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1. Show that (Z/mZ)⊗ (Z/nZ) = 0 if m,n are coprime.

Proof. Since m and n are coprime, then there exists some s, t ∈ Z such that

ms+ nt = 1.

Now for any simple tensor x⊗ y ∈ (Z/mZ)⊗ (Z/nZ), we have

x⊗ y = 1 · (x⊗ y)

= (ms+ nt) · (x⊗ y)

= (ms) · (x⊗ y) + (nt) · (x⊗ y)

= (msx)⊗ y + (ntx)⊗ y

= (msx)⊗ y + x⊗ (tny)

= 0⊗ y + x⊗ 0

= 0 + 0

= 0.

Since (Z/mZ)⊗ (Z/nZ) is generated by simple tensors, then we have

(Z/mZ)⊗ (Z/nZ) = 0.

�

2. Let A be a ring, a an ideal, M an A-module. Show that (A/a)⊗A M is isomorphic to M/aM .

Proof. Define f : A/a×M →M/aM as: for all x+ a ∈ A/a and m ∈M , we have

f(x+ a,m) = xm+ aM.

Claim I: f is well defined.

In fact, for all x+a, y+a ∈ A/a and m ∈M such that x+a = y+a, then x−y ∈ a. Hence xm = ym = (x−y)m ∈ aM ,

in particular,

xm+ aM = ym = aM.

That is, f(x+ a,m) = f(y + a,m). So f is well defined.

Claim II: f is an A-bilinear map.

In fact, for all z ∈ A, x+ a, y + a ∈ A/a and m,n ∈M , then

f(z(x+ a) + (y + a),m) = f(zx+ y + a,m)

= (zx+ y)m+ aM

= zxm+ ym+ aM
1
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= (zxm+ aM) + (ym+ aM)

= z(xm+ aM) + (ym+ aM)

= zf(x+ a,m) + f(y + a,m).

f(x+ a, zm+ n) = x(zm+ n) + aM

= zxm+ xn+ aM

= (zxm+ aM) + (xn+ aM)

= z(xm+ aM) + (xn+ aM)

= zf(x+ aM,m) + f(x+ a, n).

Hence f is an A-bilinear map.

Since f is an A-bilinear map, by the universal property of tensor product, then there exists a unique A-module

homomorphism ϕ : A/a⊗A M →M/aM such that for all x ∈ A and m ∈M , we have

ϕ((x+ a)⊗m) = xm+ aM.

Define another map ψ : M/aM → A/a⊗A M as: for all m+ aM , we have

ψ(m+ aM) = (1 + a)⊗m.

Claim III: ψ is well defined.

In fact, for all m,n ∈M such that m−n ∈ aM , then there exists some a ∈ a and l ∈M such that m−n = al. Hence

ψ(m+ aM) = (1 + a)⊗m

= (1 + a)⊗ (al + n)

= (1 + a)⊗ (al) + (1 + a)⊗ n

= [a(1 + a)]⊗ l + (1 + a)⊗ n

= (a+ a)⊗ l + (1 + a)⊗ n

= 0⊗ l + (1 + a)⊗ n

= 0 + (1 + a)⊗ n

= (1 + a)⊗ n

= ψ(n+ aM).

Claim IV: ψ is an A-module homomorphism.

In fact, for all m,n ∈M and x ∈ A, we have

ψ(x(m+ aM) + n+ aM) = f(xm+ n+ aM)

= (1 + a)⊗ (xm+ n)

= (1 + a)⊗ (xm) + (1 + a)⊗ n

= x(1 + a)⊗m+ (1 + a)⊗ n

= xψ(m+ aM) + ψ(n+ aM).

Hence ψ is an A-module homomorphism.

Claim V: ψ ◦ ϕ = Id.
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In fact for all simple tensor (x+ a)⊗m ∈∈ A/a⊗A M , then

ψ ◦ ϕ((x+ a)⊗m) = ψ(xm+ aM)

= (1 + a)⊗ (xm)

= [x(1 + a)]⊗m

= (x+ a)⊗m.

Since A/a⊗A M is generated by simple tensors, then ψ ◦ ϕ = Id on A/a⊗A M .

Claim VI: ϕ ◦ ψ = Id.

For all m+ aM ∈M/aM , then

ϕ ◦ ψ(m+ aM) = ϕ((1 + a)⊗m)

= 1m+ aM

= m+ aM.

