
Commutative Algebra – Homework 2 David Nichols

Exercise 1

Let m and n be positive integers. Show that:

HomZ(Z/mZ,Z/nZ) ∼= Z/(m,n)Z,

where Z denotes the integers, and d = (m,n) denotes the greatest common
divisor of m and n.

Let L : HomZ(Z/mZ,Z/nZ) → Z/(m,n)Z be defined as follows. If f : Z/mZ →
Z/nZ is Z-linear, and if f(1 + mZ) = k + nZ, then

L(f) = k + (m,n)Z.

• L does in fact define a map from HomZ(Z/mZ,Z/nZ) to Z/(m,n)Z. For
suppose f : Z/mZ → Z/nZ is Z-linear. Then since 1 + mZ has order m in
Z/mZ, f(1 + mZ) has order dividing m. But since f(1 + mZ) is an element
of Z/nZ, nf(1 + mZ) ≡ 0 mod n and so f(1 + mZ) has order dividing n.
Therefore (m,n)f(1 + mZ) ≡ 0 mod n and hence we may construe f(1 + mZ)
as an integer modulo (m,n).

• L is surjective. For given k + (m,n)Z ∈ Z/(m,n)Z, we may define

f : Z/mZ→ Z/nZ

by f(1 + mZ) = k + nZ. Since ord(k) | (m,n), this defines a linear map
Z/mZ→ Z/nZ. And L(f) = k + (m,n)Z.

• L is linear. For if a, b ∈ Z and f, g ∈ HomZ(Z/mZ,Z/nZ), then

L(af + bg) = (af + bg)(1 +mZ) = af(1 +mZ) + bg(1 +mZ) = aL(f) + bL(g).

• L is injective. For any linear map Z/mZ → Z/nZ is determined entirely by
f(1+mZ) (since Z/mZ is cyclic) and hence any two linear maps Z/mZ→ Z/nZ
differ if and only if they differ at 1 + mZ.



Exercise 2

Let A be a ring, a an ideal, M an A-module. Show that (A/a)⊗AM is isomorphic
to M/aM . [Tensor the exact sequence 0→ a→ A→ A/a→ 0 with M .]

Let i : a→ A be inclusion and p : A→ A/a be projection. Then

0→ a
i−→ A

p−→ A/a→ 0

is exact, and so by the exactness of the tensor product,

0→ a⊗A M
f−→ A⊗A M

g−→ (A/a)⊗A M → 0

is exact also.12 Because A ⊗A M is uniquely isomorphic to M by a ⊗A m 7→ am,
there are maps h, k such that

0→ aM
h−→M

k−→ (A/a)⊗A M → 0

is exact. By the exactness of the above sequence, ker(k) = aM . Therefore by the
first isomorphism theorem,

M/aM ∼= (A/a)⊗A M.

Exercise 3

Let A be a commutative ring, let I and J be ideals of A, and let M be an
A-module. Show that: (A/I)⊗A (A/J) ∼= A/(I + J).

Here Exercise 2 does the heavy lifting. With a = I and M = A/J , we obtain

(A/I)⊗A (A/J) ∼= (A/J)/(I(A/J)) (Exercise 2)

= (A/J)/((IA + J)/J) (rewriting)
∼= A/(IA + J) (Proposition 2.1)

= A/(I + J) (IA = A)

1Here f = i⊗A idM and g = p⊗A idM .
2Here Professor Glaz notes that the first link in this sequence isn’t guaranteed.



Exercise 4

Let A be a commutative ring and let {Mi}i∈T and N be A-modules. Show that
(⊕Mi)⊗N ∼= ⊕(Mi ⊗N).

Let B : (⊕Mi)×N → ⊕(Mi ⊗N) be given by

({mi}i∈T , n) 7→ {mi ⊗ n}i∈T .

Then B is bilinear:

B({ami}i∈T , n) = {(ami)⊗ n}i∈T
= a · {mi ⊗ n}i∈T{mi ⊗ (an)}i∈T = B({mi}i∈T , an)

and the additivity properties follow from those of the direct sum. Therefore by the
universal property of the tensor product there is a unique linear map

L : (⊕Mi)⊗N → ⊕(Mi ⊗N)

satisfying L(x ⊗ y) = B(x, y) on elementary tensors. Similarly, there are unique
linear maps (one for each i ∈ T )

Ki : Mi ⊗N → (⊕Mi)⊗N

satisfying

Ki(mi ⊗ n) = (0, . . . ,mi, . . . , 0)⊗ n

↑
ith place

Let K : ⊕(Mi ⊗N)→ (⊕Mi)⊗N be given by

K ({mi ⊗ n}i∈T ) =
∑
i∈T

Ki(mi ⊗ n).

Then K is linear because Ki is for each i ∈ T , and L and K are inverses.



Exercise 5

Let A be a commutative ring. Do Exercise 2.4 from the book, and conclude that
any free A-module is flat.

