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1. Show that (Z/mZ) ® (Z/nZ) = 0 if m,n are coprime.

Proof. Since m and n are coprime, then there exists some s,t € Z such that
ms+nt =1.

Now for any simple tensor ¢ @ y € (Z/mZ) ® (Z/nZ), we have

ry = 1-(x®y)
(ms +nt) - (z®y)
= (ms)-(z®y)+(nt) (z©y)
(msz) @y + (ntr) @y
= (msz)®@y+x® (tny)
= 0®y+2zx0
= 040
= 0.
Since (Z/mZ) @ (Z/nZ) is generated by simple tensors, then we have

(Z/mZ)® (Z/nZ) = 0.

2. Let A be aring, a an ideal, M an A-module. Show that (A/a) ® 4 M is isomorphic to M/aM.
Proof. Define f: AJax M — M/aM as: for all x + a € A/a and m € M, we have
flx+a,m)=zm+aM.

Claim I: f is well defined.
In fact, for all z+a,y+a € A/aand m € M such that z+a = y+a, then z—y € a. Hence xm = ym = (x—y)m € aM,
in particular,
zm + aM = ym = all.
That is, f(z 4+ a,m) = f(y + a,m). So f is well defined.
Claim II: f is an A-bilinear map.
In fact, forall z€ A, x +a,y+a € A/a and m,n € M, then

fGE@E+a)+(y+a)m) = flzz+y+am)
= (zz+ym+aM

= zem+ym+aM
1
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= (zzm+aM) + (ym +aM)

= z(zm+ aM)+ (ym + aM)

= zf(x+a,m)+ f(y+a,m).
flx+a,zm+n) = z(zm+n)+aM

= zxm+zn+aM

= (zam+aM) + (zn+ aM)

= z(@m+aM)+ (zn+aM)

= zf(z+aM,m)+ f(z+a,n).

Hence f is an A-bilinear map.

Since f is an A-bilinear map, by the universal property of tensor product, then there exists a unique A-module
homomorphism ¢ : A/a®4 M — M/aM such that for all x € A and m € M, we have

o((x +a) @m) =axm + aM.
Define another map ¢ : M/aM — A/a®4 M as: for all m + aM, we have
Y(m+aM)=(1+a)®@m

Claim IITI: ) is well defined.
In fact, for all m,n € M such that m —n € aM, then there exists some a € a and | € M such that m —n = al. Hence
Ypm+aM) = (1+a)@m
= (I1+a)®(al+n)
1I4+a)®@(@)+(1+a)®@n
= [al+a)]@I+(1+a)®@n
= (a+a)@l+(1+a)®@n
= 0®I+(1+a)®n

= 0+(1+a)®@n

= (1+a)®n

= YP(n+aM).

Claim IV: 9 is an A-module homomorphism.
In fact, for all m,n € M and x € A, we have
Y(@m+aM)+n+aM) = flem+n+aM)

= (I14+a)®(xm+mn)
= (I4+a)@@m)+(1+a)®n

= z(l+a)@m+(1+a)®n
= azp(m+aM)+(n+al).

Hence 9 is an A-module homomorphism.
Claim V: ¥ o ¢ = Id.
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In fact for all simple tensor (x +a) ® m €€ A/a®4 M, then

Yop((x+a)@m) = ¢(exm+aM)
= (1+a)® (zm)
— Bl+a]em
= (r+a)@m.
Since A/a ®4 M is generated by simple tensors, then ¢ o = Id on A/a®4 M.
Claim VI: o = Id.
For all m + aM € M/aM, then
pot(m+aM) = ¢((1+a)®@m)
= Im+aM
= m+aM.
Hence p ot = Id on M/aM.
In summary, we know that ¢ and ¢ are A-module isomorphisms. Hence we know that (A/a) ® 4 M is isomorphic to

M/aM.
]

3. Let A be a local ring, M and N finitely generated A-modules. Prove that if M ® 4 N =0, then M =0 or N = 0.

Proof. Since A is a local ring, then A has a unique maximal ideal m in A. Since m is the unique maximal ideal in A,
then the Jacobson radical J of A is equal to m and k = A/m is a field.
For any A-module L, let Ly = k ® 4 L. By the result of the Problem 2, then

Ly=k®sL=A/m@,L=L/mL.

