UCONN - Math 1011Q

The Largest Box

You are going to construct the largest box you can from a sheet of standard 8.5" x 11" notepad back cardboard paper. Ready? Cut identical squares of side length x from each corner, and fold up the sides, like this:

a. Write each side of the box as an expression in x .
b. Express the volume of the box as a function of x. Call it $y=\mathrm{V}(x)$.
c. What is the domain of $\mathrm{V}(x)$?
d. Calculate the following values of $\mathrm{V}(x)$, and use them to graph the function $y=\mathrm{V}(x)$ on a separate sheet of paper.
$\mathrm{V}(0)=$
$\mathrm{V}(2)=$
$\mathrm{V}(4)=$

$$
\begin{array}{ll}
\mathrm{V}(1)= & \mathrm{V}(1.5)= \\
\mathrm{V}(2.5)= & \mathrm{V}(3)= \\
\mathrm{V}(4.25)= &
\end{array}
$$

e. Use the graph to estimate the largest possible volume of your box. For what x are you going to obtain this biggest box?

Largest Volume $=$
Obtained at:

