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1. Suppose xn = 0 for some x ∈ A, n ∈ Z+. Observe that (1 + x)
n−1∑
k=0

(−x)k =

1−x + x2 − x3 + · · ·+ (−1)n−1xn−1

+x− x2 + x3 − · · ·+ (−1)n−2xn−1 + (−1)n−1xn

= 1± xn = 1± 0 = 1. So 1 + x is a unit in A.

Now if u is any unit in A with uv = 1, then (u+x)v = 1+xv and xv is still nilpotent since (xv)k = xkvk.

Using the above,
n−1∑
k=0

(−xv)k is an inverse for 1 + vx, so v
n−1∑
k=0

(−xv)k is an inverse for u + x. Therefore

the sum of a unit and a nilpotent is a unit.

2. Let f =
n∑

k=0
akxk be a polynomial in A[x].

i. If a0 is a unit and a1, . . . , an are nilpotent, then (a1x + · · · + anxn) is nilpotent and by 1.,
f = a0 + (a1x + · · ·+ anxn) is a unit in A[x].

Conversely, if f is a unit then there is g =
m∑

k=0
bkxk such that fg = 1. Since fg =

n+m∑
k=0

( ∑
i+j=k

aibj

)
xk,

we have that the constant term a0b0 of fg equals 1 and all the other coefficients
∑

i+j=k

aibj are 0.

This shows that a0 and b0 are units (and inverse to each other). We will show that an is nilpotent
as follows:
Claim: For 0 ≤ r ≤ m, ar+1

n bm−r = 0.
Proof: By strong induction on r. Since the leading coefficient anbm of fg is 0, the case r = 0
holds. Now assume that for some 1 ≤ r ≤ m and for all 0 ≤ s ≤ r − 1, as+1

n bm−s = 0. The
coefficient of xn+m−r in fg is 0 and can be written

r∑
s=0

an−r+sbm−s = 0. Multiplying on both

sides by ar
n will make the last term on the LHS ar+1

n bm−r and will make the first r − 1 terms
0 since the sth term is now ar

nan−r+sbm−s = an−r+sa
r−(s+1)
n (as+1

n bm−s) = 0 by the induction
hypothesis.
Taking r = m we see that am+1

n b0 = 0. Since b0 is a unit we can cancel to see that an is nilpotent.
Noting that −anxn is still nilpotent and using 1. we see that f − anxn is a unit. We can apply

the same argument to the unit f − anxn =
n−1∑
k=0

akxk to see that the leading coefficient an−1 is

nilpotent. Similarly, all the coefficients besides the constant term are nilpotent.

ii. Since nilpotent elements form an ideal, if a0, a1, . . . , an are nilpotent, then
n∑

k=0
akxk is nilpotent.

For the other direction, assume fr = 0. Thus for each 0 ≤ k ≤ rn, the coefficient of xk in fr

is zero. In particular, the leading coefficient ar
n = 0 which says that an is nilpotent. If an is

nilpotent, then −anxn is nilpotent and the sum f − anxn is nilpotent of degree smaller than f .
By induction on the degree of f we see that an, an−1, . . . , a1, a0 are all nilpotent.

iii. One direction is trivial. Now assume that f is a zero divisor and g =
m∑

k=0
bkxk is of minimal

positive degree (bm 6= 0) such that fg = 0. Since the leading coefficient anbm of fg is 0, we see
that f(ang) = an(fg) = 0. Since the degree of ang is strictly less that that of g we have ang = 0.



Math 5020 HW 1 Ryan Pellico 2

Now assume inductively that an−ig = 0 for all 0 ≤ i < r. We will show that an−rg = 0. We
can expand fg = 0 to see that

n∑
k=0

akgxk = 0. Using the induction assumption, the last r − 1

terms are 0 and we see that
n−r∑
k=0

akgxk = 0. Thus the leading coefficient an−rbm = 0 and again

f(an−rg) = an−r(fg) = 0 but an−rg has degree strictly less that g so an−rg = 0.
Since akg = 0 for all 0 ≤ k ≤ n, in particular we see that the leading coefficients akbm are all 0.
This says that bm kills all the coefficients of f so bmf = 0.