Then Ly is a k-vector space. Since M ® 4 N = 0, then (M ®4 N); = 0. On the other hand, since k ® k = k, then
we know that
(M@aN) = k®a(M®aN)
= k®@aM®aN
= M®ak®aN
= M®as(k®rk)®a N
= (M®ak)®,(k®aN)
= My ® Ny.

Hence My, ®i Ni = 0. Since M}, ®j, Ni, is a k-vector space of dimension dimM}, - dim/N. Hence we must have M = 0
or Nj, = 0. Without loss of generality, we assume My =0=k ®4 M = M/mM. Hence we get

M = wmM.

Since J = m and M, N are finitely generated A-modules, by the Nakayama’s Lemma, we know that M = 0.
O

4. Let M;(i € I) be any family of A-modules, and let M be their direct sum. Prove that M is flat <= each M; is flat.
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Proof. (=) Assume M = @MZ is flat. For all i € I, define m; : M — M; as the i-th projection, that is, for all
il
(mj)jer € M, we have
m((my)jer) = mi.
Let e; : M; — M as the i-th embedding, that is, for all m; € M;, let m; = m; if ¢ = j and m; = 0 if i # j, then we

have
ei(m;) = (m;)jer-
Now for any A-modules N and N’ with any injective A-module homomorphism f : N — N’. Since M is flat, then
fR1ly :N®aM — N ®4 M is injective.
Let f: N — f(N) C N’, then f is bijective. Since M is flat, then
fRly: N®aM— f(N)®a M is injective.
Since
N@aM=Neos(@M)=EPN o), and N @sM=N o M)=EPWN @4 M)
iel iel icl icl
Then
In®e; : N®a M; - N ®4 M is injective.
So we get
(f@lm)o(In®e;): N®a M; — N ®4 M is injective.
Now for f® 1y, : N ®a4 M; — N’ ®4 M;, we want to show that f ® 1y, is injective, since f ® 1y, (N ®4 M;) C
f(N) ®4 M;, then it suffices to show f ® 1, : N ®4 M; — f(N') ®4 M; is injective. Since 157, = m; o 1s o e;, then
Folm, =y @m)o(f@1y)o(ly ®e).
Hence f ® 1p, is injective. So we know that f @ 1p7, : N ®4 M; — N’ ® 4 M; is injective. Therefore, we know that
M; is flat for all ¢ € 1.
(«<=) Assume that for all i € I, M; is flat. Now for any A-modules N and N’ with any injective A-module
homomorphism f : N — N’. Since M; is flat, then
f®1y, : N®a M; — N ®4 M; is injective.

Now consider f @ 1y : N ®4 M — N’ ®4 M, for any Z n; ® (mg)iel € kerf ® 1,4, that is,

finite

f®1M<an 1€I>_0

finite

Then

0 = f®1M<ZnJ z@l)

finite

= Z f ’I’L] zEI

finite

finite icl

finite icl
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Then we know that

(f®1n,) (an®m>0, Viel.

finite

Since f ® 1y, is injective, then

Y mjeml =0, Viel

finite

an ZEI*O

finite

Which implies that

Hence f ® 1, is injective. Therefore, M is flat.

5. Let Afz] be the ring of polynomials in one indeterminate over a ring A. Prove that A[z] is a flat A-algebra.

Proof. We know that A[z] is a ring such that A is a subring of Alz], which implies that A[z] is an A-module. So for all
i >0, Az" is an A-module generated by z° in Alz].
Claim I: Az? = A as A-modules.

Define ¢ : A — Ax' as ¢(a) = ax’, it is easy to see that ¢ is a bijective A-module homomorphism (Since ax® = 0 iff
a=0),s0o Ax’ =2 A as A-modules. Since A is a flat A-module, then Az is also flat as A-module for all i > 0. On the
other hand, since

Alz] = @Axi, as A-modules.

