimodular Lie group equipped with a left-invariant sub-

Riemannian structure of rank k. Our goal now is to see how we can use the GFT to
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diagonalize left-invariant vector fields, and therefore the sub-Laplacian ∆H . This is

really a non-commutative analogue of the Euclidean case. One of the issues we want

to clarify in what follows is the domains of the operators involved. This is something

that is missing in [1], and can be made explicit in the case when G is nilpotent.

Define ∆H to be the left-invariant second order differential operator

∆Hf :=
m∑
i=1

X̃i

2
f, f ∈ C∞c (G) ,

where {Xi}mi=1 is an orthonormal basis of (He,ge).

The operator ∆H is a densely defined symmetric operator on L2 (G, dg), where

dg is a right-invariant Haar measure. It has a self-adjoint extension, namely, the

Friedrichs extension, which we will denote by the same ∆H . For details we refer to

[44, Section II.5]. In addition we assume that H satisfies Hörmander’s condition 4.1.2,

therefore the operator ∆H is hypoelliptic by [28].

Definition 4.2.8. Let Pt denote the heat semigroup et∆H , where ∆H is the self-

adjoint (Friedrichs) extension of ∆H |C∞c (G) to L2 (G, dg), with dg is a right-invariant

Haar measure. By the left invariance of ∆H and Hörmander condition (4.1.2), Pt

admits a left convolution kernel pt such that

Ptf (h) = f ∗ pt (h) =

∫
G

f (hg) pt (g) dg

for all f ∈ C∞c (G). The function pt is called the hypoelliptic heat kernel of G.
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4.2.1 Generalized Fourier transform

We will use the Fourier transform in Definition 3.3.2 and the Fourier inversion formula

to find a spectral decomposition for the left-invariant vector field X̃ corresponding to

any X ∈ g.

To describe a domain for the differential operator X̃, as well as for the Fourier

transform of X̃, we turn to the notion of smooth and analytic vectors for a represen-

tation (due to E. Nelson [36], see also [25]).

Definition 4.2.9. Let π be a unitary representation of G in a complex Hilbert space

Hπ, consider the map fv : G→ Hπ given by

fv (g) := π (g) v for v ∈ Hπ. (4.2.1)

Then

1. v is an analytic vector if the map fv is analytic, and the space of such vectors

is denoted by Hω
π ;

2. v is Ck vector, if the map fv is Ck, and the space of such vectors is denoted by

Hk
π;

3. H∞π :=
⋂∞
k=0Hk

π, then v ∈ H∞π is called a (C∞) smooth vector.

It is well-known that Hω
π and H∞π are dense linear subspaces of Hπ, and both are

π (G)-invariant ([14, p. 230]). By [19, Theorem 3.3] the space H∞π coincides with the

G̊arding space of finite sums of vectors f̂ (π) v, f ∈ C∞c (G), v ∈ Hπ. We will use

the space H∞π because it works better with the GFT. In particular, we have that for

π ∈ Ĝ
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f̂ (π) v ∈ H∞π , for all v ∈ H∞π , f ∈ S (G) , (4.2.2)

and if G is a connected, simply connected nilpotent group, then

H∞J−1πJ = S
(
Rn−k) , (4.2.3)

where the first statement can be found in [14, Theorem A.2.7], the second in [14,

Corollary 4.1.2] with J being the unitary isomorphism introduced in (3.1.8).

Definition 4.2.10. Let X ∈ g, π ∈ Ĝ, then define the differential operator dπ (X)

on Hπ with the domain

D (dπ (X)) :=

{
v ∈ Hπ : dπ(X) (v) := X̃fv =

d

dt

∣∣∣∣
t=0

fv
(
etX
)

exists

}
,

where fv
(
etX
)

= π
(
etX
)
v as defined by (4.2.1).

Note that since π is a unitary representation, by Stone’s theorem dπ (X) is a

closed, densely defined, essentially skew-adjoint operator on Hπ. Moreover, as noted

in [14, p.226] for any X ∈ g we have

H∞π ⊆ D (dπ (X)) ,

dπ(X) (H∞π ) ⊆ D (dπ (X)) , (4.2.4)

X̃fv (g) = fdπ(X)(v) (g) , v ∈ H∞π , g ∈ G.

Remark 4.2.11. Now we are ready to comment on [1, Proposition 24]. Note that
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to make sense of all the ingredients in the statement, we need to know the domains

of differential operators involved. If we start with Hω
π as the domain of dπ(X), we

see that for a general unimodular group dπ (X) ◦ dπ (X) is again a densely defined

second-order differential operator on Hω
π . Observe that this domain might depend of

the representation π which makes interpreting [1] difficult.

