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Abstract. We provide necessary and sufficient conditions for a Gaussian ring
R to be semihereditary, or more generally, of w.dimR ≤ 1. Investigating the
weak global dimension of a Gaussian coherent ring R, we show that the only
values w.dimR may take are 0, 1 and ∞; but that fP.dimR is always at most
one. In particular, we conclude that a Gaussian coherent ring R is either Von
Neumann regular, or semihereditary, or non-regular of w.dimR = ∞.

1. Introduction

Let R be a commutative ring, and let x be an indeterminate over R. For a
polynomial f ∈ R[x], denote by c(f)—the content of f —the ideal of R generated
by the coefficients of f . For two polynomials f and g in R[x],

c(fg) ⊆ c(f)c(g).

A polynomial f is called a Gaussian polynomial if this containment becomes
equality for every polynomial g in R[x]. A ring R is called a Gaussian ring if ev-
ery polynomial with coefficients in R is a Gaussian polynomial. Both definitions
first appeared in Tsang’s thesis [12], where it is also proved that polynomials with
invertible, or more generally locally principal, content ideals are Gaussian polyno-
mials. The question whether the converse holds received a great deal of attention
in recent years; Glaz & Vasconcelos [6, 7], Heinzer & Huneke [8], Loper & Roitman
[9], and Lucas [10]. [3] provides a survey of the results obtained until the year 2000,
and an extensive reference list.

The present article is concerned with a related, but different, aspect of this topic,
namely the characterization of Gaussian rings. Tsang [12] and Gilmer [4] provided
a very elegant homological characterization of Gaussian domains. Recall that a
domain R is a Prüfer domain if every finitely generated ideal of R is invertible. The
result of Tsang, and Gilmer, (recently given a new proof by the work of Loper &
Roitman) stated that a domain R is Gaussian if and only if it is a Prüfer domain.
Our concern is with the form this characterization takes when the ring is not a
domain.

A homological generalization to rings R of the Prüfer property for domains, is the
condition: R has weak global dimension less or equal to one, w .dimR ≤ 1. Recall
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that this condition is equivalent to asking that all ideals of R be flat. A subfamily
of this class of rings is the class of semihereditary rings. Recall that a ring is
semihereditary if every finitely generated ideal of R is projective. Semihereditary
rings R are precisely those rings R with w.dimR ≤ 1 which are coherent. Domains
of weak global dimension less or equal to 1, in particular, semihereditary domains,
are Prüfer domains. And in Section 2 we show that rings of w.dimR ≤ 1 are
Gaussian rings. We also provide a number of necessary and sufficient conditions for
a Gaussian ring to be semihereditary, or more generally, of weak global dimension
less or equal to one.

In Section 3 we consider the question: For a Gaussian ring R, what values may
w.dimR take? We provide a complete answer to this question in case the ring R is
coherent. In particular, we prove that a Gaussian coherent ring R always satisfies
fP.dimR ≤ 1, and is either regular, in which case w.dimR ≤ 1 (that is, R is
either semihereditary or Von Neumann regular); or is not regular and w.dimR =
∞. We conclude, by providing examples that show that both fP.dimR = 0 and
fP.dimR = 1 are realizable in Gaussian, Noetherian rings of w.dimR = ∞.

Tsang [12], D.D. Anderson [1], and D.D. Anderson & V. Camillo [2] considered
various aspects of Gaussian rings, touching indirectly on some of the topics of this
article.

The term local ring means a not necessarily Noetherian ring with only one max-
imal ideal.

2. Weak global dimension one

There are two conditions that one can impose on the set of all principal ideals of
a ring R, in order to obtain some control on the behavior of the zero divisors of R.
A ring R is called a PF ring if all principal ideals of R are flat. The PF condition
on R is equivalent to R being locally a domain [5, Theorem 4.2.2]. A ring R is
called a PP ring or a Weak Baer ring, if all principal ideals of R are projective.
The PP condition, stronger than the PF condition, is equivalent to R being locally
a domain, and Q(R), the total ring of quotients of R, being Von Neumann regular
[5, Theorem 4.2.10].

The following lemma appears in Tsang’s thesis [12], but was never published.
Because the result is both interesting and useful, we give a proof below. The proof
is somewhat different, and much shorter, than Tsang’s proof.

Lemma 2.1. Let R be a local Gaussian ring, and let I = (a1, ..., an) be a finitely
generated ideal of R. Then I2 = (a2

i ), for some 1 ≤ i ≤ n.

Proof. We first assume that I is two generated, I = (a, b). Let f(x) = ax + b, and
consider g(x) = ax − b. Then c(fg) = c(f)c(g), implies that

(a, b)2 = (a2, b2).

