HW 2

MINGFENG ZHAO

October 04, 2012

1. Show that $(\mathbf{Z}/m\mathbf{Z}) \otimes (\mathbf{Z}/n\mathbf{Z}) = 0$ if m, n are coprime.

Proof. Since m and n are coprime, then there exists some $s, t \in \mathbb{Z}$ such that

$$ms + nt = 1$$

Now for any simple tensor $x \otimes y \in (\mathbf{Z}/m\mathbf{Z}) \otimes (\mathbf{Z}/n\mathbf{Z})$, we have

$$x \otimes y = 1 \cdot (x \otimes y)$$

= $(ms + nt) \cdot (x \otimes y)$
= $(ms) \cdot (x \otimes y) + (nt) \cdot (x \otimes y)$
= $(msx) \otimes y + (ntx) \otimes y$
= $(msx) \otimes y + x \otimes (tny)$
= $0 \otimes y + x \otimes 0$
= $0 + 0$
= 0 .

Since $(\mathbf{Z}/m\mathbf{Z}) \otimes (\mathbf{Z}/n\mathbf{Z})$ is generated by simple tensors, then we have

$$(\mathbf{Z}/m\mathbf{Z})\otimes(\mathbf{Z}/n\mathbf{Z})=0.$$

2. Let A be a ring, \mathfrak{a} an ideal, M an A-module. Show that $(A/\mathfrak{a}) \otimes_A M$ is isomorphic to $M/\mathfrak{a}M$.

Proof. Define $f: A/\mathfrak{a} \times M \to M/\mathfrak{a}M$ as: for all $x + \mathfrak{a} \in A/\mathfrak{a}$ and $m \in M$, we have

$$f(x + \mathfrak{a}, m) = xm + \mathfrak{a}M$$

<u>Claim I</u>: f is well defined.

In fact, for all $x + \mathfrak{a}$, $y + \mathfrak{a} \in A/\mathfrak{a}$ and $m \in M$ such that $x + \mathfrak{a} = y + \mathfrak{a}$, then $x - y \in \mathfrak{a}$. Hence $xm = ym = (x - y)m \in \mathfrak{a}M$, in particular,

$$xm + \mathfrak{a}M = ym = \mathfrak{a}M.$$

That is, $f(x + \mathfrak{a}, m) = f(y + \mathfrak{a}, m)$. So f is well defined. Claim II: f is an A-bilinear map.

In fact, for all $z \in A$, $x + \mathfrak{a}$, $y + \mathfrak{a} \in A/\mathfrak{a}$ and $m, n \in M$, then

$$\begin{aligned} f(z(x+\mathfrak{a})+(y+\mathfrak{a}),m) &= f(zx+y+\mathfrak{a},m) \\ &= (zx+y)m+\mathfrak{a}M \\ &= zxm+ym+\mathfrak{a}M \end{aligned}$$

$$= (zxm + \mathfrak{a}M) + (ym + \mathfrak{a}M)$$

$$= z(xm + \mathfrak{a}M) + (ym + \mathfrak{a}M)$$

$$= zf(x + \mathfrak{a}, m) + f(y + \mathfrak{a}, m).$$

$$f(x + \mathfrak{a}, zm + n) = x(zm + n) + \mathfrak{a}M$$

$$= zxm + xn + \mathfrak{a}M$$

$$= (zxm + \mathfrak{a}M) + (xn + \mathfrak{a}M)$$

$$= z(xm + \mathfrak{a}M) + (xn + \mathfrak{a}M)$$

$$= zf(x + \mathfrak{a}M, m) + f(x + \mathfrak{a}, n)$$

Hence f is an A-bilinear map.

Since f is an A-bilinear map, by the universal property of tensor product, then there exists a unique A-module homomorphism $\varphi : A/\mathfrak{a} \otimes_A M \to M/\mathfrak{a}M$ such that for all $x \in A$ and $m \in M$, we have

$$\varphi((x+\mathfrak{a})\otimes m)=xm+\mathfrak{a}M.$$

Define another map $\psi: M/\mathfrak{a}M \to A/\mathfrak{a} \otimes_A M$ as: for all $m + \mathfrak{a}M$, we have

$$\psi(m + \mathfrak{a}M) = (1 + \mathfrak{a}) \otimes m.$$

<u>Claim III</u>: ψ is well defined.

In fact, for all $m, n \in M$ such that $m - n \in \mathfrak{a}M$, then there exists some $a \in \mathfrak{a}$ and $l \in M$ such that m - n = al. Hence

$$\begin{split} \psi(m + \mathfrak{a}M) &= (1 + \mathfrak{a}) \otimes m \\ &= (1 + \mathfrak{a}) \otimes (al + n) \\ &= (1 + \mathfrak{a}) \otimes (al) + (1 + \mathfrak{a}) \otimes n \\ &= [a(1 + \mathfrak{a})] \otimes l + (1 + \mathfrak{a}) \otimes n \\ &= (a + \mathfrak{a}) \otimes l + (1 + \mathfrak{a}) \otimes n \\ &= 0 \otimes l + (1 + \mathfrak{a}) \otimes n \\ &= 0 + (1 + \mathfrak{a}) \otimes n \\ &= (1 + \mathfrak{a}) \otimes n \\ &= \psi(n + \mathfrak{a}M). \end{split}$$

<u>Claim IV</u>: ψ is an A-module homomorphism.