There are some groups G for which this construction can be made rigorous. The

first example is of the Heisenberg group H3. We refer to [25, p. 65] for details, but the

main point is that infinite-dimensional irreducible unitary representations πλ ∈ Ĥ3

can be indexed by λ ∈ R, and the Plancherel measure can be described as a measure

on R. In this case Hω
πλ

= Hω
π1

, and so is independent of λ. We describe this group

in Example 5.1.5. This construction can be extended to other nilpotent groups as

well, and in particular we can use the fact that dπ (X) are differential operators with

common domains if π ∈ Ĝ are realized as unitary representations on L2
(
Rn−k, dx

)
.

The next theorem can be viewed as a rigorous version of [1, Theorem 26]. In this

case G is not assumed to be nilpotent.

Theorem 4.2.12. For any X ∈ g, π ∈ Ĝ, v ∈ H∞π , f ∈ S (G), then

̂̃
X2f (π) v = d2π (X) f̂ (π) v.

Thus ∆̂Hf (π) is a closed, densely defined self-adjoint operator on Hπ with the domain

H∞π such that for f ∈ S (G)

∆̂Hf (π) =

(
m∑
i=1

d2π (Xi)

)
f̂ (π) . (4.2.5)

Proof. The proof is based on properties of the GFT that we formulated earlier. First,
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we observe that for operators f̂ (π) and dπ (X) by (4.2.2) and (4.2.4) for f ∈ S (G)

we have

f̂ (π) (H∞π ) ⊆ H∞π ⊆ D (dπ (X)) ,

Finally, similarly to [14, p. 124] for f ∈ C∞c (G)

̂̃
Xf (π) =

d

dt

∣∣∣∣
t=0

∫
G

f
(
getX

)
π
(
g−1
)
dg =

d

dt

∣∣∣∣
t=0

∫
G

f (g)π
(
e−tXg−1

)
dg =

d

dt

∣∣∣∣
t=0

∫
G

f (g)π
(
e−tX

)
π
(
g−1
)
dg = −dπ (X) f̂ (π) ,

where this limit exists on D (dπ (X)), and so in particular on H∞π by (4.2.4).

The result now follows since we can apply the same argument on the space of

smooth vectors H∞π .

Using (3.3.3) we can say that

∆̂H :

∫
Ĝ

HS (Hπξ) dP (ξ) −→
∫
Ĝ

HS (Hπξ) dP (ξ)

is an (essentially) self-adjoint operator for each πξ which acts by multiplication by the

operator
(∑m

i=1 d
2πξ (Xi)

)
on the space of HS (Hπξ). If in addition G is a connected,

simply connected nilpotent group, then for π = πl,m and f ∈ C∞c (G)

∆̂Hf (πl,m) =

(
m∑
i=1

d2πl,m (Xi)

)
f̂ (πl,m)
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can be described more explicitly. By (4.2.3) the operator
m∑
i=1

d2πl,m (Xi) can be iden-

tified with an operator on L2
(
Rn−k, dx

)
which we denote by

∆̂H (πl,m) :=
m∑
i=1

d2πl,m (Xi) . (4.2.6)



Chapter 5

The hypoelliptic heat kernel on
nilpotent Lie groups and some
applications

5.1 The hypoelliptic heat kernel on nilpotent Lie

groups

Now we can see that in the nilpotent case there is a natural semigroup corresponding

to the GFT of the hypoelliptic Laplacian ∆̂H (πl,m), which in turn gives an explicit

formula for the hypoelliptic heat kernel. Note that [1, Corollary 29] can be interpreted

as a version of this formula (modulo the issues we mentioned previously), and in the

nilpotent case we also refer to [43, Equation (6), p. 484].

Theorem 5.1.1 (Hypoelliptic heat kernel).

pt (g) =

∫
U∩g∗T

∫
Rn−k

χl (ρ2 (γ (x) g)) klt (ρ1 (γ (x) g) , x) dx|Pf(l)|dl, (5.1.1)

54
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where klt (x, y) is the heat kernel for a continuous semigroup with the generator ∆̂H (πl,m).

This operator is a second order differential operator with polynomial coefficients on

L2
(
Rn−k, dx

)
and with a non-negative polynomial potential whose degree depends on

the structure of the group G.

Remark 5.1.2. By Remark 3.4.4 we usually identify U ∩ g∗T with an open subset of

a Euclidean space and dl with the Lebesgue measure. Thus (5.1.1) gives a Euclidean

integral formula for the hypoelliptic heat kernel on G. In addition, we can view

U ∩ g∗T as a non-commutative spectrum of a nilpotent group G. This goes back to

an observation in [33] that no discrete spectra arises in this case, and so it is not

surprising that we have an integral formula instead of a series as for a compact Lie

group (e. g. [4]).