Let h(x) = bx + a. Then c(fh) = c(f)c(h), implies that

(a, b)2 = (ab, a2 + b2).

It follows that (a2, b2) = (ab, a2 + b2), and we can write a2 = rab + s(a2 + b2) for
some r and s in R. Rewrite this equality as

(1 − s)a2 + rab + sb2 = 0.
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Since R is a local ring, either s or 1 − s is a unit in R. Assume that 1− s is a unit
in R, and a2 + αab + βb2 = 0, for α = r/1 − s and β = s/1 − s. It follows from
this equality, that if we can show that abε(b2), then (a, b)2 = (b2) as desired. Let
k(x) = (a + αb)x − b. Then c(fk) = c(f)c(k), implies that

(a(a + αb),−ab + b(a + αb),−b2) = (b2) = (a, b)((a + αb), b).

In particular, abε (b2).
Note that the above argument implies that for any two elements a and b, abε(b2)

or (a2). It follows that I2 = (a1, ..., an)2 = (a2
1, ..., a

2
n) for all n. An induction on n

yields I2 = (a2
i ), for some 1 ≤ i ≤ n. �

The next theorem provides necessary and sufficient conditions for a Gaussian
ring R to satisfy w.dimR ≤ 1.

Theorem 2.2. Let R be a ring. Then the following conditions are equivalent:

1. w .dimR ≤ 1.
2. R is a Gaussian PF ring.
3. R is a Gaussian reduced ring.

Proof. We show that 1→2→3→1:
1→2. If w.dimR ≤ 1, then all ideals of R are flat. In particular, R is a PF ring.

We also conclude that localizations of R by prime ideals are domains of weak global
dimension at most one, that is, they are valuation domains. As valuation domains
are Gaussian, R is locally, and therefore globally Gaussian.

2 → 3. Since PF rings are locally domains, R is a reduced ring.
3 → 1. Since R is a reduced ring every localization of R by a prime ideal RP ,

is a local, reduced, Gaussian ring. Let a and b in RP satisfy ab = 0. By Lemma
2.1. (a, b)2 = (b2) or (a2). Say (a, b)2 = (b2) , then a2 = tb2 for some t in RP .
Thus a3 = tb(ab) = 0. Since RP is reduced, a = 0, and RP is a domain. Therefore,
RP is a Prüfer local domain, that is, RP is a valuation domain. It follows that
w.dimRP ≤ 1 for all prime ideal P of R, and as the supremum of all w.dimRP ,
w.dimR ≤ 1. �

In particular, we note that a Gaussian ring R is reduced if and only if it is locally
a domain.

We now characterize when a Gaussian ring is semihereditary.

Theorem 2.3. Let R be a ring. Then the following conditions are equivalent:

1. R is a semihereditary ring.
2. R is a Gaussian PP ring.
3. R is a Gaussian ring and Q(R) is a Von Neumann regular ring.

Proof. We show 1→2→3→1:
1 → 2. Since a semihereditary ring R has w.dimR ≤ 1, it is a Gaussian ring.

Since all its finitely generated ideals are projective, R is a PP ring.
2 → 3. By [5, Theorem 4.2.10] the PP condition implies that Q(R) is a Von

Neumann regular ring.
3 → 1. Let P be a prime ideal of R. By [5, Corollary 4.2.19], it suffices to prove

that RP is a valuation domain. Since Q(R) is Von Neumann regular it is a reduced
ring. It follows that R is a reduced ring. Therefore, every localization of R by a
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prime ideal RP , is a local, reduced, Gaussian ring. We now argue that RP is a
valuation domain, as in Theorem 2.2 (3 → 1). �

In general a ring with Von Neumann regular total ring of quotients need not
be a PP ring. Example 2.5 exhibits a ring with Von Neumann regular total ring
of quotient which is not even a PF ring. We note that Theorem 2.3 implies that
the PP condition coincides with the Von Neumann regularity of the total ring of
quotients condition if the ring is Gaussian.

As localizations of Gaussian rings are Gaussian rings, the total ring of quotients of
a Gaussian ring is a Gaussian ring, but, by the above theorem it may not necessarily
be Von Neumann regular (for an explicit example see Section 3, Example 3.4). This
observation raises the question whether all rings which are total rings of quotients,
that is, every element is either a unit or a zero divisor, are Gaussian. The following
example shows that this is not the case.

Example 2.4. A non-Gaussian total ring of quotients.