In fact, for all $m, n \in M$ and $x \in A$, we have

$$\begin{split} \psi(x(m+\mathfrak{a}M)+n+\mathfrak{a}M) &= f(xm+n+\mathfrak{a}M) \\ &= (1+\mathfrak{a}) \otimes (xm+n) \\ &= (1+\mathfrak{a}) \otimes (xm) + (1+\mathfrak{a}) \otimes n \\ &= x(1+\mathfrak{a}) \otimes m + (1+\mathfrak{a}) \otimes n \\ &= x\psi(m+\mathfrak{a}M) + \psi(n+\mathfrak{a}M). \end{split}$$

Hence ψ is an A-module homomorphism. <u>Claim V</u>: $\psi \circ \varphi = Id$. In fact for all simple tensor $(x + \mathfrak{a}) \otimes m \in A/\mathfrak{a} \otimes_A M$, then

$$\psi \circ \varphi((x + \mathfrak{a}) \otimes m) = \psi(xm + \mathfrak{a}M)$$
$$= (1 + \mathfrak{a}) \otimes (xm)$$
$$= [x(1 + \mathfrak{a})] \otimes m$$
$$= (x + \mathfrak{a}) \otimes m.$$

Since $A/\mathfrak{a} \otimes_A M$ is generated by simple tensors, then $\psi \circ \varphi = Id$ on $A/\mathfrak{a} \otimes_A M$. Claim VI: $\varphi \circ \psi = Id$.

For all $m + \mathfrak{a}M \in M/\mathfrak{a}M$, then

$$\begin{split} \varphi \circ \psi(m + \mathfrak{a}M) &= \varphi((1 + \mathfrak{a}) \otimes m) \\ &= 1m + \mathfrak{a}M \\ &= m + \mathfrak{a}M. \end{split}$$

Hence $\varphi \circ \psi = Id$ on $M/\mathfrak{a}M$.

In summary, we know that φ and ψ are A-module isomorphisms. Hence we know that $(A/\mathfrak{a}) \otimes_A M$ is isomorphic to $M/\mathfrak{a}M$.

3. Let A be a local ring, M and N finitely generated A-modules. Prove that if $M \otimes_A N = 0$, then M = 0 or N = 0.

Proof. Since A is a local ring, then A has a unique maximal ideal \mathfrak{m} in A. Since \mathfrak{m} is the unique maximal ideal in A, then the Jacobson radical J of A is equal to \mathfrak{m} and $k = A/\mathfrak{m}$ is a field.

For any A-module L, let $L_k = k \otimes_A L$. By the result of the Problem 2, then

$$L_k = k \otimes_A L = A/\mathfrak{m} \otimes_A L \cong L/\mathfrak{m}L.$$

Then L_k is a k-vector space. Since $M \otimes_A N = 0$, then $(M \otimes_A N)_k = 0$. On the other hand, since $k \otimes_k k = k$, then we know that

$$(M \otimes_A N)_k = k \otimes_A (M \otimes_A N)$$

= $k \otimes_A M \otimes_A N$
= $M \otimes_A k \otimes_A N$
= $M \otimes_A (k \otimes_k k) \otimes_A N$
= $(M \otimes_A k) \otimes_k (k \otimes_A N)$
= $M_k \otimes_k N_k.$

Hence $M_k \otimes_k N_k = 0$. Since $M_k \otimes_k N_k$ is a k-vector space of dimension $\dim M_k \cdot \dim N_k$. Hence we must have $M_k = 0$ or $N_k = 0$. Without loss of generality, we assume $M_k = 0 = k \otimes_A M \cong M/\mathfrak{m}M$. Hence we get

$$M = \mathfrak{m}M.$$

Since $J = \mathfrak{m}$ and M, N are finitely generated A-modules, by the Nakayama's Lemma, we know that M = 0.

4. Let $M_i (i \in I)$ be any family of A-modules, and let M be their direct sum. Prove that M is flat \iff each M_i is flat.

MINGFENG ZHAO

Proof. (\Longrightarrow) Assume $M = \bigoplus_{i \in I} M_i$ is flat. For all $i \in I$, define $\pi_i : M \to M_i$ as the *i*-th projection, that is, for all $(m_j)_{j \in I} \in M$, we have

$$\pi((m_j)_{j\in I}) = m_i.$$

Let $e_i: M_i \to M$ as the *i*-th embedding, that is, for all $m_i \in M_i$, let $m_j = m_i$ if i = j and $m_j = 0$ if $i \neq j$, then we have

$$e_i(m_i) = (m_j)_{j \in I}$$

Now for any A-modules N and N' with any injective A-module homomorphism $f: N \to N'$. Since M is flat, then

 $f \otimes 1_M : N \otimes_A M \to N' \otimes_A M$ is injective.

Let $\overline{f}: N \to f(N) \subset N'$, then \overline{f} is bijective. Since M is flat, then

$$\overline{f} \otimes 1_M : N \otimes_A M \to f(N) \otimes_A M$$
 is injective.

Since

$$N \otimes_A M = N \otimes_A (\bigoplus_{i \in I} M_i) = \bigoplus_{i \in I} (N \otimes_A M_i), \quad \text{and} \quad N' \otimes_A M = N' \otimes_A (\bigoplus_{i \in I} M_i) = \bigoplus_{i \in I} (N' \otimes_A M_i)$$

Then

 $1_N \otimes e_i : N \otimes_A M_i \to N \otimes_A M$ is injective.

So we get

$$(f \otimes 1_M) \circ (1_N \otimes e_i) : N \otimes_A M_i \to N' \otimes_A M$$
 is injective

Now for $f \otimes 1_{M_i} : N \otimes_A M_i \to N' \otimes_A M_i$, we want to show that $f \otimes 1_{M_i}$ is injective, since $f \otimes 1_{M_i}(N \otimes_A M_i) \subset f(N) \otimes_A M_i$, then it suffices to show $\overline{f} \otimes 1_{M_i} : N \otimes_A M_i \to f(N') \otimes_A M_i$ is injective. Since $1_{M_i} = \pi_i \circ 1_M \circ e_i$, then

$$\overline{f} \otimes 1_{M_i} = (1_{f(N)} \otimes \pi_i) \circ (\overline{f} \otimes 1_M) \circ (1_N \otimes e_i).$$

Hence $\overline{f} \otimes 1_{M_i}$ is injective. So we know that $f \otimes 1_{M_i} : N \otimes_A M_i \to N' \otimes_A M_i$ is injective. Therefore, we know that M_i is flat for all $i \in I$.