Hence ϕ ◦ ψ = Id on M/aM .

In summary, we know that ϕ and ψ are A-module isomorphisms. Hence we know that (A/a)⊗A M is isomorphic to

M/aM .

�

3. Let A be a local ring, M and N finitely generated A-modules. Prove that if M ⊗A N = 0, then M = 0 or N = 0.

Proof. Since A is a local ring, then A has a unique maximal ideal m in A. Since m is the unique maximal ideal in A,

then the Jacobson radical J of A is equal to m and k = A/m is a field.

For any A-module L, let Lk = k ⊗A L. By the result of the Problem 2, then

Lk = k ⊗A L = A/m⊗A L ∼= L/mL.

Then Lk is a k-vector space. Since M ⊗A N = 0, then (M ⊗A N)k = 0. On the other hand, since k ⊗k k = k, then

we know that

(M ⊗A N)k = k ⊗A (M ⊗A N)

= k ⊗A M ⊗A N

= M ⊗A k ⊗A N

= M ⊗A (k ⊗k k)⊗A N

= (M ⊗A k)⊗k (k ⊗A N)

= Mk ⊗k Nk.

Hence Mk⊗kNk = 0. Since Mk⊗kNk is a k-vector space of dimension dimMk ·dimNk. Hence we must have Mk = 0

or Nk = 0. Without loss of generality, we assume Mk = 0 = k ⊗A M ∼= M/mM . Hence we get

M = mM.

Since J = m and M,N are finitely generated A-modules, by the Nakayama’s Lemma, we know that M = 0.

�

4. Let Mi(i ∈ I) be any family of A-modules, and let M be their direct sum. Prove that M is flat ⇐⇒ each Mi is flat.
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Proof. (=⇒) Assume M =
⊕
i∈I

Mi is flat. For all i ∈ I, define πi : M → Mi as the i-th projection, that is, for all

(mj)j∈I ∈M , we have

π((mj)j∈I) = mi.

Let ei : Mi → M as the i-th embedding, that is, for all mi ∈ Mi, let mj = mi if i = j and mj = 0 if i 6= j, then we

have

ei(mi) = (mj)j∈I .

Now for any A-modules N and N ′ with any injective A-module homomorphism f : N → N ′. Since M is flat, then

f ⊗ 1M : N ⊗A M → N ′ ⊗A M is injective.

Let f : N → f(N) ⊂ N ′, then f is bijective. Since M is flat, then

f ⊗ 1M : N ⊗A M → f(N)⊗A M is injective.

Since

N ⊗A M = N ⊗A (
⊕
i∈I

Mi) =
⊕
i∈I

(N ⊗A Mi), and N ′ ⊗A M = N ′ ⊗A (
⊕
i∈I

Mi) =
⊕
i∈I

(N ′ ⊗A Mi)

Then

1N ⊗ ei : N ⊗A Mi → N ⊗A M is injective.

So we get

(f ⊗ 1M ) ◦ (1N ⊗ ei) : N ⊗A Mi → N ′ ⊗A M is injective.

Now for f ⊗ 1Mi
: N ⊗A Mi → N ′ ⊗A Mi, we want to show that f ⊗ 1Mi

is injective, since f ⊗ 1Mi
(N ⊗A Mi) ⊂

f(N)⊗A Mi, then it suffices to show f ⊗ 1Mi
: N ⊗A Mi → f(N ′)⊗A Mi is injective. Since 1Mi

= πi ◦ 1M ◦ ei, then

f ⊗ 1Mi = (1f(N) ⊗ πi) ◦ (f ⊗ 1M ) ◦ (1N ⊗ ei).

Hence f ⊗ 1Mi
is injective. So we know that f ⊗ 1Mi

: N ⊗A Mi → N ′ ⊗A Mi is injective. Therefore, we know that

Mi is flat for all i ∈ I.

(⇐=) Assume that for all i ∈ I, Mi is flat. Now for any A-modules N and N ′ with any injective A-module

homomorphism f : N → N ′. Since Mi is flat, then

f ⊗ 1Mi : N ⊗A Mi → N ′ ⊗A Mi is injective.