Proof. Recall that the heat kernel pt is the convolution kernel defined in Definition

4.2.8

Ptf (g) = f ∗ pt (g) =

∫
G

f (gh) pt (h) dh.

The heat kernel pt ∈ S (G), and therefore by (3.4.1) for the representation πl,m on

L2
(
Rn−k, dx

)
there is an integral kernel kt ∈ S

(
Rn−k × Rn−k) such that for h ∈

L2
(
Rn−k, dx

)

(p̂t (πl,m)h) (x) =

∫
Rn−k

h (y) klt (x, y) dy, (5.1.2)

where

klt (x, y) =

∫
M

χl (m) pt
(
γ (x)−1mγ (y)

)
dm, x, y ∈ Rn−k. (5.1.3)

Here we use Vergne’s polarization subalgebra m to define M . First observe that for
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any f ∈ S (G)

P̂tf (πl,m) = f̂ (πl,m) ◦ p̂t (πl,m)

is a trace-class integral operator on L2
(
Rn−k, dx

)
. To recover the heat kernel, we need

to find a function f such that f̂ (πl,m) is close to the identity operator on Hl,m. This

presents two problems: the first is that the identity operator is not a Hilbert-Schmidt

operator, and the second is that in general p̂t (πl,m) is only Hilbert-Schmidt, and

therefore taking the trace in the Fourier inversion formula might be problematic. We

will deal with the first issue by taking an approximate identity in G which is equivalent

to defining the Dirac δ function as a tempered distribution, and the second issue has

been addressed in [14] as we explain below.

Namely, let {ϕn}∞n=1 be a bounded approximate identity, that is, ϕn ∈ Cc (G)

be a sequence of functions such as in [22, Proposition 2.42]. In particular, for any

h ∈ L2 (G)

h ∗ ϕn
L2(G)−−−→
n→∞

h

and the operator norms of h 7−→ h ∗ ϕn are (uniformly) bounded.

Now we can use the fact that by [14, Theorem 4.2.1] for any function in S (G) its

Fourier transform is not just Hilbert-Schmidt, but trace-class. Therefore for the heat

kernel pt we see that p̂t (πl,m) is a trace-class operator, and because of the assumptions

on the approximate identity {ϕn}∞n=1 we see that the convergence under the trace

Tr (ϕ̂n (πl,m) ◦ p̂t (πl,m)) −−−→
n→∞

Tr (p̂t (πl,m))
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holds. Now we can use the Fourier Inversion formula [22, Theorem 7.44, p. 234] for

nice enough functions h (such as pt ∗ ϕn) on G

h (g) =

∫
Ĝ

Tr(ĥ(πξ) ◦ πξ(g))dP (ξ).

In particular, if h is in addition continuous, this is a pointwise identity. Applying this

formula to Ptϕn, we have

(Ptϕn) (g) = (pt ∗ ϕn) (g) =∫
Ĝ

Tr(p̂t ∗ ϕn(πξ) ◦ πξ(g))dP (ξ) =∫
Ĝ

Tr
(
ϕ̂n
(
πξ
)
◦ p̂t

(
πξ
)
◦ πξ(g)

)
dP (ξ).

In our setting the trace is taken in the representation space L2 (Rm, dx), and by

Theorem 3.4.3 we can identify Ĝ with U ∩ g∗T equipped with the Plancherel measure

|Pf(l)|dl, so we have that the Fourier Inversion formula for Ptϕn gives

(Ptϕn) (g) =

∫
U∩g∗T

Tr(P̂tϕn(πl,m) ◦ πl,m(g))|Pf(l)|dl =∫
U∩g∗T

Tr(ϕ̂n (πl,m) ◦ p̂t (πl,m) ◦ πl,m(g))|Pf(l)|dl −−−→
n→∞∫

U∩g∗T
Tr(p̂t (πl,m) ◦ πl,m(g))|Pf(l)|dl =∫

U∩g∗T
Tr(πl,m(g) ◦ p̂t (πl,m))|Pf(l)|dl,

where we used the fact that the convergence under Tr and therefore under the integral

does not change after composing with the unitary operator πl,m(g), and the last line
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uses the centrality of the operator trace. Now observe that if we have a unitary

operator U on L2
(
Rn−k) composed with a trace class integral operator

(Kf) (x) :=

∫
Rn−k

f (y) k (x, y) dy,

then U ◦K is a trace class integral operator with the kernel given by

Uk (x, ·) ,

where U is applied to the kernel k (x, y) in the variable x. Then

Tr (U ◦K) =

∫
Rn−k

Uk (x, x) dx.

Now we can refer to (5.1.2) and (5.1.3) to see that

(p̂t (πl,m)h) (x) =

∫
Rn−k

h (y) klt (x, y) dy,

where kt is defined by (5.1.3).

