
 

 

1 

 
 
 
 
 
 
 
PRÜFER CONDITIONS IN RINGS WITH  ZERO-
DIVISORS 

 

 

SARAH GLAZ 

 

Department of Mathematics 

University of Connecticut 

Storrs, CT 06269 

glaz@uconnvm.uconn.edu 

 

 

 

1. INTRODUCTION 
 

 In his article: “Untersuchungen über die Teilbarkeitseigenschaften 

in Körpern” J. Reine Angew. Math. 168, 1 - 36, 1932 [21], Heinz Prüfer 

introduced a new class of integral domains, namely those domains R in 

which all finitely generated ideals are invertible. He also proved that to 

verify this condition, it suffices to check that it holds for all two-generated 

ideals of R. This was the modest beginning of the notion of a Prüfer 

domain, a notion which made, and continues to make, a significant impact 

on research in non-Noetherian commutative ring theory. Heinz Prüfer 

(1896 - 1934) in his short life, had no opportunity to see  the rings named 

in his honor by Krull ([17], 1936).  It is not an exaggeration to say that 

today there is no conference on a non Noetherian ring theory topic where 

the notion of a Prüfer domain does not make an appearance.  

 

 Prüfer domains acquired, through the years, a great many 

equivalent characterizations, each of which can, and was, extended to 

rings with zero divisors in a number of ways. The purpose of this article is 
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to explore the relations between several extensions of the notions of a 

Prüfer domain to rings with zero divisors.  These generalizations fall into 

the category which may be called homological characterizations, though 

work on all the rings mentioned in this article entails a blend of ring 

theoretic and homological techniques. We consider the following 

extensions of the Prüfer domain:  

 

 1. R is a semihereditary ring. 

 2. w.dim R #1 

 3. R is an arithmetical ring 

 4. R is a Gaussian ring. 

 5. R is a Prüfer ring. 

 

 In Section 2, we provide the necessary background material,  

including definitions, a short historical survey, and the motivation for this 

investigation. Section 3  is devoted to implications and counterexamples. 

We use a blend of known and new results to show the implications:  

1 6 2 6 3 6 4 6 5. We provide examples that show that none of the 

implications is, in general, reversible. We also explore necessary and 

sufficient conditions under which some of the implications become 

reversible.     

 

 

2. BACKGROUND 
 

 A domain D is called a Prüfer domain if every finitely generated 

ideal of D is invertible. This is the original definition given by Prüfer in 

1932 [21]. 

 

 In 1936 Krull [17] turned his attention to Prüfer domains, he 

named them, and proved the first equivalent definition of such a domain, 

namely:  

 

THEOREM 2.1 (Krull [17]) D is a Prüfer domain if and only if every 
localization of D by a prime (respectively maximal) ideal of D is a 
valuation domain. 
 

 For the purpose of later generalizations to rings with zero divisors 

we note that for a domain D to be a valuation domain it is necessary and 



 

 

3 

sufficient that the set of all the ideals of D be totally ordered by inclusion. 

 

 Let R be a ring and let f be a polynomial in R[x]. c(f) – the content 
of f , is the ideal of R generated by the coefficients of f.  For any two 

polynomials f and g in R[x], we have c(fg) f c(f)c(g). f is called a 

Gaussian polynomial if c(fg) = c(f)c(g) for every g , R[x]. A ring R is 

called a Gaussian ring if every polynomial with coefficients in R is a 

Gaussian polynomial. Both definitions are due to Tsang [23]. 

 

 In 1965, Tsang [23], and independently in 1967, Gilmer [9] 

provided the following elegant characterization of a Prüfer domain:   

 

THEOREM 2.2 (Tsang [23], Gilmer [9]) D is a Prüfer domain if and only 
if D is a Gaussian domain. 

 

 Let R be a commutative ring, and denote by Q(R), the total ring of 

quotients of R. A (fractionary) ideal I of R, is invertible if I I 
-1 

= R, where  

I 
-1 

= {r , Q(R) / rI d R}. An invertible ideal is finitely generated and 

contains a regular element.  

