Lines

(). Slope of Line L: $m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are points on L

- If $m>0$, the line is increasing
- If $m<0$, the line is decreasing
- If $m=0$, the line is horizontal

- If m is undefined, the line is vertical

Parallel and Perpendicular Lines:

- Two lines L and L_{1} are parallel if their slopes are equal
- Two lines L and L_{2} are perpendicular if the multiplication of their slopes is equal to -1 . If L has slope m , and L_{2} has slope m_{2}, then L and L_{2} are perpendicular if $m_{2}=-1 / m$

Equation of a line L:

- The slope-intercept equation: $\boldsymbol{y}=\boldsymbol{m x}+\boldsymbol{b}$ where m is the slope, and b is the y-coordinate of the y-intercept of L
- The point-slope equation: $\boldsymbol{y}-\boldsymbol{y}_{\boldsymbol{1}}=\boldsymbol{m}\left(\boldsymbol{x}-\boldsymbol{x}_{\boldsymbol{1}}\right)$ where m is the slope, and $\left(x_{1}, y_{1}\right)$ is a point on L