(\Leftarrow) Assume that for all $i \in I$, M_i is flat. Now for any A-modules N and N' with any injective A-module homomorphism $f: N \to N'$. Since M_i is flat, then

$$f \otimes 1_{M_i} : N \otimes_A M_i \to N' \otimes_A M_i$$
 is injective

Now consider $f \otimes 1_M : N \otimes_A M \to N' \otimes_A M$, for any $\sum_{\text{finite}} n_j \otimes (m_i^j)_{i \in I} \in \ker f \otimes 1_M$, that is,

$$f \otimes 1_M \left(\sum_{\text{finite}} n_j \otimes (m_i^j)_{i \in I} \right) = 0$$

Then

$$0 = f \otimes 1_M \left(\sum_{\text{finite}} n_j \otimes (m_i^j)_{i \in I} \right)$$
$$= \sum_{\text{finite}} f(n_j) \otimes (m_i^j)_{i \in I}$$
$$= \left(\sum_{\text{finite}} f(n_j) \otimes m_i^j \right)_{i \in I}$$
$$= \left((f \otimes 1_{M_i}) \left(\sum_{\text{finite}} n_j \otimes m_i^j \right) \right)_{i \in I}$$

Then we know that

$$(f \otimes 1_{M_i}) \left(\sum_{\text{finite}} n_j \otimes m_i^j \right) = 0, \quad \forall i \in I.$$

Since $f \otimes 1_{M_i}$ is injective, then

$$\sum_{\text{finite}} n_j \otimes m_i^j = 0, \quad \forall i \in I.$$

Which implies that

$$\sum_{\text{finite}} n_j \otimes (m_i^j)_{i \in I} = 0.$$

Hence $f \otimes 1_M$ is injective. Therefore, M is flat.

5. Let A[x] be the ring of polynomials in one indeterminate over a ring A. Prove that A[x] is a flat A-algebra.

Proof. We know that A[x] is a ring such that A is a subring of A[x], which implies that A[x] is an A-module. So for all $i \ge 0$, Ax^i is an A-module generated by x^i in A[x].

<u>Claim I</u>: $Ax^i \cong A$ as A-modules.

Define $\phi : A \to Ax^i$ as $\phi(a) = ax^i$, it is easy to see that ϕ is a bijective A-module homomorphism (Since $ax^i = 0$ iff a = 0), so $Ax^i \cong A$ as A-modules. Since A is a flat A-module, then Ax^i is also flat as A-module for all $i \ge 0$. On the other hand, since

$$A[x] = \bigoplus_{i=0}^{\infty} Ax^i$$
, as A-modules.

By the result of the Problem 4, we know that A[x] is a flat A-module. Let $i : A \to A[x]$ be the embedding of rings, that is, i(a) = a for all $a \in A$, then A[x] is an A-algebra. Hence we know that A[x] is a flat A-algebra.

6. For any A-module M, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form

$$m_0 + m_1 x + \dots + m_r x^r, \quad m_i \in M.$$

Defining the product of an element of A[x] and an element of M[x] in the obvious way, show that M[x] is an A[x]-module. Show that $M[x] \cong A[x] \otimes_A M$.

Proof. For any
$$\sum_{i=0}^{t} a_i x^i \in A[x]$$
 and $\sum_{i=0}^{r} m_i x^i \in M[x]$, let
 $\left(\sum_{i=0}^{t} a_i x^i\right) \cdot \left(\sum_{i=0}^{r} m_i x^i\right) = \sum_{i=0}^{t+r} \left(\sum_{j_1+j_2=i} a_{j_1} m_{j_2}\right) x^i.$

<u>Claim I</u>: M[x] is an A[x]-module

It is easy to see that M[x] is an additive group, and the above scalar multiplication by A[x] is well defined. For all $\sum_{i=0}^{r} m_i x^i \in M[x]$, we have

$$1 \cdot \left(\sum_{i=0}^r m_i x^i\right) = \sum_{i=0}^r m_i x^i.$$

MINGFENG ZHAO

It is easy to see that the distribution laws hold for this scalar multiplication. Now we only need to check the associativity law. In fact, for any $\sum_{i=0}^{t} a_i x^i$, $\sum_{i=0}^{s} b_i x^i \in A[x]$ and any $\sum_{i=0}^{r} m_i x^i \in M[x]$, we know that