Quentel ([11], and see [5, page 120] for an error-free version) constructed an
example of a ring R satisfying:

1. R is a reduced ring.
2. R = Q(R).
3. Min R, the set of all minimal prime ideals of R in the induced Zariski topology,

is compact.
4. R is not a Von Neumann regular ring.

Assume that R is a Gaussian ring. Since R is reduced, it is locally a domain. But
then R is a PF ring. Since Min R is compact, but R = Q(R) is not Von Neumann
regular, this contradicts Theorem 2.4.10 of [5].

We do not know the exact conditions under which a total ring of quotients is a
Gaussian ring, but it is interesting to note that a nontrivial (that is, not a field)
total ring of quotients of a ring may be Gaussian without the ring itself being
Gaussian.

Example 2.5. A Gaussian total ring of quotients of a non-Gaussian ring.

Let R be a Noetherian, local, reduced ring, which is not a domain. Clearly such
a ring cannot be Gaussian. Since R is Noetherian, Min R = {P1, ..., Pn} is a finite
set. The total ring of quotients of R, Q(R) = RP1 ⊕ ... ⊕ RPn . Each RPi is a field,
therefore Gaussian; and as a direct sum of Gaussian rings, Q(R) is a Gaussian ring.

3. Coherent Gaussian rings

Recall that the small finitistic projective dimension of a ring R , denoted by
fP.dimR, is equal to the supremum of the projective dimensions of R modules M ,
which satisfy proj.dimRM < ∞, and M admits a finite resolution consisting of
finitely generated projective modules. In general, fP.dimR ≤ w.dimR. When R is
a coherent ring, fP.dimR accept a more manageable form, namely:

fP.dimR = sup{proj.dimRM |M is finitely presented and proj.dimRM < ∞}.
Recall that a ring R is called a regular ring if every finitely generated ideal of

R has finite projective dimension. This notion, extending Noetherian regularity,
was extensively studied for coherent rings. Coherent rings of finite weak global
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dimensions are regular rings. In particular, Von Neumann regular rings and semi-
hereditary rings are regular rings. But, there are coherent rings, even local, with
infinite weak global dimension which are regular.

Lemma 3.1. Let R be a local, coherent, regular ring, then fP.dim R = w.dim R.

Proof. Since R is a coherent ring, any finitely presented module satisfies w.dimRM
= proj.dimRM . Such a module admits a resolution of finitely generated free
modules. As R is a coherent regular ring, any finitely generated ideal of R has
finite projective dimension, hence any finitely presented cyclic R module has fi-
nite projective dimension. It follows by induction on the number of generators
of a finitely presented R module M , that proj.dimRM < ∞. We conclude that
fP.dimR = w.dimR. �

The close relation between the small finitistic projective dimension and the weak
global dimension, makes it natural to involve fP.dimR, in any attempt to track
the possible values of w.dimR, for a Gaussian ring R. In case R is a coherent
Gaussian ring, Theorem 3.2 shows that fP.dimR ≤ 1. Moreover, the finitistic
projective dimension of such a ring seems to capture “the finite part” of its weak
global dimension, that is, as we see in Theorem 3.3, the weak global dimension is
either locally equal to the finitistic projective dimension, and therefore globally less
or equal to 1, or it is infinite.

Theorem 3.2. Let R be a coherent Gaussian ring, then fP.dimR ≤ 1.

Proof. Assume first that R is local with maximal ideal m. We consider two cases:

Case 1. All the elements of m are zero divisors.

We will show that in this case fP.dimR = 0. Let I = (a1, ..., an) be a finitely
generated proper ideal of R. By Lemma 2.1., I2 = (a2

i ) for some 1 ≤ i ≤ n. Let
c �= 0 satisfy ca2

i = 0, then cI2 = (cI)I = 0. It follows that either cI = 0, or, if not,
there exists an element bεI such that cb �= 0. But, in this second case we obtain
cbI ⊆ (cI)I = 0. We conclude that I has a nonzero annihilator. According to [5,
Corollary 3.3.17], fP.dimR = 0. Note that the coherence of R was not necessary
for this case.

Case 2. m contains a regular element aεm.

We will show that in this case fP.dimR = 1. Since R is a coherent ring, by [5,
Corollary 3.1.4] we have fP.dimR = fP.dimR/aR + 1. Thus it suffices to show
that fP.dimR/aR = 0. Now, as a homomorphic image of a Gaussian ring, R/aR
is a Gaussian ring. R/aR is local with maximal ideal m/am, and by Case 1, it
suffices to show that m/am consists entirely of zero divisors. Denote R/aR by R,
and elements of R by r. Let 0 �= bεm. We need an element 0 �= c in R such that
bc = 0 in R. By Lemma 2.1 (a, b)2 = (a2) or (b2).

