Radicals

n and m denote positive integers

- If *n* is even then: $\sqrt[n]{a}$ is not defined for a < 0, and $\sqrt[n]{a}$ is positive for a > 0.
- If *n* is odd then: $\sqrt[n]{a}$ is always defined, and is uniquely determined by *a*.

a Rational Exponents: $a^{\frac{1}{n}} = \sqrt[n]{a}$

•
$$a^{\frac{m}{n}} = (\sqrt[n]{a})^m = \sqrt[n]{a^m}$$
 as long as $\sqrt[n]{a}$ is defined.

•
$$a^{-\frac{m}{n}} = \frac{1}{\frac{m}{a^n}}$$
 as long as $a^{\frac{m}{n}}$ is a nonzero number

All the Exponent Rules that work with integer exponents, also work with rational exponents

 $\ \ \, \odot \ \,$ Translation of Some of the Exponent Notation and Rules into Radical Language:

1.
$$\sqrt[n]{a^n} = a$$
 if *n* is an odd, and $\sqrt[n]{a^n} = |a|$ if *n* is an even.

2.
$$\left(\sqrt[n]{a}\right)^n = a$$
 as long as $\sqrt[n]{a}$ is defined.

3.
$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$
 as long as $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are defined.

4.
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$
 as long as $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are defined, and $\sqrt[n]{b}$ is nonzero.