$$\begin{split} \left[\left(\sum_{i=0}^{t} a_{i} x^{i} \right) \left(\sum_{i=0}^{s} b_{i} x^{i} \right) \right] \cdot \left(\sum_{i=0}^{r} m_{i} x^{i} \right) &= \left[\sum_{i=0}^{t+s} \left(\sum_{j_{1}+j_{2}=i} a_{j_{1}} b_{j_{2}} \right) x^{i} \right] \cdot \left(\sum_{i=0}^{r} m_{i} x^{i} \right) \\ &= \sum_{i=0}^{t+s+r} \left(\sum_{j_{1}+j_{2}=i,a} a_{j_{1}} b_{j_{2}} m_{j_{3}} \right) x^{i} \\ &= \sum_{i=0}^{t+s+r} \left(\sum_{j_{2}+j_{3}=i} a_{j_{1}} b_{j_{2}} m_{j_{3}} \right) x^{i} \\ \left(\sum_{i=0}^{s} b_{i} x^{i} \right) \cdot \left(\sum_{i=0}^{r} m_{i} x^{i} \right) &= \sum_{i=0}^{s+r} \left(\sum_{j_{2}+j_{3}=i} b_{j_{2}} m_{j_{3}} \right) x^{i} \\ &= \sum_{i=0}^{t+s+r} \left(\sum_{j_{2}+j_{3}=i} b_{j_{2}} m_{j_{3}} \right) x^{i} \\ &= \sum_{i=0}^{t+s+r} \left(\sum_{i=0} a_{i} x^{i} \right) \cdot \left[\sum_{i=0}^{s} b_{i} x^{i} \right) \cdot \left(\sum_{i=0}^{r} m_{i} x^{i} \right) \right] \\ &= \sum_{i=0}^{t+s+r} \left(\sum_{i=0} a_{i} x^{i} \right) \cdot \left[\sum_{i=0}^{s+r} b_{j_{2}} m_{j_{3}} \right) x^{i} \\ &= \sum_{i=0}^{t+s+r} \left(\sum_{j_{1}+j_{4}=i} a_{j_{1}} \left(\sum_{j_{2}+j_{3}=i} b_{j_{2}} m_{j_{3}} \right) \right) x^{i} \\ &= \sum_{i=0}^{t+s+r} \left(\sum_{j_{1}+j_{4}=i} a_{j_{1}} \left(\sum_{j_{2}+j_{3}=i} b_{j_{2}} m_{j_{3}} \right) \right) x^{i} \\ &= \left[\left(\sum_{i=0}^{t} a_{i} x^{i} \right) \left(\sum_{i=0}^{s} b_{i} x^{i} \right) \right] \cdot \left(\sum_{i=0}^{r} m_{i} x^{i} \right) \\ &= \sum_{i=0}^{t+s+r} \left(\sum_{j_{1}+j_{2}=i} a_{j_{1}} b_{j_{2}} m_{j_{3}} \right) x^{i} \\ &= \left[\left(\sum_{i=0}^{t} a_{i} x^{i} \right) \left(\sum_{i=0}^{s} b_{i} x^{i} \right) \right] \cdot \left(\sum_{i=0}^{r} m_{i} x^{i} \right) \\ &= \sum_{i=0}^{t+s+r} \left(\sum_{i=0}^{s} b_{i} x^{i} \right) \right] \cdot \left(\sum_{i=0}^{r} m_{i} x^{i} \right) \\ &= \sum_{i=0}^{t+s+r} \left(\sum_{i=0}^{s} b_{i} x^{i} \right) \left(\sum_{i=0}^{s} b_{i} x^{i} \right) \right] \cdot \left(\sum_{i=0}^{r} m_{i} x^{i} \right) \\ &= \sum_{i=0}^{t+s+r} \left(\sum_{i=0}^{s} b_{i} x^{i} \right) \left(\sum_{i=0}^{s} b_{i} x^{i} \right) \right] \cdot \left(\sum_{i=0}^{r} m_{i} x^{i} \right) \\ &= \sum_{i=0}^{t+s+r} \left(\sum_{i=0}^{s} b_{i} x^{i} \right) \left(\sum_{i=0}^{s} b_{i} x^{i} \right) \right] \cdot \left(\sum_{i=0}^{s} m_{i} x^{i} \right)$$

In summary, we know that M[x] is an A[x]-module. <u>Claim II</u>: $M[x] \cong A[x] \otimes_A M$ as A[x]-modules.

Define the map $\phi: A[x] \times M \to M[x]$ as: for all $\sum_{i=0}^r a_i x^i \in A[x]$ and all $m \in M$, we have $\varphi\left(\sum_{i=0}^r a_i x^i, m\right) = \sum_{i=0}^r (a_i m) x^i$

It is easy to see that ϕ is well defined an A-bilinear map, by the universal property of tensor product, then there exists a unique A-module homomorphism $\Phi: A[x] \otimes_A M \to M[x]$ such that for all $\sum_{i=0}^t a_i x^i \in A[x]$ and all $m \in M$, we have

$$\Phi\left(\left(\sum_{i=0}^{t} a_i x^i\right) \otimes m\right) = \sum_{i=0}^{t} (a_i m) x^i$$

Now we need to check that Φ is an A[x]-module homomorphism, it suffices to check the A[x]-linearity for the simple tensors. In fact, for all $\sum_{i=0}^{t} a_i x^i$, $\sum_{i=0}^{s} b_i x^i \in A[x]$ and $m \in M$, we have

$$\Phi\left(\left(\sum_{i=0}^{s} b_{i} x^{i}\right) \left(\left(\sum_{i=0}^{t} a_{i} x^{i}\right) \otimes m\right)\right) = \Phi\left(\left(\sum_{i=0}^{s} b_{i} x^{i}\right) \left(\left(\sum_{i=0}^{t} a_{i} x^{i}\right)\right) \otimes m\right)$$

$$= \Phi\left(\left(\sum_{i=0}^{t+s} \left(\sum_{j_1+j_2=i} b_{j_1} a_{j_2}\right) x^i\right) \otimes m\right)$$
$$= \sum_{i=0}^{t+s} \left(\sum_{j_1+j_2=i} b_{j_1} a_{j_2}\right) mx^i$$
$$= \left(\sum_{i=0}^{t+s} \left(\sum_{j_1+j_2=i} b_{j_1} a_{j_2}\right) x^i\right) \cdot m$$
$$= \left[\left(\sum_{i=0}^{s} b_i x^i\right) \left(\sum_{i=0}^{t} a_i x^i\right)\right] \cdot m$$
$$= \left(\sum_{i=0}^{s} b_i x^i\right) \cdot \left[\left(\sum_{i=0}^{t} a_i x^i\right) \cdot m\right]$$
$$= \left(\sum_{i=0}^{s} b_i x^i\right) \cdot \Phi\left(\left(\sum_{i=0}^{t} a_i x^i\right) \otimes m\right)$$

Also the additivity follows from A-module homomorphism. Hence Φ is an A[x]-module homomorphism. Define $\Psi: M[x] \to A[x] \otimes_A M$ as: for all $\sum_{i=0}^r m_i x^i \in M[x]$, we have

$$\Psi\left(\sum_{i=0}^{r} m_i x^i\right) = \sum_{i=0}^{r} x^i \otimes m_i$$

It is easy to see that Ψ is a well defined additive group homomorphism, now we need to check A[x]-linearity. For any $\sum_{i=0}^{t} a_i x^i \in A[x]$ and $\sum_{i=0}^{r} m_i x^i \in M[x]$, then

$$\Psi\left(\left(\sum_{i=0}^{t} a_{i}x^{i}\right) \cdot \left(\sum_{i=0}^{r} m_{i}x^{i}\right)\right) = \Psi\left(\sum_{i=0}^{t+r} \left(\sum_{j_{1}+j_{2}=i} a_{j_{1}}m_{j_{2}}\right)x^{i}\right)$$

