1. Suppose $x^n = 0$ for some $x \in A, n \in \mathbb{Z}^+$. Observe that $(1+x) \sum_{k=0}^{n-1} (-x)^k =$

$$1 - x + x^{2} - x^{3} + \dots + (-1)^{n-1} x^{n-1}$$
$$+ x - x^{2} + x^{3} - \dots + (-1)^{n-2} x^{n-1} + (-1)^{n-1} x^{n-1}$$

 $= 1 \pm x^n = 1 \pm 0 = 1$. So 1 + x is a unit in A.

Now if u is any unit in A with uv = 1, then (u+x)v = 1+xv and xv is still nilpotent since $(xv)^k = x^k v^k$. Using the above, $\sum_{k=0}^{n-1} (-xv)^k$ is an inverse for 1 + vx, so $v \sum_{k=0}^{n-1} (-xv)^k$ is an inverse for u + x. Therefore the sum of a unit and a nilpotent is a unit.

- **2.** Let $f = \sum_{k=0}^{n} a_k x^k$ be a polynomial in A[x].
 - **i.** If a_0 is a unit and a_1, \ldots, a_n are nilpotent, then $(a_1x + \cdots + a_nx^n)$ is nilpotent and by **1**., $f = a_0 + (a_1x + \cdots + a_nx^n)$ is a unit in A[x].

Conversely, if f is a unit then there is $g = \sum_{k=0}^{m} b_k x^k$ such that fg = 1. Since $fg = \sum_{k=0}^{n+m} \left(\sum_{i+j=k} a_i b_j\right) x^k$, we have that the constant term $a_0 b_0$ of fg equals 1 and all the other coefficients $\sum_{i+j=k} a_i b_j$ are 0. This shows that a_0 and b_0 are units (and inverse to each other). We will show that a_n is nilpotent as follows:

Claim: For $0 \le r \le m$, $a_n^{r+1}b_{m-r} = 0$.

Proof: By strong induction on r. Since the leading coefficient $a_n b_m$ of fg is 0, the case r = 0 holds. Now assume that for some $1 \le r \le m$ and for all $0 \le s \le r - 1$, $a_n^{s+1}b_{m-s} = 0$. The coefficient of x^{n+m-r} in fg is 0 and can be written $\sum_{s=0}^{r} a_{n-r+s}b_{m-s} = 0$. Multiplying on both sides by a_n^r will make the last term on the LHS $a_n^{r+1}b_{m-r}$ and will make the first r-1 terms 0 since the s^{th} term is now $a_n^r a_{n-r+s}b_{m-s} = a_{n-r+s}a_n^{r-(s+1)}(a_n^{s+1}b_{m-s}) = 0$ by the induction hypothesis.

Taking r = m we see that $a_n^{m+1}b_0 = 0$. Since b_0 is a unit we can cancel to see that a_n is nilpotent. Noting that $-a_n x^n$ is still nilpotent and using **1**. we see that $f - a_n x^n$ is a unit. We can apply the same argument to the unit $f - a_n x^n = \sum_{k=0}^{n-1} a_k x^k$ to see that the leading coefficient a_{n-1} is nilpotent. Similarly, all the coefficients besides the constant term are nilpotent.

- ii. Since nilpotent elements form an ideal, if a_0, a_1, \ldots, a_n are nilpotent, then $\sum_{k=0}^n a_k x^k$ is nilpotent. For the other direction, assume $f^r = 0$. Thus for each $0 \le k \le rn$, the coefficient of x^k in f^r is zero. In particular, the leading coefficient $a_n^r = 0$ which says that a_n is nilpotent. If a_n is nilpotent, then $-a_n x^n$ is nilpotent and the sum $f - a_n x^n$ is nilpotent of degree smaller than f. By induction on the degree of f we see that $a_n, a_{n-1}, \ldots, a_1, a_0$ are all nilpotent.
- iii. One direction is trivial. Now assume that f is a zero divisor and $g = \sum_{k=0}^{m} b_k x^k$ is of minimal positive degree $(b_m \neq 0)$ such that fg = 0. Since the leading coefficient $a_n b_m$ of fg is 0, we see that $f(a_ng) = a_n(fg) = 0$. Since the degree of a_ng is strictly less that that of g we have $a_ng = 0$.

Now assume inductively that $a_{n-i}g = 0$ for all $0 \le i < r$. We will show that $a_{n-r}g = 0$. We can expand fg = 0 to see that $\sum_{k=0}^{n} a_k gx^k = 0$. Using the induction assumption, the last r-1 terms are 0 and we see that $\sum_{k=0}^{n-r} a_k gx^k = 0$. Thus the leading coefficient $a_{n-r}b_m = 0$ and again $f(a_{n-r}g) = a_{n-r}(fg) = 0$ but $a_{n-r}g$ has degree strictly less that g so $a_{n-r}g = 0$. Since $a_kg = 0$ for all $0 \le k \le n$, in particular we see that the leading coefficients $a_k b_m$ are all 0. This says that b_m kills all the coefficients of f so $b_m f = 0$.

