Exponential and Logarithmic Functions

$$
y=\log _{b} \underline{x} \quad \text { means } b^{y}=x
$$

$$
y=\log _{b} x \quad \text { for } b>1
$$

Equality of $\operatorname{logs:~} \log _{b} x=\log _{b} z$ is equivalent to $x=z$
$\ln \mathrm{x}=\log _{\mathrm{e}} \mathrm{x} \quad$ where $\mathrm{e} \approx 2.7, \quad \log \mathrm{x}=\log _{10} \mathrm{x}, \quad \log _{\mathrm{b}} 1=0, \quad \log _{\mathrm{b}} \mathrm{b}=1$

The three rules of log:

$$
\begin{array}{rc}
\text { Product Rule: } & \log _{b} \mathrm{xy}=\log _{\mathrm{b}} \mathrm{x}+\log _{\mathrm{b}} \mathrm{y} \\
\text { Quotient Rule: } & \log _{\mathrm{b}} \frac{x}{y}=\log _{\mathrm{b}} \mathrm{x}-\log _{\mathrm{b}} \mathrm{y} \\
\text { Power Rule: } & \log _{\mathrm{b}} \mathrm{x}^{\mathrm{r}}=\operatorname{rlog}_{\mathrm{b}} \mathrm{x}
\end{array}
$$

Cancellations:

$$
\log _{b} b^{x}=x \quad \text { and } \quad b^{\log _{b} x}=x
$$

Memory peg: $\log _{b} b^{\mathrm{CAT}}=\mathrm{CAT}$ and $\mathrm{b}^{\log _{b} \text { DOG }}=$ DOG