$$= \sum_{i=0}^{t+r} x^{i} \otimes \left(\sum_{j_{1}+j_{2}=i} a_{j_{1}}m_{j_{2}}\right)$$

$$= \sum_{i=0}^{t+r} \sum_{j_{1}+j_{2}=i} x^{i} \otimes (a_{j_{1}}m_{j_{2}})$$

$$= \sum_{i=0}^{t+r} \sum_{j_{1}+j_{2}=i} (a_{j_{1}}x^{i}) \otimes m_{j_{2}}$$

$$= \sum_{i=0}^{t+r} \sum_{j_{1}+j_{2}=i} ((a_{j_{1}}x^{j_{1}})x^{j_{2}}) \otimes m_{j_{2}}$$

$$= \sum_{i=0}^{t+r} \sum_{j_{1}+j_{2}=i} (a_{j_{1}}x^{j_{1}}) \cdot (x^{j_{2}} \otimes m_{j_{2}})$$

$$= \sum_{i=0}^{t+r} \sum_{j_{1}+j_{2}=i} (a_{j_{1}}x^{j_{1}}) \cdot \Psi((m_{j_{2}}x^{j_{2}})$$

$$= \left(\sum_{i=0}^{t} a_i x^i\right) \cdot \Psi\left(\sum_{i=0}^{r} m_i x^i\right)$$

Hence Ψ is A[x]-module homomorphism. Now for any $\sum_{i=0}^{n} m_i x^i \in M[x]$, then

$$\Phi \circ \Psi \left(\sum_{i=0}^{r} m_{i} x^{i} \right) = \Phi \left(\sum_{i=0}^{r} x^{i} \otimes m_{i} \right)$$
$$= \sum_{i=0}^{r} \Phi(x^{i} \otimes m_{i})$$
$$= \sum_{i=0}^{r} m_{i} x^{i}.$$

That is, $\Phi \circ \Psi = Id$. Now for any $\sum_{i=0}^{r} a_i x^i \in A[x]$ and all $m \in M$, we have

$$\Psi \circ \Phi\left(\left(\sum_{i=0}^{r} a_{i} x^{i}\right) \otimes m\right) = \Psi\left(\sum_{i=0}^{r} (a_{i} m) x^{i}\right)$$
$$= \sum_{i=0}^{r} x^{i} \otimes (a_{i} m)$$
$$= \sum_{i=0}^{r} (a_{i} x^{i}) \otimes m$$
$$= \left(\sum_{i=0}^{r} (a_{i} x^{i})\right) \otimes m.$$

Which implies that $\Psi \circ \Phi = Id$. Therefore, we know that Φ and Ψ are A[x]-module isomorphisms, in particular, $M[x] \cong A[x] \otimes_A M$ as A[x]-modules.

15. Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that

- a. If \mathfrak{a} is the ideal generated by E, then $V(E) = V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}})$.
- b. $V(0) = X, V(1) = \emptyset$.
- c. If $(E_i)_{i \in I}$ is any family of subsets of A, then

$$V\left(\bigcup_{i\in I} E_i\right) = \bigcap_{i\in I} V(E_i).$$

d. $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \bigcup V(\mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b}$ of A.

Proof. a. Since $E \subset \mathfrak{a} \subset \sqrt{\mathfrak{a}}$, then

$$V(\sqrt{\mathfrak{a}}) \subset V(\mathfrak{a}) \subset V(E).$$

Now for any prime ideal \mathfrak{p} of A such that $E \subset \mathfrak{p}$, by the definition of \mathfrak{a} , then $\mathfrak{a} \subset \mathfrak{p}$, that is, $\mathfrak{p} \in V(\mathfrak{a})$. Also since $\mathfrak{a} \subset \mathfrak{p}$, then $\sqrt{\mathfrak{a}} \subset \sqrt{\mathfrak{p}}$. Since \mathfrak{p} is prime, then $\sqrt{\mathfrak{p}} = \mathfrak{p}$. Hence $\sqrt{\mathfrak{a}} \subset \mathfrak{p}$, that is, $\mathfrak{p} \in V(\sqrt{\mathfrak{p}})$.

Therefore, we know that

$$V(\sqrt{\mathfrak{a}} = V(\mathfrak{a}) = V(E).$$

HW 2

b. For any prime ideal \mathfrak{p} of A, we know that $0 \in \mathfrak{p}$, then $\mathfrak{p} \in V(0)$. Hence

$$V(0) = X.$$

For V(1), we must have $V(1) = \emptyset$, otherwise, there exists some prime ideal \mathfrak{p} of A such that $1 \in \mathfrak{p}$, which implies that $\mathfrak{p} = A$, contradiction. Hence

$$V(1) = \emptyset$$

c. Since for $i \in I$, we have $E_i \subset \bigcup_{i \in I} E_i$, then

$$V\left(\bigcup_{i\in I}E_i\right)\subset V(E_i),\quad\forall i\in I.$$

Hence

$$V\left(\bigcup_{i\in I} E_i\right) \subset \bigcap_{i\in I} V(E_i)$$

On the other hand, for all $\mathfrak{p} \in \bigcap_{i \in I} V(E_i)$, then

$$\mathfrak{p} \in V(E_i), \quad \forall i \in I.$$

That is,

$$E_i \subset \mathfrak{p}, \quad \forall i \in I.$$

Hence

$$\bigcup_{i\in I} E_i \subset \mathfrak{p}.$$

That is, $\mathfrak{p} \in V\left(\bigcup_{i \in I} E_i\right)$. Therefore, we know that

$$V\left(\bigcup_{i\in I} E_i\right) = \bigcap_{i\in I} V(E_i).$$

d. For any ideals $\mathfrak{a}, \mathfrak{b}$ of A, then

$$\mathfrak{ab} \subset \mathfrak{a} \bigcap \mathfrak{b} \subset \mathfrak{a}, \quad \mathrm{and} \quad \mathfrak{ab} \subset \mathfrak{a} \bigcap \mathfrak{b} \subset \mathfrak{b}.$$

