Commutative Algebra — Homework 2 David Nichols

Exercise 1

Let m and n be positive integers. Show that:
Homgy(Z/mZ,7/nZ) = Z/(m,n)Z,

where Z denotes the integers, and d = (m,n) denotes the greatest common
divisor of m and n.

Let L : Homg(Z/mZ,Z/nZ) — Z/(m,n)Z be defined as follows. If f : Z/mZ —
Z/nZ is Z-linear, and if f(1 4+ mZ) = k + nZ, then

L(f) = k + (m,n)Z.

e [ does in fact define a map from Homgy(Z/mZ,7Z/nZ) to Z/(m,n)Z. For
suppose [ : Z/mZ — Z/nZ is Z-linear. Then since 1 + mZ has order m in
Z/mZ, f(1+ mZ) has order dividing m. But since f(1 4+ mZ) is an element
of Z/nZ, nf(1 + mZ) = 0modn and so f(1 + mZ) has order dividing n.
Therefore (m,n)f(1 4+ mZ) = 0 mod n and hence we may construe f(1 + mZ)
as an integer modulo (m,n).

e [ is surjective. For given k + (m,n)Z € Z/(m,n)Z, we may define
f:Z/mZ — Z/nZ

by f(1 +mZ) = k + nZ. Since ord(k) | (m,n), this defines a linear map
Z)/mZ — Z/nZ. And L(f) =k + (m,n)Z.

e [ is linear. For if a,b € Z and f, g € Homy(Z/mZ,Z/nZ), then

L(af+0bg) = (af +bg)(1+mZ) = af (1 +mZ)+bg(1 +mZ) = aL(f) +bL(g).

e [ is injective. For any linear map Z/mZ — 7Z/nZ is determined entirely by
f(1+mZ) (since Z/mZ is cyclic) and hence any two linear maps Z/mZ — 7Z./nZ
differ if and only if they differ at 1 + mZ.



Exercise 2

Let A be aring, a an ideal, M an A-module. Show that (A/a)®4M is isomorphic
to M/aM. [Tensor the exact sequence 0 - a - A — A/a — 0 with M ]

Let i : a — A be inclusion and p : A — A/a be projection. Then
0—sabAl AJa—0
is exact, and so by the exactness of the tensor product,
0= a@aM LA, ML (Afa) @4 M — 0

is exact also.!? Because A ®4 M is uniquely isomorphic to M by a ®4 m + am,
there are maps h, k such that

0—aM B ME (A/a)@a M -0

is exact. By the exactness of the above sequence, ker(k) = aM. Therefore by the
first isomorphism theorem,

M/aM = (A/a) @4 M.

Exercise 3

Let A be a commutative ring, let I and J be ideals of A, and let M be an
A-module. Show that: (A/I)®4 (A/J) = A/(I+J).

Here Exercise 2 does the heavy lifting. With a = I and M = A/J, we obtain

(A/T) @4 (A)J) = (A)J)/(I(A]J)) (Exercise 2)
=(A/J)/((IA+ J)/J) (rewriting)
~A/(TA+ ) (Proposition 2.1)
— AJ(I +J) (IA = A)

'Here f =i ®4idps and g = p ® 4 idpy.
2Here Professor Glaz notes that the first link in this sequence isn’t guaranteed.



Exercise 4

Let A be a commutative ring and let {M;};er and N be A-modules. Show that
(®M;) @ N = ®(M; ® N).

Let B: (®M;) x N — ®&(M; ® N) be given by
{mi}ier,n) = {m; @ n}icr.
Then B is bilinear:

B({ami}ier,n) = {(am;) @ n}ier
=a- {mz (%9 n}ieT{mi (24 (GJTL)}Z'GT = B({mi}ieT, an)

and the additivity properties follow from those of the direct sum. Therefore by the
universal property of the tensor product there is a unique linear map

satisfying L(z ® y) = B(z,y) on elementary tensors. Similarly, there are unique
linear maps (one for each i € T)

satisfying

ith place

Let K : &(M; ® N) — (&M;) ® N be given by

€T

Then K is linear because K; is for each ¢ € T', and L and K are inverses.