Recall that we identify the unitary representation πl,m with the representation Ul,m

defined by (3.1.9), and so applying it to the kernel klt in x we have

(
πl,m (g) klt

)
(x, y) = χl (ρ2 (γ (x) g)) klt (ρ1 (γ (x) g) , y) ,

and therefore

(Ptϕn) (g) −−−→
n→∞∫

U∩g∗T

∫
Rn−k

χl (ρ2 (γ (x) g)) klt (ρ1 (γ (x) g) , x) dx|Pf(l)|dl.
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Now we recall that pt is a convolution kernel, and thus at least

(Ptϕn) (g)
L2(G)−−−→
n→∞

pt (g) .

Actually, this convergence is pointwise since the hypoelliptic heat kernel pt is contin-

uous and bounded. Thus

pt (g) =

∫
U∩g∗T

∫
Rn−k

χl (ρ2 (γ (x) g)) klt (ρ1 (γ (x) g) , x) dx|Pf(l)|dl.

Finally we observe that klt is the heat kernel for ∆̂H (πl,m) on L2
(
Rn−k, dx

)
by [43,

p. 481]. Note that this heat kernel corresponds to the initial point γ−1 (x) γ (y) as

can be seen from (5.1.3). Recall that we can use Mal’cev basis which allows us to

write left-invariant vector fields as first order differential operators with polynomial

coefficients. By [14, Theorem 4.1.1] in these coordinates dπl,m (Xi) is a differential

operator of degree 0 or 1 with polynomial coefficients with respect to (x1, x2, ..., xn),

and therefore the operator ∆̂H (πl,m) is a second order differential operator with poly-

nomial coefficients on L2
(
Rn−k, dx

)
.

Remark 5.1.3. The kernel klt (x, y) is called the reduced heat kernel in [43, p. 481]

among other papers, and it is the kernel of the following semigroup

(
et∆̂H(πl,m)f

)
(x) =

∫
Rn−k

klt (x, y) f (y) dy, f ∈ L2
(
Rn−k, dy

)
.

Remark 5.1.4. Note that we can use some crude estimates for the heat kernel for the

Schrödinger operator such as in [16] to prove heat kernel estimates for the hypoelliptic

heat kernel pt. We use the following statement in [42, Proposition 2.2.8]. For example,

the reduced heat kernel klt in the case when G is the Heisenberg group or the group Gn
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introduced in Section 2.3 is the heat kernel for a Schrödinger operator L = −∆ + Vl

on L2
(
RN , dx

)
with a nonnegative polynomial potential Vl. In this case Vl grows

faster than |x|α for some α, then there are positive constants cl, Cl (depending on α

etc) such that the heat kernel for L satisfies

kt (x, y) 6
Cl
tN/2

exp
(
−clt

(
|x|1+α/2 + |y|1+α/2

))
for all x, y ∈ RN and 0 < t 6 1.

Example 5.1.5 (Heisenberg group). Let H3 be the Heisenberg group identified with

R3 with the multiplication given by

(a, b, c) · (a′, b′, c′) := (a+ a′, b+ b′, c+ c′ +
1

2
(ab′ − ba′)),

and a Haar measure on H3 then is the Lebesgue measure dadbdc on R3. Let {X, Y, Z}

be the basis of the Lie algebra h with the only non-zero bracket [X, Y ] = Z. A

polarizing (non-unique) sub-algebra for an element l = λZ∗ can be chosen as m =

Span{Y, Z}. Thus the corresponding subgroup is

M = expm = {exp(bY + cZ), b, c ∈ R}

identified with R2. The dual space of H3 is given by

Ĥ3 = {πλ, λ ∈ R}
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where

πλ (a, b, c) : L2(R,C) −→ L2(R,C)

f(x) 7−→ e2πiλ(c+xb+ab
2

)f(x+ a).

Then for any f ∈ L2(R,C)

(dπλ (X)) f (x) = f ′ (x) ,

(dπλ (Y )) f (x) = 2πiλxf (x) ,

(dπλ (Z)) f (x) = 2πiλf (x) .

The Plancherel measure on Ĥ3 is dP (λ) = |λ|dλ/4π2, where dλ is the Lebesgue

measure on R. By using the ingredients above we are able to define the Fourier

transform f̂(λ) of a function f ∈ L2(H3,C) as an operator on L2(R,C)

(
f̂(λ)h

)
(x) =

∫
R3

f(a, b, c) (πλ(a, b, c)h) (x)dadbdc (5.1.4)

=

∫
R3

f(a, b, c)e2πiλ(−c−xb+ab
2

)h(x− a)dadbdc, h ∈ L2(R,C).