So we have

$$V(\mathfrak{a}) \subset V(\mathfrak{a} \bigcap \mathfrak{b}) \subset V(\mathfrak{ab}), \text{ and } V(\mathfrak{a}) \subset V(\mathfrak{a} \bigcap \mathfrak{b}) \subset V(\mathfrak{ab}).$$

Hence

$$V(\mathfrak{a})\bigcup V(\mathfrak{b})\subset V(\mathfrak{a}\bigcap\mathfrak{b})\subset V(\mathfrak{ab})$$

Now for any $\mathfrak{p} \in V(\mathfrak{ab})$, then $\mathfrak{ab} \subset \mathfrak{p}$ and \mathfrak{p} is prime ideal, which implies that $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$, that is, $\mathfrak{p} \in V(\mathfrak{a}) \bigcup V(\mathfrak{b})$. Therefore, we get

$$V(\mathfrak{a}) \bigcup V(\mathfrak{b}) = V(\mathfrak{a} \bigcap \mathfrak{b}) = V(\mathfrak{ab})$$

16. Draw pictures of Spec (**Z**), Spec (**R**), Spec (**C**[x]), Spec (**R**[x]) and Spec (**Z**[x]).

Proof. a. For **Z** which is a PID, the ideal \mathfrak{p} of **Z** is prime if and only if $\mathfrak{p} = 0$ or $\mathfrak{p} = p\mathbf{Z}$ for some prime number p in **Z**, that is,

Spec $\mathbf{Z} = \{ p\mathbf{Z} : p \text{ is a prime number in } \mathbf{Z} \text{ or } p = 0 \}$

Since **Z** is a PID, then for any ideal $\mathfrak{a} \in \mathbf{Z}$ with $\mathfrak{a} \neq 0$ and $\mathfrak{a} \neq \mathbf{Z}$, there exists a unique $m \geq 2 \in \mathbf{N}$ such that $\mathfrak{a} = m\mathbf{Z}$. For m, by the fundamental theorem of arithmetic, there exists a unique prime factorization

$$m = p_1^{e_1} \cdots p_k^{e_k}, \quad e_i \ge 1.$$

Then we know that for all $1 \leq i \leq k$, the ideal $\mathfrak{p}_i = p_i \mathbf{Z} \in \operatorname{Spec} \mathbf{Z}$ and

$$V(\mathfrak{a}) = V(m\mathbf{Z}) = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_k\}.$$

That is to say that nontrivial closed sets in Spec Z is a finite collection of prime ideals in Z. On the other hand, for any finite collection of prime ideals $\{\mathfrak{p}_1, \dots, \mathfrak{p}_k\}$ in Z, for each $1 \leq i \leq k$, there exists a unique prime number $p_i \in \mathbb{Z}$ such that $\mathfrak{p}_i = p_i \mathbb{Z}$. Let $m = p_1 \cdots p_k$, and $\mathfrak{a} = m\mathbb{Z}$, then

$$V(m\mathbf{Z}) = V(\mathfrak{a}) = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_k\}$$

So we know that a subset U of Spec Z is open if and only if $U = \emptyset$ or Spec $\mathbb{Z} \setminus U$ is a finite set. That is to say, the topology on Spec Z is the finite completion topology.

b. For \mathbf{R} , since \mathbf{R} is a field, then only prime ideal in \mathbf{R} is 0, that is,

Spec
$$\mathbf{R} = \{0\}$$

The open sets of Spec **R** are \emptyset and $\{0\}$, and the topology on Spec **R** is the discrete topology.

c. For $\mathbf{C}[x]$, since $\mathbf{C}[x]$ is PID, then the ideal \mathfrak{p} of $\mathbf{C}[x]$ is prime if and only if $\mathfrak{p} = 0$ or $\mathfrak{p} = f(x)\mathbf{C}[x]$ for some monic irreducible polynomial $f(x) \in \mathbf{C}[x]$ with $\deg f(x) \ge 1$. Since \mathbf{C} is algebraic closed, then only monic irreducible polynomials are of the form x - c for some $c \in \mathbf{C}$. Hence we know that

Spec
$$\mathbf{C}[x] = \{ \mathbf{p} : \mathbf{p} = 0 \text{ or } \mathbf{p} = (x - c)\mathbf{C}[x] \text{ for some } c \in \mathbf{C} \}.$$

Since $\mathbf{C}[x]$ is a PID, then for any ideal $\mathfrak{a} \in \mathbf{C}[x]$ with $\mathfrak{a} \neq 0$ and $\mathfrak{a} \neq \mathbf{C}[x]$, there exists a unique monic polynomial $m(x) \in \mathbf{C}[x]$ such that $\mathfrak{a} = m(x)\mathbf{C}[x]$. For m(x), since $\mathbf{C}[x]$ is UFD, then there exists some $c_1, c_2, \cdots, c_k \in \mathbf{C}$ such that

$$m(x) = (x - c_1)^{e_1} \cdots (x - c_k)^{e_k}, \quad e_i \ge 1.$$

Then we know that for all $1 \le i \le k$, the ideal $\mathfrak{p}_i = (x - c_i) \mathbf{C}[x] \in \operatorname{Spec} \mathbf{C}[x]$ and

$$V(\mathfrak{a}) = V(m(x)\mathbf{C}[x]) = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_k\}.$$

That is to say that nontrivial closed sets in Spec $\mathbf{C}[x]$ is a finite collection of prime ideals in $\mathbf{C}[x]$. On the other hand, for any finite collection of prime ideals $\{\mathbf{p}_1, \dots, \mathbf{p}_k\}$ in $\mathbf{C}[x]$, for each $1 \le i \le k$, there exists a unique $c_i \in \mathbf{C}$ such that $\mathbf{p}_i = (x - c_i)\mathbf{C}[x]$. Let $m(x) = (x - c_1)\cdots(x - c_k)$, and $\mathbf{a} = m(x)\mathbf{C}[x]$, then

$$V(m(x)\mathbf{C}[x]) = V(\mathfrak{a}) = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_k\}$$