Now consider f ⊗ 1M : N ⊗A M → N ′ ⊗A M , for any
∑
finite

nj ⊗ (mj
i )i∈I ∈ kerf ⊗ 1M , that is,

f ⊗ 1M

(∑
finite

nj ⊗ (mj
i )i∈I

)
= 0

Then

0 = f ⊗ 1M

(∑
finite

nj ⊗ (mj
i )i∈I

)
=

∑
finite

f(nj)⊗ (mj
i )i∈I

=

(∑
finite

f(nj)⊗mj
i

)
i∈I

=

(
(f ⊗ 1Mi

)

(∑
finite

nj ⊗mj
i

))
i∈I
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Then we know that

(f ⊗ 1Mi
)

(∑
finite

nj ⊗mj
i

)
= 0, ∀i ∈ I.

Since f ⊗ 1Mi is injective, then ∑
finite

nj ⊗mj
i = 0, ∀i ∈ I.

Which implies that ∑
finite

nj ⊗ (mj
i )i∈I = 0.

Hence f ⊗ 1M is injective. Therefore, M is flat.

�

5. Let A[x] be the ring of polynomials in one indeterminate over a ring A. Prove that A[x] is a flat A-algebra.

Proof. We know that A[x] is a ring such that A is a subring of A[x], which implies that A[x] is an A-module. So for all

i ≥ 0, Axi is an A-module generated by xi in A[x].

Claim I: Axi ∼= A as A-modules.

Define φ : A→ Axi as φ(a) = axi, it is easy to see that φ is a bijective A-module homomorphism (Since axi = 0 iff

a = 0), so Axi ∼= A as A-modules. Since A is a flat A-module, then Axi is also flat as A-module for all i ≥ 0. On the

other hand, since

A[x] =

∞⊕
i=0

Axi, as A-modules.

By the result of the Problem 4, we know that A[x] is a flat A-module. Let i : A → A[x] be the embedding of rings,

that is, i(a) = a for all a ∈ A, then A[x] is an A-algebra. Hence we know that A[x] is a flat A-algebra.

�

6. For any A-module M , let M [x] denote the set of all polynomials in x with coefficients in M , that is to say expressions

of the form

m0 +m1x+ · · ·+mrx
r, mi ∈M.

Defining the product of an element of A[x] and an element of M [x] in the obvious way, show that M [x] is an

A[x]-module. Show that M [x] ∼= A[x]⊗A M .

Proof. For any

t∑
i=0

aix
i ∈ A[x] and

r∑
i=0

mix
i ∈M [x], let

(
t∑

i=0

aix
i

)
·

(
r∑

i=0

mix
i

)
=

t+r∑
i=0

 ∑
j1+j2=i

aj1mj2

xi.

Claim I: M [x] is an A[x]-module

It is easy to see that M [x] is an additive group, and the above scalar multiplication by A[x] is well defined. For all
r∑

i=0

mix
i ∈M [x], we have

1 ·

(
r∑

i=0

mix
i

)
=

r∑
i=0

mix
i.
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It is easy to see that the distribution laws hold for this scalar multiplication. Now we only need to check the

associativity law. In fact, for any

t∑
i=0

aix
i,

s∑
i=0

bix
i ∈ A[x] and any

r∑
i=0

mix
i ∈M [x], we know that

[(
t∑

i=0

aix
i

)(
s∑

i=0

bix
i

)]
·

(
r∑

i=0

mix
i

)
=

t+s∑
i=0

 ∑
j1+j2=i

aj1bj2

xi

 ·( r∑
i=0

mix
i

)

=

t+s+r∑
i=0

 ∑
j4+j3=i

 ∑
j1+j2=j4

aj1bj2

mj3

xi

=

t+s+r∑
i=0

 ∑
j1+j2+j3=i

aj1bj2mj3

xi

(
s∑

i=0

bix
i

)
·

(
r∑

i=0

mix
i

)
=

s+r∑
i=0

 ∑
j2+j3=i

bj2mj3

xi

(
t∑

i=0

aix
i

)
·

[(
s∑

i=0

bix
i

)
·

(
r∑

i=0

mix
i

)]
=

(
t∑

i=0

aix
i

)
·

s+r∑
i=0

 ∑
j2+j3=i

bj2mj3

xi


=

t+s+r∑
i=0

 ∑
j1+j4=i

aj1

 ∑
j2+j3=j3

bj2mj3

xi

=

t+s+r∑
i=0

 ∑
j1+j2+j3=i

aj1bj2mj3

xi

=

[(
t∑

i=0

aix
i

)(
s∑

i=0

bix
i

)]
·

(
r∑

i=0

mix
i

)

In summary, we know that M [x] is an A[x]-module.