We can define a sub-Riemannian structure on H3 by considering the two left invariant

vector fields X̃ = X(g), Ỹ = Y (g), g ∈ H3. Then the horizontal distribution is given

by

H = Span{X̃, Ỹ }
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and therefore the corresponding sub-Laplacian is

∆H = X̃2 + Ỹ 2.

The the Fourier transform ∆H defined by (4.2.6) is

∆̂H (πλ) f (x) = f ′′ (x)− 4π2λ2x2f (x) = f ′′ (x)− Vλ (x) f (x) .

Note that by using the global coordinates (a, b, c) the sub-Laplacian is given by

∆Hf(a, b, c) =
(
X̃2 + Ỹ 2

)
f(a, b, c)

=

((
∂a −

b

2
∂c

)2

+
(
∂b +

a

2
∂c

)2
)
f(a, b, c).

For x, y ∈ R we have

γ−1(x)mγ(y) = exp(−xX) exp(bY + cZ) exp(yX)

= (y − x, b, c− b

2
(x+ y)).

The reduced heat kernel is then

kt(x, y) =

∫
M

χl(m)pt(γ
−1(x)mγ(y))dm =

∫
R2

e2πiλcpt(y − x, b, c−
b

2
(x+ y))dbdc.

Observe that by (5.1.4) applied to pt and h being the Dirac δ function (which can be



63

made rigorous similarly to the proof of Theorem 5.1.1) we have

(p̂t(λ)δ) (x) =

∫
R3

pt(a, b, c) (πλ(a, b, c)δ) (x)dadbdc

=

∫
R3

pt(a, b, c)e
2πiλ(−c−xb+ab

2
)δ(x− a)dadbdc

=

∫
R2

pt(x, b, c)e
2πiλ(−c−xb

2
)dbdc

It is equal to the reduced heat kernel kt (0, x) and taking the derivative in t and using

the fact that Y ∈ m, and therefore Ỹ is a skew-symmetric on L2 (M,dm), we see that

∂tkt(0, x) = ∆̂H (πλ) kt(0, x) =

(
d2

dx2
− Vλ (x)

)
kt(0, x).

Finally, in this case we can make (5.1.1) explicit. Namely, using the ingredients we

described earlier, we see that the hypoelliptic heat kernel on H3 is given by

pt (a, b, c) =

∫
R×

∫
R

e2πil(c+xb
2 )klt (a+ x, x) dx|l|dl,

where klt (x, y) is the fundamental solution of Schrödinger’s equation with the gener-

ator

(Hlf) (x) =
d2f

dx2
− l2x2f.

In this case this heat kernel can be found explicitly, namely,

klt (x, y) =

(
l

2π sinh (2lt)

)1/2

e−s
l
t(x,y), where

slt (x, y) = l

((
x2 + y2

)
coth (2lt)− xy

2 sinh (2lt)

)
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Thus we can use this form for klt to write an explicit expression for pt

pt (a, b, c) =

∞∫
0

∫
R

2l cos

(
2πl

(
c+

xb

2

))
klt (a+ x, x) dxdl.

5.2 Hypoelliptic heat kernel on the group Gn+1

In this section we define a sub-Riemannian structure on the n-step Lie group Gn+1

described in Section 2.3, and then use the representations of Gn+1 to find an explicit

expression for the corresponding hypoelliptic kernel.

In particular, we can use the matrix presentation (2.3.1) of the group Gn+1. We

now introduce the isomorphism φ between Gn+1 and Rn+1 by

φ(g) = (a, z), where z := (z1, . . . , zn) ,

where z is defined by (2.3.2). This isomorphism is a group isomorphism when Rn+1

is endowed with the following product

(a, z) · (a′, z′) :=

(
a+ a′, z1 + z′1, . . . , zn +

n−1∑
i=0

ai

i!
zn−i

)

Now, let us define a left-invariant sub-Riemannian structure on Gn+1 as presented in

Chapter 4. Consider two left invariant vector fields X1, X2 corresponding to X, Y1 ∈
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gn+1 defined by (4.1.1), and let

H(g) := Span{X1(g), X2(g)},

gg(Xi(g), Xj(g)) = δij.

Writing the group Gn+1 in coordinates (a, z) ∈ Rn+1, we have the following ex-

pression for the left-invariant vector fields X̃1 and X̃2

X̃1 =
∂

∂a
,

X̃2 =
∂

∂z1

+ a
∂

∂z2

+
a2

2!

∂

∂z3

+ · · ·+ an−1

(n− 1)!

∂

∂zn
.

The corresponding hypoelliptic Laplacian ∆H on Gn+1 is given by

∆Hf =
(
X̃1

2
+ X̃2

2
)
f, f ∈ C∞c (Gn+1) .