Exercise 5

Let A be a commutative ring. Do Exercise 2.4 from the book, and conclude that
any free A-module is flat.

Exercise 2.4

Let M; (i € I) be any family of A-modules, and let M be their direct sum.
Prove that M is flat < each M; is flat.

Optional addition to this exercise (only if you learned about projective
modules): One definition of a projective module A is: P is a projective A-
module iff P is a direct summand of a free A-module. Conclude that projective
modules are flat.

We will use the notation 1 to denote the identity on M and 1; to denote the identity
on MZ

Suppose M is flat. Then if N', N are A-modules, and f : N’ — N is injec-
tive, f®1: NN® M — N ® M is injective also (Proposition 2.19). By Exer-
cise 4 and Proposition 2.14, it follows that there are isomorphisms h, k such that
h:N &M — @ier(N @ M) and k: N ® M — ®ier(N ® M;) and

kofoh™: @ics(N'® M;) = ®ier(N @ M;)
is injective. Call the function above g, so that
9 Bier(N' @ M;) — @ier(N ®@ M)

is injective, and for i € I let g; denote the i*" component of g. Then since g is
injective, g; is injective for each ¢ € 1.* But g; is just

So by Proposition 2.19, M; is flat (for each i € I, since the choice of index was
arbitrary).

Conversely, suppose that M; is flat for each ¢ € I. Then if N', N are A-modules and
f: N’ — N is injective,

3If j € I is such that z # y € N’ ® M, but g;(z) = g;(y), then g(&) = g(§), where & is the tuple
with z in the j*® place and 0 elsewhere, and similarly for .



is injective for each 7. Hence the direct sum of these maps,
Dier(f @ 1) : ier(N' @ M;) = @ier(N @ M;),

is injective. But as before, the map displayed above is—up to composition with
isomorphisms—the same as

fR1: N @ (@iesM;) = N @ (@i M;),

1.e.
fR1:NQM - NM

is injective. Hence by Proposition 2.19, M is flat.*

Exercise 6

Let A[z] be the ring of polynomials in one indeterminate over a ring A. Prove
that A[z] is a flat A-algebra. [Use Exercise 4.]

We claim that

Alz] = P A

iEeN
Then by Exercise 2.4 (our Exercise 5), A[x] is flat if and only if A is. But A is a flat
A-algebra (because A ®4 B = B for any A-algebra B). To see that

Alz] = P A,

ieN
observe that the map
ap + a1x + -+ + ax” — (ag, aq,. .., a,,0,0,0,...)
is linear and has inverse
{a;}ien — ag + a1z + - -+ + a,2”,

where a,, is the nonzero element of greatest index in the sequence {a; }icn.

4Professor Glaz adds: If F is free, F =2 AT = @ A; since A is A-flat, F is flat.



Exercise 7

(1)
(i)
(i)
(iv)

)

(v

Let G and H be Z-modules (abelian groups). Determine the structure of G ®z H
in each of the following cases:

G and H are infinite cyclic

G and H are finite cyclic

G is finite cyclic and H is infinite cyclic
G and H are finitely generated

G and H are free

(i)

If G and H are infinite cyclic, then G = H = Z. So
G H=E7Z®q7.

Thus G ®z H is an infinite cyclic group with generator 1 ®z 1, hence iso-
morphic to Z; i.e. ‘G ®z H is infinite cyclic.