Claim II: M [x] ∼= A[x]⊗A M as A[x]-modules.

Define the map φ : A[x]×M →M [x] as: for all

r∑
i=0

aix
i ∈ A[x] and all m ∈M , we have

ϕ

(
r∑

i=0

aix
i,m

)
=

r∑
i=0

(aim)xi

It is easy to see that φ is well defined an A-bilinear map, by the universal property of tensor product, then there

exists a unique A-module homomorphism Φ : A[x] ⊗A M → M [x] such that for all

t∑
i=0

aix
i ∈ A[x] and all m ∈ M , we

have

Φ

((
t∑

i=0

aix
i

)
⊗m

)
=

t∑
i=0

(aim)xi

Now we need to check that Φ is an A[x]-module homomorphism, it suffices to check the A[x]-linearity for the simple

tensors. In fact, for all

t∑
i=0

aix
i,

s∑
i=0

bix
i ∈ A[x] and m ∈M , we have

Φ

((
s∑

i=0

bix
i

)((
t∑

i=0

aix
i

)
⊗m

))
= Φ

((
s∑

i=0

bix
i

)((
t∑

i=0

aix
i

))
⊗m

)



HW 2 7

= Φ

t+s∑
i=0

 ∑
j1+j2=i

bj1aj2

xi

⊗m


=

t+s∑
i=0

 ∑
j1+j2=i

bj1aj2

mxi

=

t+s∑
i=0

 ∑
j1+j2=i

bj1aj2

xi

 ·m
=

[(
s∑

i=0

bix
i

)(
t∑

i=0

aix
i

)]
·m

=

(
s∑

i=0

bix
i

)
·

[(
t∑

i=0

aix
i

)
·m

]

=

(
s∑

i=0

bix
i

)
· Φ

((
t∑

i=0

aix
i

)
⊗m

)

Also the additivity follows from A-module homomorphism. Hence Φ is an A[x]-module homomorphism. Define

Ψ : M [x]→ A[x]⊗A M as: for all

r∑
i=0

mix
i ∈M [x], we have

Ψ

(
r∑

i=0

mix
i

)
=

r∑
i=0

xi ⊗mi

It is easy to see that Ψ is a well defined additive group homomorphism, now we need to check A[x]-linearity. For any
t∑

i=0

aix
i ∈ A[x] and

r∑
i=0

mix
i ∈M [x], then

Ψ

((
t∑

i=0

aix
i

)
·

(
r∑

i=0

mix
i

))
= Ψ

t+r∑
i=0

 ∑
j1+j2=i

aj1mj2

xi


=

t+r∑
i=0

xi ⊗

 ∑
j1+j2=i

aj1mj2


=

t+r∑
i=0

∑
j1+j2=i

xi ⊗ (aj1mj2)

=

t+r∑
i=0

∑
j1+j2=i

(aj1x
i)⊗mj2

=

t+r∑
i=0

∑
j1+j2=i

((aj1x
j1)xj2)⊗mj2

=

t+r∑
i=0

∑
j1+j2=i

(aj1x
j1) · (xj2 ⊗mj2)

=

t+r∑
i=0

∑
j1+j2=i

(aj1x
j1) ·Ψ((mj2x

j2)
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=

(
t∑

i=0

aix
i

)
·Ψ

(
r∑

i=0

mix
i

)

Hence Ψ is A[x]-module homomorphism. Now for any

r∑
i=0

mix
i ∈M [x], then

Φ ◦Ψ

(
r∑

i=0

mix
i

)
= Φ

(
r∑

i=0

xi ⊗mi

)

=

r∑
i=0

Φ(xi ⊗mi)

=

r∑
i=0

mix
i.

That is, Φ ◦Ψ = Id. Now for any

r∑
i=0

aix
i ∈ A[x] and all m ∈M , we have

Ψ ◦ Φ

((
r∑

i=0

aix
i

)
⊗m

)
= Ψ

(
r∑

i=0

(aim)xi

)

=

r∑
i=0

xi ⊗ (aim)

=

r∑
i=0

(aix
i)⊗m

=

(
r∑

i=0

(aix
i)

)
⊗m.

Which implies that Ψ ◦ Φ = Id. Therefore, we know that Φ and Ψ are A[x]-module isomorphisms, in particular,

M [x] ∼= A[x]⊗A M as A[x]-modules.