So we know that a subset U of Spec $\mathbf{C}[x]$ is open if and only if $U = \emptyset$ or Spec $\mathbf{C}[x] \setminus U$ is a finite set. That is to say, the topology on Spec $\mathbf{C}[x]$ is the finite completion topology.

d. For $\mathbf{R}[x]$, since $\mathbf{R}[x]$ is PID, then the ideal \mathfrak{p} of $\mathbf{R}[x]$ is prime if and only if $\mathfrak{p} = 0$ or $\mathfrak{p} = f(x)\mathbf{R}[x]$ for some monic irreducible polynomial $f(x) \in \mathbf{R}[x]$ with $\deg f(x) \ge 1$. Since only monic irreducible polynomials are of the form x - cfor some $c \in \mathbf{R}$ or $x^2 + ax + b$ with $a^2 - 4b < 0$ for some $a, b \in \mathbf{R}$. Hence we know that

Spec
$$\mathbf{R}[x] = \{ \mathfrak{p} : \mathfrak{p} = 0 \text{ or } \mathfrak{p} = (x-c)\mathbf{R}[x] \text{ for } c \in \mathbf{R} \text{ or } \mathfrak{p} = (x^2 + ax + b)\mathbf{R}[x] \text{ for } a, b \in \mathbf{R} \text{ with } a^2 - 4b < 0 \}.$$

Since $\mathbf{R}[x]$ is a PID, then for any ideal $\mathfrak{a} \in \mathbf{R}[x]$ with $\mathfrak{a} \neq 0$ and $\mathfrak{a} \neq \mathbf{R}[x]$, there exists a unique monic polynomial $m(x) \in \mathbf{R}[x]$ such that $\mathfrak{a} = m(x)\mathbf{R}[x]$. For m(x), since $\mathbf{R}[x]$ is UFD, then there exists some irreducible monic polynomials $p_1(x), \dots, p_k(x) \in \mathbf{R}[x]$ such that

$$m(x) = p_1(x)^{e_1} \cdots p_k(x)^{e_k}, \quad e_i \ge 1.$$

Then we know that for all $1 \le i \le k$, the ideal $\mathfrak{p}_i = p_1(x) \mathbf{R}[x] \in \operatorname{Spec} \mathbf{R}[x]$ and

$$V(\mathfrak{a}) = V(m(x)\mathbf{R}[x]) = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_k\}.$$

That is to say that nontrivial closed sets in Spec $\mathbf{R}[x]$ is a finite collection of prime ideals in $\mathbf{R}[x]$. On the other hand, for any finite collection of prime ideals $\{\mathbf{p}_1, \dots, \mathbf{p}_k\}$ in $\mathbf{R}[x]$, for each $1 \le i \le k$, there exists a unique monic irreducible polynomial $p_i(x) \in \mathbf{R}[x]$ such that $\mathbf{p}_i = p_i(x)\mathbf{R}[x]$. Let $m(x) = p_1(x)\cdots p_k(x)$, and $\mathbf{a} = m(x)\mathbf{R}[x]$, then

$$V(m(x)\mathbf{R}[x]) = V(\mathfrak{a}) = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_k\}$$

So we know that a subset U of Spec $\mathbf{R}[x]$ is open if and only if $U = \emptyset$ or Spec $\mathbf{R}[x] \setminus U$ is a finite set. That is to say, the topology on Spec $\mathbf{R}[x]$ is the finite completion topology.

e. Claim I: The ideal \mathfrak{p} of $\mathbf{Z}[x]$ is prime if and only if \mathfrak{p} is one of the following cases:

- i. p = 0.
- ii. $\mathbf{p} = (p)$ for some prime number p in \mathbf{Z} .
- iii. $\mathbf{p} = (f(x))$ for some primitive irreducible polynomial f(x) in $\mathbf{Z}[x]$.
- iv. $\mathfrak{p} = (p, f(x))$ for some prime number p in \mathbb{Z} and primitive irreducible polynomial f(x) in $\mathbb{Z}[x]$ such that f(x) is also irreducible in $\mathbb{Z}[x]/p\mathbb{Z}[x] \cong \mathbb{F}_p[x]$.

(\Leftarrow) i. Since $\mathbf{Z}[x]$ is a domain, then $\mathfrak{p} = 0$ is prime in [Z][x].

ii. For any $f(x), g(x) \in \mathbf{Z}[x]$ such that $f(x)g(x) \in \mathfrak{p} = (p)$ for some prime number p in \mathbf{Z} , then

Recall the Gauss's Lemma:

Let A be a UFD, f(x) and g(x) be primitive plolynomials in A[X], then f(x)g(x) is also primitive.

Since p is a prime number in **Z**, by the Gauss's Lemma, we know that p|f(x) or p|g(x) in **Z**[x], that is, $f(x) \in \mathfrak{p}$ or $g(x) \in \mathfrak{p}$. Hence \mathfrak{p} is prime in **Z**[x].

iii. For any $g(x), h(x) \in \mathbf{Z}[x]$ such that $g(x)h(x) \in \mathfrak{p} = (f(x))$ for some primitive irreducible polynomial f(x) in $\mathbf{Z}[x]$, then

$$f(x)|g(x)h(x)|$$

Since f(x) is irreducible in $\mathbb{Z}[x]$, then f(x) is also irreducible in $\mathbb{Q}[x]$. Hence f(x)|g(x) or f(x)|h(x) in $\mathbb{Q}[x]$. Without loss of generality, assume f(x)|g(x) in $\mathbb{Q}[x]$, then there exists some $m(x) \in \mathbb{Q}[x]$ such that

$$g(x) = m(x)f(x).$$

Since $f(x), g(x) \in \mathbb{Z}[x]$ and f is primitive, by the Gauss's Lemma, then $m(x) \in \mathbb{Z}[x]$, that is, f(x)|g(x) in $\mathbb{Z}[x]$. Hence \mathfrak{p} is prime in $\mathbb{Z}[x]$.

iv. $\mathbf{p} = (p, f(x))$ for some prime number p in \mathbf{Z} and primitive irreducible polynomial f(x) in $\mathbf{Z}[x]$ such that f(x) is also irreducible in $\mathbf{Z}/p\mathbf{Z}[x]$. Let $\pi : \mathbf{Z} \to \mathbf{Z}/p\mathbf{Z}$ be the natural ring homomorphism, that is, for all $n \in \mathbf{Z}$, we have

$$\pi(n) = n + p\mathbf{Z}.$$

Then π can induce a ring homomorphism $\overline{\pi} : \mathbf{Z}[x] \to \mathbf{Z}/p\mathbf{Z}[x]$ such that $\overline{\pi}|_{\mathbf{Z}} = \pi$. Since $\mathbf{Z}/p\mathbf{Z}$ is a field and $\overline{f}(x)$ is irreducible on $\mathbf{Z}/p\mathbf{Z}[x]$, then $\mathbf{Z}/p\mathbf{Z}[x]/(\overline{f(x)})$ is a field extension of $\mathbf{Z}/p\mathbf{Z}$.