If (a, b)2 = (a2), then b2ε(a2) ⊂ (a), and we may take c = b.
If (a, b)2 = (b2), then a2ε(b2). We therefore have a tεR satisfying a2 = tb2. It

follows that tb2 = 0 in R. If t �= 0, we are done, as either tb = 0, or if tb �= 0, then
(tb)b = 0.

If t = 0, then t = ar, for some rεR. We then have a2 = tb2 = arb2 . Since a is a
nonzero divisor a = rb2 .

If r �= 0, we are done as either rb = 0 or if rb �= 0, then (rb)b = 0.
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If r = 0, then r = as for some sεR. We then have a = rb2 = asb2 . Since
a is a nonzero divisor 1 = sb2, contradicting the fact that b is not a unit. Thus
fP.dimR = 1.

Assume now that R is not local. Let M be a finitely presented R module with
proj.dimRM < ∞. Then for a maximal ideal m of R,

proj.dimRmMm ≤ proj.dimRM < ∞.

It follows that
proj.dimRmMm ≤ fP.dimRm ≤ 1.

Since over coherent rings the projective and weak dimensions of a finitely presented
module coincide, we obtain

proj.dimRM = w.dimRM

= sup{w.dimRmMm|m runs over the maximal ideals of R }
= sup{proj.dimRmMm|m runs over the maximal ideals of R}
≤ 1.

We conclude that fP.dimR ≤ 1 as desired. �
Finitely generated ideals of Von Neumann regular rings are projective, hence a

Von Neumann regular ring is semihereditary. Nevertheless, it is customary to call
semihereditary rings R of w. dim R = 0 Von Neumann regular, and semihereditary
rings R of w. dim R = 1 semihereditary.

Theorem 3.3. Let R be a coherent Gaussian ring. Then either w.dimR ≤ 1, or
w.dimR = ∞. In particular, if R is a regular ring, then R is either a Von Neumann
regular ring or a semihereditary ring.

Proof. Assume that R is a regular ring. By Lemma 3.1 at every localization by a
maximal ideal m, we have w.dimRm = fP.dimRm ≤ 1. We conclude that

w.dim R = sup{w.dim Rm|m runs over all maximal ideals of R} ≤ 1.

If w.dimR = 0, R is a Von Neumann regular ring. If w.dimR = 1, since R is
coherent it is a semihereditary ring. We finish by noting that nonregular coherent
rings have infinite weak dimension. �

We conclude this article with two examples that show that both values of the
fP.dimR, 0 and 1, are realizable when w.dimR = ∞ .

Example 3.4. A local, Noetherian, Gaussian ring R with w .dimR = ∞, and
fP .dimR = 0.

Let k be a field, and let T and U be indeterminates over k. Denote by t and u
the images of T and U in k[T, U ]/(T, U)2. Let

R = k[t, u](t,u).

The maximal ideal m = (t, u) satisfies m2 = 0, hence R is Gaussian. If R is a
regular ring by Theorem 3.3, it is either Von Neumann regular or semihereditary.
Since R is local, this means it must be a domain. We conclude that w.dimR = ∞.
We remark that it is possible to show directly that proj.dimRm = ∞. Clearly every
proper finitely generated ideal of R admits a nonzero annihilator, (t, u), therefore
fP.dimR = 0.
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Example 3.5. A local, Noetherian, Gaussian ring R with w .dimR = ∞, and
fP .dimR = 1.

Let C be the complex numbers, and let X and Y be indeterminates over C.
Denote by x and y the images of X and Y in

R = C[X, Y ]/(Y X + Y, Y 2) = C[x, y].

It is shown in [1] that R is a Gaussian ring of Krull dimension one, with unique
minimal prime ideal P = (y), and all maximal ideals, but M = (x+1, y), invertible.
R is not regular. One way to see this is to note that RM is not regular since it
is not a domain, as y(x + 1) = 0. In particular, w.dimRM = ∞, which implies
w.dimR = ∞. According to Theorem 3.2 fP.dimR ≤ 1. To show equality it suffices
to find a finitely presented R module M , with proj.dimRM = 1. For that purpose it
suffices to find one prime ideal of R, Q, such that proj.dimRQMQ = 1. Let Q be an
invertible maximal ideal of R. QRQ is principal and therefore RQ is a DVR. Thus
RQ is a coherent regular ring, and by Lemma 3.1, fP.dimRQ = w.dimRQ = 1.
Thus the existence of such a module MQ is guaranteed. One can also find such a
module by a direct computation, for example, MQ = RQ/QRQ.
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