By the result of the Problem 4, we know that A[x] is a flat A-module. Let ¢ : A — Alz] be the embedding of rings,
that is, i(a) = a for all a € A, then A[z] is an A-algebra. Hence we know that Alx] is a flat A-algebra.
]

6. For any A-module M, let M[x] denote the set of all polynomials in « with coefficients in M, that is to say expressions

of the form
mo+mix+---+mpz", m; € M.

Defining the product of an element of Afz] and an element of Mz] in the obvious way, show that M|z] is an
Alz]-module. Show that M[z] = Alx] ®4 M.

Proof. For any Zalx € Alz] and Zmzx € Mx], let
=0 =0

t T t+r
a;xr . m;x = A5, M5, T .
=0 =0 =0 \Jj1t+j2=1

Claim I: M[z] is an A[z]-module
It is easy to see that M|[z] is an additive group, and the above scalar multiplication by A[z] is well defined. For all

Z mx’ € M[z], we have

1- (i mixi> = imixi.
i=0 i=0
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It is easy to see that the distribution laws hold for this scalar multiplication. Now we only need to check the
t

S
associativity law. In fact, for any Z a;x’, Z biz' € Alz] and any Z mgz® € M[z], we know that

i=0 i=0

t s T t+a T
E a;x" E b,z || - g m;x’ = a; b, | 2| - E m;x’
i=0 i=0 i=0 31+32 i i=0

t+s+7‘

- a]leZ mjs | @
4+_73 4 1+]2_J4
t+s+7‘

_ i
- ajy b]z Mgy |

71+72+]3 i

s r s+r
(wa’) . <Zmlmz> = Z Z bj,m s, Z
i=0 i=0

=0 \J2+Js=t

(iax>[<2z}x><§mx>] = <Za ) i > bymy, | 2

i=0 i=0 i=0 \ jo+js=i

f+9+r

- ajy b]2m]3 T

Jitja=t J2+Jj3=js3

t+a+r

ajlbjzmjz T
31+J2+]3 i

K_O ) ()] (35e)

Define the map ¢ : A[z] x M — M|z] as: for all Zaixi € Alz] and all m € M, we have
=0

® <Z a;z’, m) = Z(aim)xi

=0 =0

In summary, we know that M|[z] is an A[z]-module.
Claim II: M[z] = Alx] ®4 M as A[x]-modules.

It is easy to see that ¢ is well defined an A-bilinear map, by the universal property of tensor product, then there
t

exists a unique A-module homomorphism @ : Alx] ®4 M — M|x] such that for all Z a;x' € Alr] and all m € M, we

o ((Z aixi> ® m) = Z(aim)xi

Now we need to check that ® is an A[z]-module homomorphism, it suffices to check the A[z]-linearity for the simple

have

tensors. In fact, for all Z a;x Z bzt € Alz] and m € M, we have
1=0

(e () o)) = (50 () o)



HW 2 7

t+s
(Z Z bj,a;j, 2| em

J1+J2=1

7
E: bjlajz mx

J1t+je2=i

7
E: bjlaj2 T

Il Il
— IM7F
i T °© ®
(e} w /—\
=
+
=
N

3

Il
f\fM\ﬁ
s
g&

Also the additivity follows from A-module homomorphism. Hence ® is an A[z]-module homomorphism. Define

U: Mz] — Alz] ®4 M as: for all Zmixi € M|z], we have
i=0

v (Zr: mixi> = ZT:I’ ® m;
i=0 i=0

It is easy to see that U is a well defined additive group homomorphism, now we need to check A[z]-linearity. For any

Zazx € Alx] and Zmza: € M[z], then

i=0 \j1+jz=i

t+r
= sz® Z Ay MM,
=0 J1+j2=1
t+r
- Z Z IZ@(ajlmJé)
=0 ji-+ja=i
t+r
= Z Z ah ®mj2
1=0 j1+j2=1
t+r
= Z Z a; x]l Ijz ®m32
=0 j1+j2=1
t+r
= Z Z ahle sz ®mj2)
1=0 j1+j2=1t
t+r

= Z Z (ajlle)'q/((mjzzjz)

i=0 ji+ja=i
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Hence ¥ is A[z]-module homomorphism. Now for any Z mx’ € M[z], then
=0

doW <imwi> = & (ixi®mi>
i=0 i=0
= i (2" @ my)
i=0
i=0

That is, ® o ¥ = Id. Now for any Zaixi € Alz] and all m € M, we have
=0

()

U <Z(aim)xi>

=0

T
= Z ' @ (a;m)
i=0

= Z(aixi) ®m

=0

(Z(amﬂ) ® m.