If G and H are finite cyclic, then there are m,n € Z such that G = Z/mZ
and H = Z/nZ. So

G ®z H=(Z/mZ) @z (Z/n7).
By Exercise 3, this means that

G®zH=Z/mZ+nZ)=1Z/(m,n)Z,

ie. ‘G ®z H is finite cyclic. ‘ To check that mZ+nZ = (m,n)Z, we observe
that since Z is a PID, there is some k € 7Z such that mZ + nZ = kZ.
Furthermore, since mZ C mZ + nZ and nZ C mZ + nZ, k | m and
k| n. Thus k | (m,n), meaning that (m,n)Z C kZ (alternatively, this
follows immediately from Bezout’s identity). But suppose m = k(m,n)
and n = [(m,n). Then for any a,b € Z,

am + bn = ak(m,n) + bl(m,n) = (ak + bl)(m,n) € (m,n)Z,

so kZ C (m,n)Z. This completes the proof.



(iii) If G is finite cyclic and H is infinite cyclic, then there is m € Z such that
G = 7Z/mZ and H = Z. So

G &z H (Z/mZ) @7 = 7/mZ,

ie. ‘G ®yz H is finite cyclic. ‘

(iv) If G and H are finitely generated, then there are finite subsets {g1, ..., gn} C
G generating G and {hy,...,h,} C H generating H. For convenience we
take each generating set to already contain the inverse of each of its ele-
ments. Take any two elements g = 3, g; € G and h =}, h; € H (where
the sums are finite and each g; and h; is among the finite set of generators;
note that we don’t strictly need coefficients from Z since the generating
sets are closed under inversion). Then

() ()

s (5]
= Z Z(gz ®z hyj)

Thus each elementary tensor may be written as a finite sum of elementary
tensors whose components are generators. Since the elementary tensors
generate G ®z H, it follows that ‘G ®gz H is finitely generated. P

5Professor Glaz observes that this can be made more explicit by writing

1 k1

G = (@ z) 5 <@ Z/miz)
i=1 i=1
T2 k)g

H (@ Z) ® (@ Z/niZ>
i=1 i=1

and now using Exercise 4 to get

cor- () () (@) o))

=1 i=1



(v) If G and H are free, then there are index sets I, I’ such that G = ®;c/Z
and H = @;cpZ. So (using Exercise 4 twice)

G o H = (@z) % (@z>

iel iel’

B> ()
~P P ze.z)

i€l iel’

P zw.z)

ielxI’

Dz

eI xI’

I

so |G ®z H is free.

Exercise 8

Use Exercise 7(ii) to do Exercise 1 on page 31. Also, find an alternative proof
for Exercise 1.

Exercise 1

Show that (Z/mZ) @z (Z/nZ) = 0 if m,n are coprime.

» In Exercise 7(ii), we showed that
(Z)mZ) @z (Z/nZ) = 7] (m,n)Z.

Since (m,n) = 1, this means that (Z/mZ)®z(Z/nZ) is isomorphic to (therefore
equal to) 0.



» Alternatively, consider the exact sequence
71572 2 /mZ — 0

where f is the map a — ma and g is reduction modulo m. Then by Proposition
2.18, the following sequence (with the appropriate arrows) is exact:

Z &y Z/nZ 15 7.0, Z/nZ 225 Z/mZ @4 Z/nZ — 0.
Since Z @z Z/n7 = Z/nZ, we have another exact sequence
Z/n7 "2 7/nT — Z)mZ @z /0T —> 0,

Since (m,n) = 1, a — ma is onto and hence the kernel of the second map is
all of Z/nZ, i.e. the map

Z/nZ — Z/mZ &z /07

in the above sequence is the zero map. But since the sequence is exact, this
map is surjective, which is impossible unless (Z/mZ) @z (Z/nZ) = 0.

» As another alternative, let a®b denote (a+mZ)®z (b+nZ) € Z/mZ Rz 7 /nZ.
Then

a@b+--+a®b=(a+---+a)@b

m?i:nes m?irmes
=0
=a®(@—|—---—{—b):g®b—|—---—|—a®@,
n times n times

so a ® b has order dividing m and dividing n. Since (m,n) = 1 by hypothesis,
this means that a ® b = 0. But this holds for arbitrary a®b € Z/mZ @y Z/nZ,
so Z/mZ ®z Z./nZ = 0.