Exercise 2.4

Let Mi (i ∈ I) be any family of A-modules, and let M be their direct sum.
Prove that M is flat ⇔ each Mi is flat.

Optional addition to this exercise (only if you learned about projective
modules): One definition of a projective module A is: P is a projective A-
module iff P is a direct summand of a free A-module. Conclude that projective
modules are flat.

We will use the notation 1 to denote the identity on M and 1i to denote the identity
on Mi.

Suppose M is flat. Then if N ′, N are A-modules, and f : N ′ → N is injec-
tive, f ⊗ 1 : N ′ ⊗ M → N ⊗ M is injective also (Proposition 2.19). By Exer-
cise 4 and Proposition 2.14, it follows that there are isomorphisms h, k such that
h : N ′ ⊗M → ⊕i∈I(N

′ ⊗Mi) and k : N ⊗M → ⊕i∈I(N ⊗Mi) and

k ◦ f ◦ h−1 : ⊕i∈I(N
′ ⊗Mi)→ ⊕i∈I(N ⊗Mi)

is injective. Call the function above g, so that

g : ⊕i∈I(N
′ ⊗Mi)→ ⊕i∈I(N ⊗Mi)

is injective, and for i ∈ I let gi denote the ith component of g. Then since g is
injective, gi is injective for each i ∈ I.3 But gi is just

f ⊗ 1i : N ′ ⊗Mi → N ⊗Mi.

So by Proposition 2.19, Mi is flat (for each i ∈ I, since the choice of index was
arbitrary).

Conversely, suppose that Mi is flat for each i ∈ I. Then if N ′, N are A-modules and
f : N ′ → N is injective,

f ⊗ 1i : N ′ ⊗Mi → N ⊗Mi

3If j ∈ I is such that x 6= y ∈ N ′⊗Mi but gj(x) = gj(y), then g(x̂) = g(ŷ), where x̂ is the tuple
with x in the jth place and 0 elsewhere, and similarly for ŷ.



is injective for each i. Hence the direct sum of these maps,

⊕i∈I(f ⊗ 1i) : ⊕i∈I(N
′ ⊗Mi)→ ⊕i∈I(N ⊗Mi),

is injective. But as before, the map displayed above is—up to composition with
isomorphisms—the same as

f ⊗ 1 : N ′ ⊗ (⊕i∈IMi)→ N ⊗ (⊕i∈IMi),

i.e.
f ⊗ 1 : N ′ ⊗M → N ⊗M

is injective. Hence by Proposition 2.19, M is flat.4

Exercise 6

Let A[x] be the ring of polynomials in one indeterminate over a ring A. Prove
that A[x] is a flat A-algebra. [Use Exercise 4.]

We claim that
A[x] ∼=

⊕
i∈N

A.

Then by Exercise 2.4 (our Exercise 5), A[x] is flat if and only if A is. But A is a flat
A-algebra (because A⊗A B ∼= B for any A-algebra B). To see that

A[x] ∼=
⊕
i∈N

A,

observe that the map

a0 + a1x + · · ·+ anx
n 7→ (a0, a1, . . . , an, 0, 0, 0, . . . )

is linear and has inverse

{ai}i∈N 7→ a0 + a1x + · · ·+ anx
n,

where an is the nonzero element of greatest index in the sequence {ai}i∈N.

4Professor Glaz adds: If F is free, F ∼= AI = ⊕IA; since A is A-flat, F is flat.



Exercise 7

Let G and H be Z-modules (abelian groups). Determine the structure of G⊗ZH
in each of the following cases:

(i) G and H are infinite cyclic

(ii) G and H are finite cyclic

(iii) G is finite cyclic and H is infinite cyclic

(iv) G and H are finitely generated

(v) G and H are free

(i) If G and H are infinite cyclic, then G ∼= H ∼= Z. So

G⊗Z H ∼= Z⊗Z Z.

Thus G ⊗Z H is an infinite cyclic group with generator 1 ⊗Z 1, hence iso-
morphic to Z; i.e. G⊗Z H is infinite cyclic.

(ii) If G and H are finite cyclic, then there are m,n ∈ Z such that G ∼= Z/mZ
and H ∼= Z/nZ. So

G⊗Z H ∼= (Z/mZ)⊗Z (Z/nZ).

By Exercise 3, this means that

G⊗Z H ∼= Z/(mZ + nZ) ∼= Z/(m,n)Z,

i.e. G⊗Z H is finite cyclic. To check that mZ+nZ = (m,n)Z, we observe
that since Z is a PID, there is some k ∈ Z such that mZ + nZ = kZ.
Furthermore, since mZ ⊂ mZ + nZ and nZ ⊂ mZ + nZ, k | m and
k | n. Thus k | (m,n), meaning that (m,n)Z ⊂ kZ (alternatively, this
follows immediately from Bezout’s identity). But suppose m = k(m,n)
and n = l(m,n). Then for any a, b ∈ Z,

am + bn = ak(m,n) + bl(m,n) = (ak + bl)(m,n) ∈ (m,n)Z,

so kZ ⊂ (m,n)Z. This completes the proof.