=0

Which implies that ¥ o & = Id. Therefore, we know that ® and ¥ are A[x]-module isomorphisms, in particular,
Mz] = Alz) ® 4 M as Alz]-modules.
|

15. Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all
prime ideals of A which contain E. Prove that

a. If a is the ideal generated by E, then V(E) = V(a) = V(\/a).

b. V(0) =X, V(1) =0.

c. If (F;)iers is any family of subsets of A, then

1% (U Ez-> =[V(E).
i€l iel
d. V(ab) =V(ab) = V(a) JV(b) for any ideals a,b of A.
Proof. a. Since E C a C v/a, then
V(va) C V(a) C V(E).

Now for any prime ideal p of A such that E C p, by the definition of a, then a C p, that is, p € V(a). Also since
a C p, then /a C /p. Since p is prime, then /p = p. Hence /a C p, that is, p € V(/p).

Therefore, we know that

V(va=V(a) = V(E).
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b. For any prime ideal p of A, we know that 0 € p, then p € V(0). Hence
V(0) = X.

For V (1), we must have V(1) = 0, otherwise, there exists some prime ideal p of A such that 1 € p, which implies that

p = A, contradiction. Hence
V(1) =0.

c. Since for ¢ € I, we have E; C U E;, then
i€l

V(UEOCV@& Viel.
el
Hence
V(U&)CﬂV@J
el el

On the other hand, for all p € ﬂ V(E;), then
iel

peV(E;), Viel.
That is,
E;Cyp, Viel.

Hence

UE:c».

iel

That is, p e V (U E2> Therefore, we know that
iel

V(UE)zﬂV@J
el icl
d. For any ideals a,b of A, then
abCaf)bCa, and abCa[|bChb.
So we have
V(a) C V(a()b) C V(ab), and V(a)C V(a[)|b)C V(ab).
Hence
V(a) JV(b) C V(a[)b) C V(ab)

Now for any p € V(ab), then ab C p and p is prime ideal, which implies that a C p or b C p, that is, p € V(a) |V (b).

Therefore, we get

V()| JV(b) = V(a[)b) = V(ab)

16. Draw pictures of Spec (Z), Spec (R), Spec (Clz]), Spec (R[z]) and Spec (Z[z]).
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Proof. a. For Z which is a PID, the ideal p of Z is prime if and only if p = 0 or p = pZ for some prime number p in Z,
that is,
Spec Z = {pZ : p is a prime number in Z or p = 0}

Since Z is a PID, then for any ideal a € Z with a # 0 and a # Z, there exists a unique m > 2 € N such that a = mZ.

For m, by the fundamental theorem of arithmetic, there exists a unique prime factorization
m=p{"--pik, e > 1.
Then we know that for all 1 < i < k, the ideal p; = p;Z € SpecZ and
V(a) =V (mZ) ={p1, -, px}.

That is to say that nontrivial closed sets in Spec Z is a finite collection of prime ideals in Z. On the other hand, for
any finite collection of prime ideals {py,--- ,pr} in Z, for each 1 < i < k, there exists a unique prime number p; € Z
such that p; = p;Z. Let m = py -+ - pg, and a = mZ, then

V(mZ) = V(Cl) = {pla e 7pk}'

So we know that a subset U of Spec Z is open if and only if U = () or Spec Z\U is a finite set. That is to say, the
topology on Spec Z is the finite completion topology.
b. For R, since R is a field, then only prime ideal in R is 0, that is,

Spec R = {0}.