iv. Let If = (a0, . . . , an), Ig = (b0, . . . , bm) and Ifg = (a0b0, . . . ,
∑

i+j=k

aibj , . . . , anbm) be the ideals

generated by the coeffients of f, g and fg respectively. If Ifg = (1) then If = (1) = Ig, since
Ifg ⊂ If and Ifg ⊂ Ig.
Conversely, suppose that If = (1) = Ig and Ifg 6= (1). Since Ifg is a proper ideal, it is contained
in a maximal ideal m. Now A/m is a field, so (A/m)[x] ∼= A[x]/m[x] is an integral domain and
(f +m[x])(g +m[x]) = (fg +m[x]) = (0 +m[x]) since the coefficients of fg are in Ifg ⊂ m. Hence
(f + m[x]) or (g + m[x]) is zero in (A/m)[x] and either If or Ig is properly contained in A = (1),
a contradiction.

6. Since the nilradical N =
⋂

pprime

p and the Jacobson radical J =
⋂

mmaximal

m and maximal ideals are

always prime, it is always the case that N ⊂ J. If N 6= J, then J is an ideal not properly contained
in N and by assumption we have that there is a nonzero idempotent e ∈ J. From Proposition 1.9 we
know that for any element j ∈ J, 1− rj is a unit for all r ∈ A. So (1− e) is a unit, but we have that
e(1− e) = e− e2 = e− e = 0. Cancelling implies that e = 0, a contradiction.

7. Let p be a prime ideal in A. We will show that the integral domain A/p is a field. Let (x +p) 6= (0 +p)
in A/p. By assumption we have that xn = x for some n > 1 i.e. xn − x = x(xn−1 − 1) = 0. Looking
mod p, we see that (x + p)((xn−1 − 1) + p) = (0 + p). Since A/p is a domain and (x + p) 6= (0 + p), we
have that ((xn−1 − 1) + p) = (0 + p) ⇐⇒ (xn−1 + p) = (1 + p) ⇐⇒ (x + p)(xn−2 + p) = (1 + p).
Since x /∈ p was arbitrary, we see that every nonzero element of A/p is invertible. So A/p is a field,
and p is maximal.

11. Suppose A is a Boolean ring.

i. Fix x ∈ A and observe that since A is Boolean, (x + x)2 = (x + x) ⇐⇒ x2 + x2 + x2 + x2 =
x + x ⇐⇒ x + x + x + x = x + x ⇐⇒ x + x = 0 ⇐⇒ 2x = 0.

ii. Since A satisfies the conditions of 7. (with n = 2 for every x) we see that every prime ideal
in A is maximal. Let p be a prime (hence maximal) ideal in A and consider the field A/p. If
(x + p) 6= (0 + p), then since ((x2 − x) + p) = (0 + p) ⇐⇒ (x + p)((x− 1) + p) = (0 + p). Since
A/p is a domain and (x+p) 6= (0+p), we have that ((x−1)+p) = (0+p) ⇐⇒ (x+p) = (1+p).
So every nonidentity element in A/p is (1 + p). And A/p = {(0 + p), (1 + p)} is a field with two
elements.

iii. By induction, it suffices to show that (a, b) = (d) for any a, b ∈ A. Let d = a + b − ab. Clearly,
(d) ⊂ (a, b) but observe also that a = ad and b = bd. Thus a, b ∈ (d) and (d) ⊃ (a, b).
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12. Let A be a local ring with maximal ideal m. Hence the Jacobson radical of A is m. Suppose there is a
nonzero idempotent e ∈ A. If e ∈ m, then 1− e is a unit and e(1− e) = 0 =⇒ e = 0 a contradiction.
If e /∈ m, then in the field A/m, since ((e−e2)+m) = (0+m) ⇐⇒ (e+m)((1−e)+m) = (0+m) ⇐⇒
((1−e)+m) = (0+m) ⇐⇒ (1−e) ∈ m. Again, since (1−e) is in the Jacobson radical m, 1−(1−e) = e

is a unit in A. So e(1 − e) = 0 =⇒ (1 − e) = 0 =⇒ e = 1. So in a local ring, the only nonzero
idempotent is 1.