Define the map $\Phi: \mathbf{Z}[x] \to \mathbf{Z}/p\mathbf{Z}[x]/(\overline{f(x)})$ as: for all $g(x) \in \mathbf{Z}[x]$, we have

$$\Phi(g(x)) = \overline{g(x)} + (\overline{f(x)}).$$

It is easy to see that Φ is a ring homomorphism. Now let's look at the kernel of Φ . It is easy to see that $p, f(x) \in \ker \Phi$, since ker Φ is an ideal of $\mathbf{Z}[x]$, then

$$(p, f(x)) \subset \ker \Phi.$$

On the other hand, for all $g(x) \in \ker \Phi$, then $\overline{g(x)} \in (\overline{f(x)})$. That is, there exists some $h \in \mathbb{Z}[x]$ such that

$$\overline{g(x)} = \overline{f(x)h(x)} = \overline{f(x)h(x)}$$

Hence $\overline{g(x) - f(x)h(x)} = 0$, that is, there exists some $k(x) \in \mathbf{Z}[x]$ such that

$$g(x) - f(x)h(x) = pk(x).$$

That is, $g(x) = h(x)f(x) + k(x)p \in (p, f(x))$. Hence we get

$$\ker \Phi = (p, f(x)).$$

By the first isomorphism theorem, then

$$\mathbf{Z}/p\mathbf{Z}[x]/(\overline{f(x)}) \cong \mathbf{Z}[x]/(p, f(x)),$$

which is a field. Hence (p, f(x)) is maximal in $\mathbf{Z}[x]$, in particular, $\mathfrak{p} = (p, f(x))$ is prime in $\mathbf{Z}[x]$.

 (\Longrightarrow) Now assume \mathfrak{p} is a prime ideal in $\mathbb{Z}[x]$. If $\mathfrak{p} = 0$, we are done. Now assume $\mathfrak{p} \neq 0$. Let $\mathfrak{q} = \mathfrak{p} \bigcap \mathbb{Z}$, then \mathfrak{q} is prime in \mathbb{Z} .

Case I: If $\mathfrak{q} = 0$. Let $S = \mathbb{Z} \setminus \{0\}$, then S is a multiplicative subset of $\mathbb{Z}[x]$ and $\mathfrak{p} \cap S = \emptyset$. Since $S^{-1}\mathbb{Z} = \mathbb{Q}$, then

$$S^{-1}\mathbf{Z}[x] = \mathbf{Q}[x]$$

Since $S \cap \mathfrak{p} = \emptyset$ and \mathfrak{p} is prime in $\mathbb{Z}[x]$, then $S^{-1}\mathfrak{p}$ is prime in $S^{-1}\mathbb{Z}[x] = \mathbb{Q}[x]$. Since $\mathbb{Q}[x]$ is PID, then there exists some irreducible polynomial $f(x) \in \mathbb{Q}[x]$ such that $S^{-1}\mathfrak{p} = (f(x))$ in $\mathbb{Q}[x]$. Then by multiplying some constant, without loss of generality, we can assume $f(x) \in \mathbb{Z}[x]$. Since $\mathfrak{p} \cap S = \emptyset$, then

$$\mathfrak{p} = (f(x)) \bigcap \mathbf{Z}[x].$$

That is, $\mathbf{p} = (f(x))$ in $\mathbf{Z}[x]$, where f(x) is primitive irreducible polynomial in $\mathbf{Z}[x]$.

Case II: If $q \neq 0$. Since q is prime in \mathbb{Z} , then there exists some prime number p in \mathbb{Z} such that $q = p\mathbb{Z}$, then $p\mathbb{Z}[x] \subset \mathfrak{p}$. By the forth isomorphism theorem, we know that $\mathfrak{p}/p\mathbb{Z}[x]$ is a prime ideal in $\mathbb{Z}[x]/p\mathbb{Z}[x] = \mathbb{Z}/p\mathbb{Z}[x]$. Since $\mathbb{Z}/p\mathbb{Z}$ is a field, then $\mathbb{Z}[x]/p\mathbb{Z}[x] = \mathbb{Z}/p\mathbb{Z}[x]$ is PID.

Subcase I: $\mathfrak{p}/p\mathbf{Z}[x] = 0$, then $\mathfrak{p} = (p)$, we are done.

Subcase II: $\mathfrak{p}/p\mathbf{Z}[x] \neq 0$, since $\mathfrak{p}/p\mathbf{Z}[x]$ is a prime ideal in $\mathbf{Z}[x]/p\mathbf{Z}[x] = \mathbf{Z}/p\mathbf{Z}[x]$ which is PID, then there exists some primitive irreducible polynomial $f(x) \in \mathbf{Z}[x]$ such that $\overline{f(x)}$ is irreducible in $\mathbf{Z}/p\mathbf{Z}[x]$ and

$$\mathfrak{p}/p\mathbf{Z}[x] = (\overline{f(x)}).$$

Hence we get $\mathfrak{p} = (p, f(x))$.

In summary, we can conclude that the Claim I is true.

(Mingfeng Zhao) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, 196 AUDITORIUM ROAD, UNIT 3009, STORRS, CT 06269-3009

E-mail address: mingfeng.zhao@uconn.edu