�

15. Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V (E) denote the set of all

prime ideals of A which contain E. Prove that

a. If a is the ideal generated by E, then V (E) = V (a) = V (
√
a).

b. V (0) = X, V (1) = ∅.
c. If (Ei)i∈I is any family of subsets of A, then

V

(⋃
i∈I

Ei

)
=
⋂
i∈I

V (Ei).

d. V (a
⋂
b) = V (ab) = V (a)

⋃
V (b) for any ideals a, b of A.

Proof. a. Since E ⊂ a ⊂
√
a, then

V (
√
a) ⊂ V (a) ⊂ V (E).

Now for any prime ideal p of A such that E ⊂ p, by the definition of a, then a ⊂ p, that is, p ∈ V (a). Also since

a ⊂ p, then
√
a ⊂ √p. Since p is prime, then

√
p = p. Hence

√
a ⊂ p, that is, p ∈ V (

√
p).

Therefore, we know that

V (
√
a = V (a) = V (E).
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b. For any prime ideal p of A, we know that 0 ∈ p, then p ∈ V (0). Hence

V (0) = X.

For V (1), we must have V (1) = ∅, otherwise, there exists some prime ideal p of A such that 1 ∈ p, which implies that

p = A, contradiction. Hence

V (1) = ∅.

c. Since for i ∈ I, we have Ei ⊂
⋃
i∈I

Ei, then

V

(⋃
i∈I

Ei

)
⊂ V (Ei), ∀i ∈ I.

Hence

V

(⋃
i∈I

Ei

)
⊂
⋂
i∈I

V (Ei).

On the other hand, for all p ∈
⋂
i∈I

V (Ei), then

p ∈ V (Ei), ∀i ∈ I.

That is,

Ei ⊂ p, ∀i ∈ I.

Hence ⋃
i∈I

Ei ⊂ p.

That is, p ∈ V

(⋃
i∈I

Ei

)
. Therefore, we know that

V

(⋃
i∈I

Ei

)
=
⋂
i∈I

V (Ei).

d. For any ideals a, b of A, then

ab ⊂ a
⋂

b ⊂ a, and ab ⊂ a
⋂

b ⊂ b.

So we have

V (a) ⊂ V (a
⋂

b) ⊂ V (ab), and V (a) ⊂ V (a
⋂

b) ⊂ V (ab).

Hence

V (a)
⋃
V (b) ⊂ V (a

⋂
b) ⊂ V (ab)

Now for any p ∈ V (ab), then ab ⊂ p and p is prime ideal, which implies that a ⊂ p or b ⊂ p, that is, p ∈ V (a)
⋃
V (b).

Therefore, we get

V (a)
⋃
V (b) = V (a

⋂
b) = V (ab)

�

16. Draw pictures of Spec (Z), Spec (R), Spec (C[x]), Spec (R[x]) and Spec (Z[x]).
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Proof. a. For Z which is a PID, the ideal p of Z is prime if and only if p = 0 or p = pZ for some prime number p in Z,

that is,

Spec Z = {pZ : p is a prime number in Z or p = 0}

Since Z is a PID, then for any ideal a ∈ Z with a 6= 0 and a 6= Z, there exists a unique m ≥ 2 ∈ N such that a = mZ.

For m, by the fundamental theorem of arithmetic, there exists a unique prime factorization

m = pe11 · · · p
ek
k , ei ≥ 1.

Then we know that for all 1 ≤ i ≤ k, the ideal pi = piZ ∈ SpecZ and

V (a) = V (mZ) = {p1, · · · , pk}.

That is to say that nontrivial closed sets in Spec Z is a finite collection of prime ideals in Z. On the other hand, for

any finite collection of prime ideals {p1, · · · , pk} in Z, for each 1 ≤ i ≤ k, there exists a unique prime number pi ∈ Z

such that pi = piZ. Let m = p1 · · · pk, and a = mZ, then

V (mZ) = V (a) = {p1, · · · , pk}.

So we know that a subset U of Spec Z is open if and only if U = ∅ or Spec Z\U is a finite set. That is to say, the

topology on Spec Z is the finite completion topology.

b. For R, since R is a field, then only prime ideal in R is 0, that is,

Spec R = {0}.

The open sets of Spec R are ∅ and {0}, and the topology on Spec R is the discrete topology.

c. For C[x], since C[x] is PID, then the ideal p of C[x] is prime if and only if p = 0 or p = f(x)C[x] for some

monic irreducible polynomial f(x) ∈ C[x] with degf(x) ≥ 1. Since C is algebraic closed, then only monic irreducible

polynomials are of the form x− c for some c ∈ C. Hence we know that

Spec C[x] = {p : p = 0 or p = (x− c)C[x] for some c ∈ C}.