Our goal is to find an integral formula for the hypoelliptic heat kernel pt (g) as defined

in Definition 4.2.8 where g is identified with a point in Rn+1.

Notation 5.2.1. In what follows we denote by Rn−1
∗ the set

Rn−1
∗ :=

{
Λn−1 = (λ1, ..., λn−1) ∈ Rn−1 : λn−1 6= 0

}
.
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Theorem 5.2.2. The hypoelliptic heat kernel on the group Gn+1 is given by

pt(a, z) =∫
Rn−1

∫
R

e
2πi

(
n−1∑
k=1

λkBk(x,z)

)
k

Λn−1

t (x+ a, x) dx|λn−1|dΛn−1,

where k
Λn−1

t (x, y) is the fundamental solution to a Schrödinger equation with a poly-

nomial potential and

Bk (x, z) :=
k∑
i=1

zi
(k − i)!

xk−i, k = 1, 2, . . . , n− 1,

and

dΛn−1 := dλ1...dλn−1

is the Lebesgue measure.

Remark 5.2.3. Note that the integral should be taken over Rn−1
∗ , but as the inte-

grand is 0 when λn−1 = 0, we can instead integrate over Rn−1.

Proof. This formula can be derived using Theorem 5.1.1. Recall that we described

all unitary representations of Gn+1 in Section 3.2, and now we can use these results

to apply Theorem 5.1.1. For this purpose it is enough to consider representations in

the support of the Plancherel measure P . Thus we identify Ĝn+1 with

{
πΛn−1 : Λn−1 ∈ Rn−1

∗
}
,
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where πΛn−1 is a unitary operator on L2 (R,C) defined by

πΛn−1 : L2 (R,C) −→ L2 (R,C) ,

f (x) 7−→
(
πΛn−1(a, z)f

)
(x) ,

(
πΛn−1(a, z)f

)
(x) := e

2πi

(
n−1∑
k=1

λkBk(x)

)
f (x+ a) ,

where polynomials Bk (x) are defined by (3.2.1). Recall that by (3.4.2) the Plancherel

measure on Ĝn+1 is identified with the following measure on Rn−1

dP (Λn−1) = |Pf (l) |dmT (l) = |λn−1|dΛn−1.

Consider the representation πΛn−1 acting on the representation space L2(R,C). Using

Definition 4.2.10 we consider dπΛn−1 (Xi), i = 1, 2 which are operators on L2(R,C),

which can be found explicitly as follows. Let Λn−1 ∈ Rn−1
∗ , then

[
dπΛn−1 (X1) f

]
(x) =

d

dt

∣∣∣∣
t=0

πΛn−1(e
tX1)f (x)

=
d

dt

∣∣∣∣
t=0

πΛn−1(t, 0, . . . , 0)f (x)

=
d

dt

∣∣∣∣
t=0

f (t+ x) = f ′ (x) ,
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[
dπΛn−1 (X2) f

]
(x) =

d

dt

∣∣∣∣
t=0

πΛn−1(e
tX2)f (x)

=
d

dt

∣∣∣∣
t=0

πΛn−1(0, t, . . . , 0)f (x)

= 2πi

(
λn−1

xn−1

(n− 1)!
+

n−2∑
j=1

λj
xj−1

(j − 1)!

)
f (x)

Thus, under the GFT the hypoelliptic Laplacian (as in Theorem 4.2.12) is given by

∆̂Hf
(
πλn−1,Λn−2

)
(x) =

d2f

dx2
− 4π2

(
λn−1

xn−1

(n− 1)!
+

n−2∑
j=1

λj
xj−1

(j − 1)!

)2

f (x) .

This is a Schrödinger operator with a polynomial potential

LΛn−1 :=
d2f

dx2
− VΛn−1 (x) f (x) ,

where

VΛn−1 (x) := 4π2

(
λn−1

(n− 1)!
xn−1 +

n−2∑
j=1

λj
(j − 1)!

xj−1

)2

. (5.2.1)

Denote by k
Λn−1

t (x, y) the fundamental solution for the operator ∂t − LΛn−1 . Then

applying Theorem 5.1.1, one gets the kernel of the hypoelliptic heat equation on Gn+1

as follows

pt(a, z) =∫
Rn−1

∫
R

e
2πi

(
n−1∑
k=1

λkBk(x)

)
k

Λn−1

t (x+ a, x) dx|λn−1|dΛn−1.
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5.3 Short-time behavior of the hypoelliptic heat

kernel and the Trotter product formula

In this section we recall the techniques used by Séguin and Mansouri in [41], where

they show how the Trotter product formula for perturbation of a semigroup can be

combined with an explicit formula for the hypoelliptic heat kernel to study the short-

time behaviour of this heat kernel.