  

 For an ideal I of R there is a strong relation between invertibility, 

projectivity, and the property of being locally principal, namely: 

 

THEOREM 2.3 Let R be a ring, and let I be an ideal of R. Then: 
 1. If I is invertible, then I is projective. 
 2. If I is projective, then I is locally principal. 
 3. If I is finitely generated and regular then: 
I is invertible if and only if I is projective if and only if I is locally 
principal.  
 In particular, the three conditions are equivalent for a finitely 
generated ideal of a domain R. 
 

 A ring R is called a semihereditary ring  if every finitely generated 

ideal of R is projective. The origin of this notion is obscure. The earliest 

source I encountered, where semihereditary rings are mentioned is [5]. In 

view of the above theorem, we conclude: 

 

COROLLARY 2.4 D is a Prüfer domain if and only if D is a 
semihereditary domain. 
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 It follows that both Gaussian rings and semihereditary rings extend 

the notion of a Prüfer domain to rings with zero divisors.  

 Prüfer’s original definition was generalized almost verbatim by 

Butts and Smith [4]. R is a  Prüfer ring if every finitely generated regular 

ideal of R is invertible. In 1970 ,Griffin [14], studies these rings and a 

number of related generalized notions. Among many other results his 

article includes the proof of fourteen equivalent definitions for a Prüfer 

ring, reminiscent of similar results known to hold for Prüfer domains (see 

[9], and [7]). 

 

 It remains to consider  generalizations of Krull’s equivalent 

definition of a Prüfer domain. There are two equally natural candidates for 

this purpose. The first is  an arithmetical ring. A ring R is called an 

arithmetical ring if the set of ideals of every localization of R by a prime 

(respectively maximal) ideal of R are totally ordered by inclusion. This 

notion is due to Fuchs [8]. The second generalization is to a ring R with 

weak global dimension of R less or equal than one, w.dim R # 1. Those 

are the rings over which every module has weak dimension at most one. 

Equivalently,   w.dim R  #1 means that every ideal of R is flat. Another 

characterization of rings R with w.dim R  # 1 is that they are precisely the 

rings whose localizations at the prime ideals are all valuation domains (see 

[10]). This makes them good candidates for extensions of Prüfer domains 

as characterized by Krull. Hence both arithmetical rings, and rings of 

w.dim R # 1  generalize Krull’s characterization of a Prüfer domain. The 

difference between the two notions is that the localizations by prime ideals 

of an arithmetical ring need not be domains. 

 

 We therefore arrived at the full list of five generalizations 

mentioned in the introduction.  

 

 The motivation for our interest in these particular five 

generalizations was our interest in the notion of a Gaussian ring. This 

interest first took form of a joint work with W. Vasconcelos regarding a 

conjecture of Kaplansky: The content ideal of a Gaussian polynomial is an 

invertible (or locally principal) ideal.  The reason behind the conjecture is 

that the converse holds [23]. Vasconcelos & myself answered the question 

affirmatively in a large number of cases [11, 12]. The affirmative answer 

was later extended by Heinzer & Huneke [15] to include all Noetherian 
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domains. Recently the question was answered affirmatively for all 

domains by Loper & Roitman [18], and finally to non-domains provided 

the content ideal has zero annihilator by Lucas [19]. A flurry of related 

research ensued, particularly investigations involving Dedekind-Mertens 

Lemma and various extensions of the Gaussian property. [2] and [6] 

provide a survey of results obtained up to year 2000 and an extensive 

bibliography. 

  

 A related, but different, question is : How Prüfer-like is a Gaussian 

ring? Various aspects of the nature of Gaussian rings were investigated in 

Tsang’s thesis [23], by D.D. Anderson [1], D.D. Anderson & Camillo [3],   

and Glaz [13]. While all of those works touch indirectly on the mentioned 

question, it is Glaz [13] that asks and  provides some direct answers. We 

will cite relevant results later on in this article.   

 

 

3. IMPLICATIONS AND COUNTEREXAMPLES 
 
3.1   The relation between semihereditary rings and rings R of  
         w.dim R ####1. 
 

THEOREM 3.1.1. Semihereditary rings have w.dim R #1. 
 