The open sets of Spec R are () and {0}, and the topology on Spec R is the discrete topology.
c. For C[z], since C[z] is PID, then the ideal p of C[z] is prime if and only if p = 0 or p = f(z)CJz] for some
monic irreducible polynomial f(z) € C[z] with degf(z) > 1. Since C is algebraic closed, then only monic irreducible
polynomials are of the form x — ¢ for some ¢ € C. Hence we know that

Spec Clz] ={p:p=0or p = (z — ¢)C[z] for some c € C}.

Since Clz] is a PID, then for any ideal a € C[z] with a # 0 and a # Clz], there exists a unique monic polynomial
m(z) € C[z] such that a = m(x)C[z]. For m(z), since C[z] is UFD, then there exists some ¢y, ¢, - , ¢, € C such that
m(z) =(x—c) - (x—cp), e >1.

Then we know that for all 1 < i <k, the ideal p; = (z — ¢;)C[z] € SpecC|z] and
V(a) = V(m(x)Clz]) = {p1,--- . px}-

That is to say that nontrivial closed sets in Spec CJz] is a finite collection of prime ideals in C[z]. On the other hand,
for any finite collection of prime ideals {py,---,px} in C[z], for each 1 < i < k, there exists a unique ¢; € C such that
p; = (x — ¢;)C[z]. Let m(z) = (x —¢1) -+ (x — ¢x), and a = m(x)Clz], then

V(m(x)Clz]) = V(a) = {p1,--- . px}-

So we know that a subset U of Spec C|z] is open if and only if U = @) or Spec C[z]\U is a finite set. That is to say,
the topology on Spec CJz] is the finite completion topology.
d. For R]z], since R[z] is PID, then the ideal p of R[z] is prime if and only if p = 0 or p = f(z)R|[z] for some monic
irreducible polynomial f(z) € R[z] with degf(z) > 1. Since only monic irreducible polynomials are of the form x — ¢

for some ¢ € R or 22 4 ax + b with a®? — 4b < 0 for some a,b € R. Hence we know that

Spec R[z] = {p:p=0orp = (x —c)R[z] for c€ R or p = (2% + ax + b)R[z] for a,b € R with a® — 4b < 0}.
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Since R[z] is a PID, then for any ideal a € R[z] with a # 0 and a # R]z], there exists a unique monic polynomial
m(z) € R[z] such that a = m(x)R[z]. For m(z), since R[z] is UFD, then there exists some irreducible monic polynomials
p1(z), -, pr(z) € Rlz] such that

m(z) = pr(x) - pr()™, e > 1

Then we know that for all 1 <4 <k, the ideal p; = p1(x)R[z] € SpecR|[z] and

V(a) = V(m(z)R[z]) = {p1,--- ,px}-

That is to say that nontrivial closed sets in Spec R[z] is a finite collection of prime ideals in R[z]. On the other hand,
for any finite collection of prime ideals {py,--- ,pr} in R[z], for each 1 < i < k, there exists a unique monic irreducible

polynomial p;(z) € R[z] such that p; = p;(z)R[z]. Let m(z) = p1(z)-- - pr(x), and a = m(x)R[z], then

V(m(z)Rz]) = V(a) = {p1,--- ,px}-

So we know that a subset U of Spec R]z] is open if and only if U = §) or Spec R[z]\U is a finite set. That is to say,
the topology on Spec R[z] is the finite completion topology.
e. Claim I: The ideal p of Z[x] is prime if and only if p is one of the following cases:
i p=0.
ii. p = (p) for some prime number p in Z.
ili. p = (f(x)) for some primitive irreducible polynomial f(x) in Z[z].
iv. p = (p, f(x)) for some prime number p in Z and primitive irreducible polynomial f(z) in Z[z] such that f(x) is
also irreducible in Z[z]/pZ[z] = F,[z].
(«<=) i. Since Z[z] is a domain, then p = 0 is prime in [Z][z].
ii. For any f(z),g(x) € Z[z] such that f(z)g(x) € p = (p) for some prime number p in Z, then

plf(z)g(z)

Recall the Gauss’s Lemma:
Let A be a UFD, f(x) and g(z) be primitive plolynomials in A[X], then f(z)g(x) is also primitive.