The following version of the Trotter product formula is well-suited for our pur-

poses. Suppose C is an operator that can be written as a sum of two operators

C = A + B. Then we can relate the semigroups generated by A and B with the

semigroup generated by C as follows (see [20, Corollary 5.8]).

Theorem 5.3.1 (Trotter product formula). Let (Tt)t>0 and (St)t>0 be strongly con-

tinuous semigroups on a Banach space X satisfying the stability condition

‖[Tt/NSt/n]N‖ 6Mewt, for all t > 0, N ∈ N

for some constants M > 1, w ∈ R. Consider the sum A + B on D := D(A) ∩D(B)

of the generators (A,D(A)) of (Tt)t>0 and (B,D(B)) of (St)t>0, and assume that D

and (λ0 − A − B)D are dense in X for some λ0 > w. Then the closure of the sum

of these two operators C := A+B generates a strongly continuous semigroup (Ut)t>0

given by the Trotter product formula

Utx = lim
N→∞

[Tt/NSt/N ]Nx (5.3.1)
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with uniform convergence for t on compact intervals.

As Séguin and Mansouri observed, in most of cases the expression [T (t/N)S(t/N)]N

is too complicated to be described explicitly. But in the special case when the oper-

ators satisfy some additional conditions and the Banach space X is a nice function

space such as Lp,6 p <∞, (see [41, Section 3.3] for details), (5.3.1) takes the form

Utf = Ttf + lim
N→∞

t

N

(
N−1∑
k=0

TN−kt/N BT kt/N

)
f +O(t2)f,

where O(t2) is an operator Dt acting on f such that ‖Dtf‖L1 6 Mt2‖f‖L1 for a

constant M and for all t small enough.

Note that main result in [41, Theorem 1] uses a number of assumptions formulated

on [41, p.3904]. Some of them are ambiguous (such as Assumption 1 which does not

address the issue of the domains of unbounded operators), therefore we would like to

use more concrete decompositions we have as a result of using Kirillov’s orbit method.

Namely, we consider the semigroup with the generator ∆̂H (πl,m) on L2
(
Rn−k, dx

)
defined by (4.2.6). That is, we would like to write ∆̂H (πl,m) as a sum Al +Bl which

are generators of the semigroups
{
T lt
}
t>0

and
{
Slt
}
t>0

respectively, and which satisfy

the following assumptions similar to [41, Proposition 3]. Note that they base their

analysis on the terminology of [1] which in particular leads to potential issues with

[41, Theorem 1]. But in our setting the direct integral terminology is not necessary,

and in particular, all operators and their semigroups are defined on L2
(
Rn−k, dx

)
,

that is, on a space which does not depend on πl,m. That is, in the case of nilpotent

groups dependence on elements in the unitary dual Ĝ is much easier to track.
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1. For each t > 0, T lt is an integral operator with kernel hlt(x, y)

(
T ltf
)

(x) =

∫
Rn−k

hlt(x, y)f(y)dy,

2. There exists an integrable function H l
t/N(x, y), uniformly bounded in x by an

integrable function Gl
t(x, y) for all N > 1, such that

(t/N)
((
T lt/N

)N
Bl + ...+ T lt/NB

l
(
T lt/N

)N−1
)
f(x) =

∫
Rn−k

H l
t/N(x, y)f(y)dy.

Then [41, Theorem 1] can be interpreted as follows. The operator ∆̂H (πl,m) is the

generator of the semigroup et∆̂H(πl,m) which is an integral operator on L2
(
Rn−k, dx

)
which can be written as the following expression for all small enough t

(
et∆̂H(πl,m)f

)
(x) = (5.3.2)∫

Rn−k

(
hlt(x, y) + t lim

N→∞
H l
t/N(x, y)

)
f(y)dy +

(
O(t3/2)f

)
(x),

where the integral kernels hlt and H l
t are defined above, and as before O(t3/2)f is an

operator Dt acting on f , such that ‖Dtf‖L1 6Mt2‖f‖L1 for a constant M and for all

small enough t. Combining this with the reduced heat kernel introduced in Remark

5.1.3, we see that

klt (x, y) = hlt(x, y) + t lim
N→∞

H l
t/N(x, y) +O(t2).

Recall that for the Heisenberg group H3 and the group Gn+1
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∆̂H (πl,m) = ∆− Vl,

where Vl is a positive polynomial potential on L2 (R, dx). Let

(
Alf

)
(x) := ∆f(x) = f ′′(x)

and Bl be the multiplication operator

(
Blf

)
(x) := Vl (x) f (x) .