Proof.  This implication is well known. We sketch one possible  proof 

here: Since every principal ideal of a semihereditary ring R is projective, 

we obtain that for every prime ideal P of R, RP is a domain. Moreover, 

finitely generated ideals of RP are projective and therefore free. Thus RP is 

a Bezout domain, and hence a valuation domain. This implies that  

w.dim R = sup{w.dim RP | P runs over all prime ideals of R}# 1.  

 

EXAMPLE 3.1.2.  A non semihereditary ring R with w.dim R # 1. 

 

Let Q be the rational numbers, and let Q[x] be the ring of polynomials in 

one variable over Q. Let R be the subring of  (Q[x], the infinite product 

of  Q[x], consisting of the sequence (x, 0, x
2
, 0, x

3
, 0, .......), and all 

sequences that eventually consist of constants. 

 

 The following is a compilation of the known conditions [10, 20] 
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under which a ring of w.dim R # 1 is semihereditary. 

 

THEOREM 3.1.3.(Glaz [10], Marot [20]) Let R be a ring. The following 
conditions are equivalent: 
 1. R is a semihereditary ring. 
 2. R is a coherent ring of w.dim R# 1. 

3. w.dim R #1 and the total ring of quotients of R,  Q(R), is Von       
    Neumann regular. 
 

Proof. The implication 1 : 2 is well known and due, independently, to 

Marot [20], and Glaz [10]. The implication 1: 3 follows from a result of 

Marot [20], which states that a ring R is semihereditary if and only if Q(R) 

is Von Neumann regular, and RP is a valuation domain for every prime 

ideal P of R. 

 

 

3.2.  The relation between rings R of w dim R #### 1 and arithmetical 
         rings.                                      
 

THEOREM 3.2.1 (Jensen [16])  A ring with w.dim R # 1 is an      
arithmetical ring. 
 

Proof. The proof is due to Jensen [16]. The remarks above regarding the 

nature of the localizations of both type of rings makes the proof of this 

implication clear. 

 

 We now cite a very useful characterization of arithmetical rings 

due to Jensen [16], which helped us find a counterexample to the converse 

of Theorem 3.2.1.  

 

THEOREM 3.2.2 (Jensen [16]) R is an arithmetical ring if and only if 
every finitely generated ideal of R is locally principal. 
      
EXAMPLE 3.2.3. An arithmetical ring R with w.dim R > 1. 
   

R = Z4, the ring of integers modulo 4. Since its only ideal is 2Z4, Z4 is 

arithmetical. Note that Z4 is not a reduced ring since 2
2
 = 0. By  

Theorem 3.2.4. below, we conclude that w.dim Z4 > 1. 
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THEOREM 3.2.4. (Jensen [16]) Let R be a ring. The following conditions 
are equivalent: 

1. w.dim R #1. 
2. R is an arithmetical reduced ring. 

 

 

3.3.   The relation between arithmetical rings and Gaussian rings. 
 

THEOREM 3.3.1.  An arithmetical ring is a Gaussian ring. 

 

Proof. Let f be a polynomial with coefficients in an arithmetical ring R. 

Then by Theorem 3.2.2. c(f) is a locally principal ideal. It is proved in [23] 

that such polynomials are Gaussian, therefore R is a Gaussian ring. 

 

EXAMPLE 3.3.2. A non-arithmetical Gaussian ring. 
 

Let k be a field, and let t and u be indeterminates over k. Let T and U be 

the images of t and u in k[t,u]/(t, u)
2
, and let R = k[T,U](T, U) . R is a local 

ring with maximal ideal m = (T, U). Because m
2
 = 0, one can easily check 

that R is Gaussian. But m is not principal so R is not arithmetical. 

 

 Of  recent vintage, is the investigation carried out in Glaz [13], into 

the nature of the weak global dimension of a Gaussian ring. Among other 

results we found necessary and sufficient conditions for a Gaussian ring R 

to be of w.dim R # 1, or semihereditary. After a brief preliminary 

discussion we  cite the results obtained in this paper in Theorems 3.3.4. 

and 3.3.5. below. 