Since p is a prime number in Z, by the Gauss’s Lemma, we know that p|f(x) or p|g(z) in Z[z], that is, f(z) € p or
g(x) € p. Hence p is prime in Z[z].
iii. For any g(x), h(z) € Z[x] such that g(x)h(xz) € p = (f(x)) for some primitive irreducible polynomial f(x) in Z[x],
then

f(@)lg(@)h(x)
Since f(x) is irreducible in Z[z], then f(z) is also irreducible in Q[z]. Hence f(z)|g(z) or f(z)|h(z) in Q[z]. Without

loss of generality, assume f(z)|g(z) in Q[z], then there exists some m(z) € Q[z] such that

g(x) = m(z) f(z).

Since f(x),g(x) € Z[z] and f is primitive, by the Gauss’s Lemma, then m(x) € Z[z], that is, f(x)|g(x) in Z[z]. Hence
p is prime in Z[x].
iv. p = (p, f(z)) for some prime number p in Z and primitive irreducible polynomial f(z) in Z[x] such that f(z) is also

irreducible in Z/pZ[x]. Let 7 : Z — Z/pZ be the natural ring homomorphism, that is, for all n € Z, we have
w(n) =n+ pZ.

Then 7 can induce a ring homomorphism 7 : Z[z] — Z/pZ[z] such that 7|z = 7. Since Z/pZ is a field and f(z) is
irreducible on Z/pZ[x], then Z/pZ[x]/(f(z)) is a field extension of Z/pZ.
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Define the map @ : Z[z] — Z/pZ[z]/(f(x)) as: for all g(x) € Z[z], we have

D(g(x)) = g(x) + (f(z)).
It is easy to see that @ is a ring homomorphism. Now let’s look at the kernel of ®. It is easy to see that p, f(z) € ker @,
since ker ® is an ideal of Z[z], then

(p, f(x)) C ker ®.

On the other hand, for all g(z) € ker @, then g(z) € (f(z)). That is, there exists some h € Z[z] such that
9(x) = f(@)h(z) = f(z)h(z)
Hence g(z) — f(2)h(z) = 0, that is, there exists some k(z) € Z[z] such that
9(x) — f(@)h(z) = pk(z).
That is, g(z) = h(z)f(z) + k(z)p € (p, f(x)). Hence we get

ker ® = (p, f(x)).

By the first isomorphism theorem, then

Z/pZ[a]/(f(2)) = Z[x]/(p, f(2)),

which is a field. Hence (p, f(x)) is maximal in Z[z], in particular, p = (p, f(x)) is prime in Z[z].
(=) Now assume p is a prime ideal in Z[z]. If p = 0, we are done. Now assume p # 0. Let q = p [ Z, then q is prime
in Z.
Case I: If ¢ = 0. Let S = Z\{0}, then S is a multiplicative subset of Z[z] and p()S = 0. Since S~'Z = Q, then
S™1Z[z] = Q[z].
Since S(p = 0 and p is prime in Z[z], then S™1p is prime in S™'Z[z] = Q[z]. Since Q[z] is PID, then there exists

some irreducible polynomial f(z) € Q[x] such that S~p = (f(x)) in Q[z]. Then by multiplying some constant, without
loss of generality, we can assume f(z) € Z[z]. Since p[)S = 0}, then

p=(f(2)() Zl].

That is, p = (f(z)) in Z[z], where f(x) is primitive irreducible polynomial in Z[z].

Case II: If q # 0. Since q is prime in Z, then there exists some prime number p in Z such that q = pZ, then pZ[z] C p.
By the forth isomorphism theorem, we know that p/pZ[z] is a prime ideal in Z[z]/pZ[x] = Z/pZ[x]. Since Z/pZ is a
field, then Z[x]/pZ]x] = Z/pZ[z] is PID.

Subcase I: p/pZ[z] = 0, then p = (p), we are done.

Subcase II: p/pZ[z] # 0, since p/pZ[x] is a prime ideal in Z[z]/pZ[z] = Z/pZ]x] which is PID, then there exists some

primitive irreducible polynomial f(z) € Z[x] such that f(z) is irreducible in Z/pZ[x] and
p/pZiz] = (f(2)).

Hence we get p = (p, f(z)).
In summary, we can conclude that the Claim I is true.
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