(iii) If G is finite cyclic and H is infinite cyclic, then there is m ∈ Z such that
G ∼= Z/mZ and H ∼= Z. So

G⊗Z H ∼= (Z/mZ)⊗Z Z ∼= Z/mZ,

i.e. G⊗Z H is finite cyclic.

(iv) If G and H are finitely generated, then there are finite subsets {g1, . . . , gm} ⊂
G generating G and {h1, . . . , hn} ⊂ H generating H. For convenience we
take each generating set to already contain the inverse of each of its ele-
ments. Take any two elements g =

∑
i gi ∈ G and h =

∑
j hj ∈ H (where

the sums are finite and each gi and hj is among the finite set of generators;
note that we don’t strictly need coefficients from Z since the generating
sets are closed under inversion). Then

g ⊗Z h =

(∑
i

gi

)
⊗Z

(∑
j

hj

)

=
∑
i

(
gi ⊗Z

(∑
j

hj

))
=
∑
i

∑
j

(gi ⊗Z hj)

=
∑
i,j

(gi ⊗Z hj).

Thus each elementary tensor may be written as a finite sum of elementary
tensors whose components are generators. Since the elementary tensors
generate G⊗Z H, it follows that G⊗Z H is finitely generated. 5

5Professor Glaz observes that this can be made more explicit by writing

G ∼=

(
r1⊕
i=1

Z

)
⊕

(
k1⊕
i=1

Z/miZ

)

H ∼=

(
r2⊕
i=1

Z

)
⊕

(
k3⊕
i=1

Z/niZ

)
and now using Exercise 4 to get

G⊗Z H ∼=
r1⊕
i=1

((
r2⊕
i=1

Z

)
⊕

(
k1⊕
i=1

Z/niZ

))
⊕

k⊕
i=1

((
r2⊕
i=1

Z/miZ

)
⊕

(
k⊕

i=1

Z/(mi, ni)Z

))
.



(v) If G and H are free, then there are index sets I, I ′ such that G = ⊕i∈IZ
and H = ⊕i∈I′Z. So (using Exercise 4 twice)

G⊗Z H =

(⊕
i∈I

Z

)
⊗Z

(⊕
i∈I′

Z

)

∼=
⊕
i∈I

(
Z⊗Z

(⊕
i∈I′

Z

))
∼=
⊕
i∈I

⊕
i∈I′

(Z⊗Z Z)

=
⊕

i∈I×I′
(Z⊗Z Z)

∼=
⊕

i∈I×I′
Z,

so G⊗Z H is free.

Exercise 8

Use Exercise 7(ii) to do Exercise 1 on page 31. Also, find an alternative proof
for Exercise 1.

Exercise 1

Show that (Z/mZ)⊗Z (Z/nZ) = 0 if m,n are coprime.

I In Exercise 7(ii), we showed that

(Z/mZ)⊗Z (Z/nZ) ∼= Z/(m,n)Z.

Since (m,n) = 1, this means that (Z/mZ)⊗Z(Z/nZ) is isomorphic to (therefore
equal to) 0.



I Alternatively, consider the exact sequence

Z f−→ Z g−→ Z/mZ −→ 0

where f is the map a 7→ ma and g is reduction modulo m. Then by Proposition
2.18, the following sequence (with the appropriate arrows) is exact:

Z⊗Z Z/nZ f⊗1−→ Z⊗Z Z/nZ
g⊗1−→ Z/mZ⊗Z Z/nZ −→ 0.

Since Z⊗Z Z/nZ ∼= Z/nZ, we have another exact sequence

Z/nZ a7→ma−→ Z/nZ −→ Z/mZ⊗Z Z/nZ −→ 0.

Since (m,n) = 1, a 7→ ma is onto and hence the kernel of the second map is
all of Z/nZ, i.e. the map

Z/nZ −→ Z/mZ⊗Z Z/nZ

in the above sequence is the zero map. But since the sequence is exact, this
map is surjective, which is impossible unless (Z/mZ)⊗Z (Z/nZ) = 0.

I As another alternative, let a⊗b denote (a+mZ)⊗Z (b+nZ) ∈ Z/mZ⊗ZZ/nZ.
Then

a⊗ b + · · ·+ a⊗ b︸ ︷︷ ︸
m times

= (a + · · ·+ a︸ ︷︷ ︸
m times

)⊗ b

= 0

= a⊗ (b + · · ·+ b︸ ︷︷ ︸
n times

) = a⊗ b + · · ·+ a⊗ b︸ ︷︷ ︸
n times

,

so a⊗ b has order dividing m and dividing n. Since (m,n) = 1 by hypothesis,
this means that a⊗ b = 0. But this holds for arbitrary a⊗ b ∈ Z/mZ⊗ZZ/nZ,
so Z/mZ⊗Z Z/nZ = 0.