We can write Vl (x) as

Vl (x) = −
(
al2mx

2m + al2m−1x
2m−1 + · · ·+ al2x

2 + al1x
1 + al0

)
,

where m is the degree of the polynomial Vl (x), and al2m and al0 are positive constants.

Then [41, Corollary 2] is applicable, the equation (5.3.2) becomes

(
et∆̂H(πl,m)f

)
(x) = (5.3.3)∫

R

1√
4πt

e−
(x−y)2

4t

(
1− al0t− t

2m∑
k=1

alk
k + 1

k∑
i=0

xiyk−i

)
f(y)dy +O(t3/2)f(x)

for f ∈ C∞c (R). It is clear that for more general Schrödinger-like operators in Theorem

5.1.1 this approach can be used as well without making additional assumptions.



73

5.3.1 Application to the n-step nilpotent Lie group Gn+1

Recall that for Gn+1 the operator ∆̂H is

(
∆̂H (πl,m)

)
f (x) = f ′′ (x)− Vl (x) f (x) , f ∈ Cc (Gn+1) ,

where by (5.2.1) the potential is given by

VΛn−1 (x) = 4π2

(
λn−1

(n− 1)!
xn−1 +

n−2∑
j=1

λj
(j − 1)!

xj−1

)2

.

We will use the following notation

Λk := (λ1, λ2, . . . , λk).

Then as we mentioned previously

AΛn−1f (x) = f ′′ (x) ,

(
BΛn−1f

)
(x) = −

(
λn

xn−1

(n− 1)!
+

n−2∑
j=1

λj
xj−1

(j − 1)!

)2

f (x) .

Therefore the coefficients of the polynomial potential are

a
Λn−1

k :=
k+1∑
i=1

λiλk+2−i, k = 0, 1, . . . , 2(n− 1).
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Finally, we use (5.3.3) to see that

(
e∆̂H

Λn−1

f
)

(x) =

∫
R

1√
4πt

e−
(x−y)2

4t

1− λ2
1t− t

2(n−1)∑
k=1

k+1∑
l=1

λlλk+2−l

k + 1

k∑
i=0

xiyk−i

 f(y)dy

+
(
O(t3/2)f

)
(x)

with the reduced heat kernel being

k
Λn−1

t (x, y) =

1√
4πt

e−
(x−y)2

4t

1− λ2
1t− t

2(n−1)∑
k=1

∑k+1
l=1 λlλk+2−l

k + 1

k∑
i=0

xiyk−i

+O(t3/2)

=
1√
4πt

e−
(x−y)2

4t

1− λ2
1t− t

2(n−1)∑
k=1

∑k+1
l=1 λlλk+2−l

k + 1

k∑
i=0

xiyk−i +O(t2)

 ,

where we used that O(t−1/2)O(t2) = O(t3/2). Now we can use Theorem 5.2.2 to see

that the hypoelliptic kernel is given by

pt(a, z) =

∫
Rn−1

∫
R

e
2πi

(
n−1∑
k=1

λkBk(x,z)

)
|λn−1|kΛn−1

t (x+ a, x) dxdΛn−1,



75

therefore

pt(a, z) =
1√
4πt

e−
a2

4t

∫
Rn
e

2πi

(
n−1∑
k=1

λkBk

)
×

×

1− λ2
1t− t

2(n−1)∑
k=1

k+1∑
l=1

λlλk+2−l

k + 1

k∑
i=0

(x+ a)ixk−i +O(t2)


dx|λn−1|dΛn−1.

Denote by P2(n−1) the polynomial of degree 2(n− 1)

P2(n−1)(x, a) := λ1 +

2(n−1)∑
k=1

∑k+1
l=1 λlλk+2−l

k + 1

k∑
i=0

(x+ a)ixk−i.

Choosing the substitution

1− tP2(n−1)(x, a) = e−tP2(n−1)(x,a) +O(t2),

we get the following expression

pt(a, z) =
1√
4πt

e−
a2

4t×∫
Rn
e

2πi(
n−1∑
k=1

λkBk) (
e−tP2(n−1)(x,a) +O(t2)

)
dx|λn−1|dλn−1dΛn−2 =

1√
4πt

e−
a2

4t

∫
Rn
e

2πi(
n−1∑
k=1

λkBk)
e−tP2(n−1)(x,a)dx|λn−1|dλn−1dΛn−2

+
1√
4πt

e−
a2

4t

∫
Rn
e

2πi(
n−1∑
k=1

λkBk)
O(t2)dx|λn−1|dλn−1dΛn−2.
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The first part is a C∞ function, and one can use special functions to find a more

explicit form of this integral. The second integral is also a C∞ function which is of

order O(t3/2).
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2312336 (2009a:53053)
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[45] Michèle Vergne, Construction de sous-algèbres subordonnées à un élément du
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