Since C[x] is a PID, then for any ideal a ∈ C[x] with a 6= 0 and a 6= C[x], there exists a unique monic polynomial

m(x) ∈ C[x] such that a = m(x)C[x]. For m(x), since C[x] is UFD, then there exists some c1, c2, · · · , ck ∈ C such that

m(x) = (x− c1)e1 · · · (x− ck)ek , ei ≥ 1.

Then we know that for all 1 ≤ i ≤ k, the ideal pi = (x− ci)C[x] ∈ SpecC[x] and

V (a) = V (m(x)C[x]) = {p1, · · · , pk}.

That is to say that nontrivial closed sets in Spec C[x] is a finite collection of prime ideals in C[x]. On the other hand,

for any finite collection of prime ideals {p1, · · · , pk} in C[x], for each 1 ≤ i ≤ k, there exists a unique ci ∈ C such that

pi = (x− ci)C[x]. Let m(x) = (x− c1) · · · (x− ck), and a = m(x)C[x], then

V (m(x)C[x]) = V (a) = {p1, · · · , pk}.

So we know that a subset U of Spec C[x] is open if and only if U = ∅ or Spec C[x]\U is a finite set. That is to say,

the topology on Spec C[x] is the finite completion topology.

d. For R[x], since R[x] is PID, then the ideal p of R[x] is prime if and only if p = 0 or p = f(x)R[x] for some monic

irreducible polynomial f(x) ∈ R[x] with degf(x) ≥ 1. Since only monic irreducible polynomials are of the form x − c
for some c ∈ R or x2 + ax+ b with a2 − 4b < 0 for some a, b ∈ R. Hence we know that

Spec R[x] = {p : p = 0 or p = (x− c)R[x] for c ∈ R or p = (x2 + ax+ b)R[x] for a, b ∈ R with a2 − 4b < 0}.
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Since R[x] is a PID, then for any ideal a ∈ R[x] with a 6= 0 and a 6= R[x], there exists a unique monic polynomial

m(x) ∈ R[x] such that a = m(x)R[x]. For m(x), since R[x] is UFD, then there exists some irreducible monic polynomials

p1(x), · · · , pk(x) ∈ R[x] such that

m(x) = p1(x)e1 · · · pk(x)ek , ei ≥ 1.

Then we know that for all 1 ≤ i ≤ k, the ideal pi = p1(x)R[x] ∈ SpecR[x] and

V (a) = V (m(x)R[x]) = {p1, · · · , pk}.

That is to say that nontrivial closed sets in Spec R[x] is a finite collection of prime ideals in R[x]. On the other hand,

for any finite collection of prime ideals {p1, · · · , pk} in R[x], for each 1 ≤ i ≤ k, there exists a unique monic irreducible

polynomial pi(x) ∈ R[x] such that pi = pi(x)R[x]. Let m(x) = p1(x) · · · pk(x), and a = m(x)R[x], then

V (m(x)R[x]) = V (a) = {p1, · · · , pk}.

So we know that a subset U of Spec R[x] is open if and only if U = ∅ or Spec R[x]\U is a finite set. That is to say,

the topology on Spec R[x] is the finite completion topology.

e. Claim I: The ideal p of Z[x] is prime if and only if p is one of the following cases:

i. p = 0.

ii. p = (p) for some prime number p in Z.

iii. p = (f(x)) for some primitive irreducible polynomial f(x) in Z[x].

iv. p = (p, f(x)) for some prime number p in Z and primitive irreducible polynomial f(x) in Z[x] such that f(x) is

also irreducible in Z[x]/pZ[x] ∼= Fp[x].

(⇐=) i. Since Z[x] is a domain, then p = 0 is prime in [Z][x].

ii. For any f(x), g(x) ∈ Z[x] such that f(x)g(x) ∈ p = (p) for some prime number p in Z, then

p|f(x)g(x)

Recall the Gauss’s Lemma:

Let A be a UFD, f(x) and g(x) be primitive plolynomials in A[X], then f(x)g(x) is also primitive.