- iv. Let ℑ_f = (a₀,...,a_n), ℑ_g = (b₀,...,b_m) and ℑ_{fg} = (a₀b₀,..., ∑_{i+j=k} a_ib_j,...,a_nb_m) be the ideals generated by the coefficients of f, g and fg respectively. If ℑ_{fg} = (1) then ℑ_f = (1) = ℑ_g, since ℑ_{fg} ⊂ ℑ_f and ℑ_{fg} ⊂ ℑ_g.
 Conversely, suppose that ℑ_f = (1) = ℑ_g and ℑ_{fg} ≠ (1). Since ℑ_{fg} is a proper ideal, it is contained in a maximal ideal m. Now A/m is a field, so (A/m)[x] ≅ A[x]/m[x] is an integral domain and (f + m[x])(g + m[x]) = (fg + m[x]) = (0 + m[x]) since the coefficients of fg are in ℑ_{fg} ⊂ m. Hence (f + m[x]) or (g + m[x]) is zero in (A/m)[x] and either ℑ_f or ℑ_g is properly contained in A = (1),
- 6. Since the nilradical $\mathfrak{N} = \bigcap_{\mathfrak{p}prime} \mathfrak{p}$ and the Jacobson radical $\mathfrak{J} = \bigcap_{\mathfrak{m}maximal} \mathfrak{m}$ and maximal ideals are always prime, it is always the case that $\mathfrak{N} \subset \mathfrak{J}$. If $\mathfrak{N} \neq \mathfrak{J}$, then \mathfrak{J} is an ideal not properly contained in \mathfrak{N} and by assumption we have that there is a nonzero idempotent $e \in \mathfrak{J}$. From Proposition 1.9 we know that for any element $j \in \mathfrak{J}$, 1 rj is a unit for all $r \in A$. So (1 e) is a unit, but we have that $e(1 e) = e e^2 = e e = 0$. Cancelling implies that e = 0, a contradiction.
- 7. Let p be a prime ideal in A. We will show that the integral domain A/p is a field. Let (x + p) ≠ (0 + p) in A/p. By assumption we have that xⁿ = x for some n > 1 i.e. xⁿ x = x(xⁿ⁻¹ 1) = 0. Looking mod p, we see that (x + p)((xⁿ⁻¹ 1) + p) = (0 + p). Since A/p is a domain and (x + p) ≠ (0 + p), we have that ((xⁿ⁻¹ 1) + p) = (0 + p) ⇔ (xⁿ⁻¹ + p) = (1 + p) ⇔ (x + p)(xⁿ⁻² + p) = (1 + p). Since x ∉ p was arbitrary, we see that every nonzero element of A/p is invertible. So A/p is a field, and p is maximal.
- **11.** Suppose A is a Boolean ring.

a contradiction.

- **i.** Fix $x \in A$ and observe that since A is Boolean, $(x+x)^2 = (x+x) \iff x^2 + x^2 + x^2 + x^2 = x + x \iff x + x + x + x = x + x \iff x + x = 0 \iff 2x = 0.$
- ii. Since A satisfies the conditions of 7. (with n = 2 for every x) we see that every prime ideal in A is maximal. Let \mathfrak{p} be a prime (hence maximal) ideal in A and consider the field A/\mathfrak{p} . If $(x + \mathfrak{p}) \neq (0 + \mathfrak{p})$, then since $((x^2 - x) + \mathfrak{p}) = (0 + \mathfrak{p}) \iff (x + \mathfrak{p})((x - 1) + \mathfrak{p}) = (0 + \mathfrak{p})$. Since A/\mathfrak{p} is a domain and $(x + \mathfrak{p}) \neq (0 + \mathfrak{p})$, we have that $((x - 1) + \mathfrak{p}) = (0 + \mathfrak{p}) \iff (x + \mathfrak{p}) = (1 + \mathfrak{p})$. So every nonidentity element in A/\mathfrak{p} is $(1 + \mathfrak{p})$. And $A/\mathfrak{p} = \{(0 + \mathfrak{p}), (1 + \mathfrak{p})\}$ is a field with two elements.
- **iii.** By induction, it suffices to show that (a, b) = (d) for any $a, b \in A$. Let d = a + b ab. Clearly, $(d) \subset (a, b)$ but observe also that a = ad and b = bd. Thus $a, b \in (d)$ and $(d) \supset (a, b)$.

12. Let A be a local ring with maximal ideal \mathfrak{m} . Hence the Jacobson radical of A is \mathfrak{m} . Suppose there is a nonzero idempotent $e \in A$. If $e \in \mathfrak{m}$, then 1 - e is a unit and $e(1 - e) = 0 \implies e = 0$ a contradiction. If $e \notin \mathfrak{m}$, then in the field A/\mathfrak{m} , since $((e - e^2) + \mathfrak{m}) = (0 + \mathfrak{m}) \iff (e + \mathfrak{m})((1 - e) + \mathfrak{m}) = (0 + \mathfrak{m}) \iff ((1 - e) + \mathfrak{m}) = (0 + \mathfrak{m}) \iff ((1 - e) + \mathfrak{m}) = (0 + \mathfrak{m}) \iff (1 - e) \in \mathfrak{m}$. Again, since (1 - e) is in the Jacobson radical \mathfrak{m} , 1 - (1 - e) = e is a unit in A. So $e(1 - e) = 0 \implies (1 - e) = 0 \implies e = 1$. So in a local ring, the only nonzero idempotent is 1.