Since p is a prime number in Z, by the Gauss’s Lemma, we know that p|f(x) or p|g(x) in Z[x], that is, f(x) ∈ p or

g(x) ∈ p. Hence p is prime in Z[x].

iii. For any g(x), h(x) ∈ Z[x] such that g(x)h(x) ∈ p = (f(x)) for some primitive irreducible polynomial f(x) in Z[x],

then

f(x)|g(x)h(x)

Since f(x) is irreducible in Z[x], then f(x) is also irreducible in Q[x]. Hence f(x)|g(x) or f(x)|h(x) in Q[x]. Without

loss of generality, assume f(x)|g(x) in Q[x], then there exists some m(x) ∈ Q[x] such that

g(x) = m(x)f(x).

Since f(x), g(x) ∈ Z[x] and f is primitive, by the Gauss’s Lemma, then m(x) ∈ Z[x], that is, f(x)|g(x) in Z[x]. Hence

p is prime in Z[x].

iv. p = (p, f(x)) for some prime number p in Z and primitive irreducible polynomial f(x) in Z[x] such that f(x) is also

irreducible in Z/pZ[x]. Let π : Z→ Z/pZ be the natural ring homomorphism, that is, for all n ∈ Z, we have

π(n) = n+ pZ.

Then π can induce a ring homomorphism π : Z[x] → Z/pZ[x] such that π|Z = π. Since Z/pZ is a field and f(x) is

irreducible on Z/pZ[x], then Z/pZ[x]/(f(x)) is a field extension of Z/pZ.
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Define the map Φ : Z[x]→ Z/pZ[x]/(f(x)) as: for all g(x) ∈ Z[x], we have

Φ(g(x)) = g(x) + (f(x)).

It is easy to see that Φ is a ring homomorphism. Now let’s look at the kernel of Φ. It is easy to see that p, f(x) ∈ ker Φ,

since ker Φ is an ideal of Z[x], then

(p, f(x)) ⊂ ker Φ.

On the other hand, for all g(x) ∈ ker Φ, then g(x) ∈ (f(x)). That is, there exists some h ∈ Z[x] such that

g(x) = f(x)h(x) = f(x)h(x)

Hence g(x)− f(x)h(x) = 0, that is, there exists some k(x) ∈ Z[x] such that

g(x)− f(x)h(x) = pk(x).

That is, g(x) = h(x)f(x) + k(x)p ∈ (p, f(x)). Hence we get

ker Φ = (p, f(x)).

By the first isomorphism theorem, then

Z/pZ[x]/(f(x)) ∼= Z[x]/(p, f(x)),

which is a field. Hence (p, f(x)) is maximal in Z[x], in particular, p = (p, f(x)) is prime in Z[x].

(=⇒) Now assume p is a prime ideal in Z[x]. If p = 0, we are done. Now assume p 6= 0. Let q = p
⋂

Z, then q is prime

in Z.

Case I: If q = 0. Let S = Z\{0}, then S is a multiplicative subset of Z[x] and p
⋂
S = ∅. Since S−1Z = Q, then

S−1Z[x] = Q[x].

Since S
⋂
p = ∅ and p is prime in Z[x], then S−1p is prime in S−1Z[x] = Q[x]. Since Q[x] is PID, then there exists

some irreducible polynomial f(x) ∈ Q[x] such that S−1p = (f(x)) in Q[x]. Then by multiplying some constant, without

loss of generality, we can assume f(x) ∈ Z[x]. Since p
⋂
S = ∅, then

p = (f(x))
⋂

Z[x].

That is, p = (f(x)) in Z[x], where f(x) is primitive irreducible polynomial in Z[x].

Case II: If q 6= 0. Since q is prime in Z, then there exists some prime number p in Z such that q = pZ, then pZ[x] ⊂ p.

By the forth isomorphism theorem, we know that p/pZ[x] is a prime ideal in Z[x]/pZ[x] = Z/pZ[x]. Since Z/pZ is a

field, then Z[x]/pZ[x] = Z/pZ[x] is PID.

Subcase I: p/pZ[x] = 0, then p = (p), we are done.

Subcase II: p/pZ[x] 6= 0, since p/pZ[x] is a prime ideal in Z[x]/pZ[x] = Z/pZ[x] which is PID, then there exists some

primitive irreducible polynomial f(x) ∈ Z[x] such that f(x) is irreducible in Z/pZ[x] and

p/pZ[x] = (f(x)).

Hence we get p = (p, f(x)).

In summary, we can conclude that the Claim I is true.
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