 

 Recall two conditions one may impose on the set of principal 

ideals of a ring R to gain some control over the behavior of its zero 

divisors. R is called a PF ring if the principal ideals of R are flat. This 

condition is equivalent to R being locally a domain [10]. A ring R is called 

a PP ring, or weak Baer ring, if the principal ideals of R are projective. 

The PP condition is stronger then the PF condition. The exact relation 

between the two conditions is given in Theorem 3.3.3., below. Min R 

denotes the set of all minimal prime ideals of R in the induced Zariski 

topology from Spec R.  
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THEOREM 3.3.3. (Glaz [10]). Let R be a ring. The following conditions 
are equivalent: 
 1. R is a PF ring and Min R is compact. 
 2. R is a PP ring. 
 3. R is a PF ring and Q(R), the total ring of quotients of R, is a Von                    
               Neumann regular ring. 
 

 We  now note the conditions from [13], that allow reversal of 

implications involving the Gaussian condition. 

  

THEOREM 3.3.4. (Glaz [13])  Let R be a ring. The following conditions 
are equivalent: 
 1. w dim R # 1. 
 2. R is a Gaussian PF ring. 
 3. R is a Gaussian reduced ring.  
 

THEOREM 3.3.5 (Glaz [13]) Let R be a ring. The following conditions 
are equivalent: 
 1. R is a semihereditary ring. 
 2. R is a Gaussian PP ring. 
 3. R is a Gaussian ring and Q(R) is a Von Neumann regular ring. 
 

 The two results cited above yield an unexpected bonus, the 

equivalence, over Gaussian rings, of conditions which are not generally 

equivalent: 

  The PF condition implies that a ring is reduced, but the converse is 

not generally true, as any reduced local ring which is not a domain shows. 

Theorem 3.3.4. implies that for Gaussian rings the two conditions 

coincide.  

 A similar relation holds between the two conditions “R is a PP 

ring” and  “Q(R) is Von Neumann regular”. The PP condition implies the 

Von Neumann regularity of the total ring of quotients. On the other hand 

the condition “Q(R) is Von Neumann regular” does not , in general, need 

to imply that principal ideals are projective. To see this let R be a 

Noetherian, local, reduced ring which is not a domain. Such a ring is, 

necessarily, not a PF ring. Because the ring is Noetherian it has finitely 

many minimal prime ideals. The total ring of quotients of R is the product 
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of all the localizations of R by the minimal prime ideals of R. As each 

such localization is a field, Q(R) is a Von Neumann regular ring.  

Theorem 3.3.5. implies that the two conditions are equivalent when the 

ring is Gaussian.  

 

 By putting together some of the results and remarks regarding 

Gaussian and arithmetic rings, we obtain that if we impose on a Gaussian 

ring any of the zero divisor controlling conditions discussed in this 

section, be it :  PF, PP, “Q(R) is Von Neumann regular” , or  “R is 

reduced” we obtain that R is arithmetical. We do not, at the moment, know 

the precise conditions  needed as an addition to the Gaussian property to 

make it equivalent to the arithmetic condition. But given the evidence 

accumulated so far, we dare make the following conjecture: 

 

CONJECTURE 3.3.6. A ring R is arithmetical if and only if R is a 
Gaussian ring and Q(R), the total ring of quotients of R, is an arithmetical 
ring. 
 

 

3.4. The relation between Gaussian rings and Prüfer rings.  
 

THEOREM 3.4.1.  Let R be a Gaussian ring, then R is a Prüfer ring. 
 

Proof. There are several ways one can prove this fact, but it will be nice to 

deduce it easily from the latest article on Kaplansky’s Conjecture, Lucas 

[19]. Lucas [19] proved a slightly stronger version of the following: Let R 

be a ring, and let f be a  Gaussian polynomial whose content ideal c(f) 

contains a regular element, then c(f) is an invertible ideal. We conclude 

that all finitely generated regular ideals of a Gaussian ring are invertible. 

 

EXAMPLE 3.4.2. A non-Gaussian  Prüfer ring. 

 

Let k be a countable, algebraically closed field, let J be an infinite set, and 

denote by k
J
 the set of all maps from J to k. Let N denote the set of natural 

numbers. Let L = JxN
N
 .Quentel( [22], and see [10, page 120] for an error-

free version) constructed an algebra R f k
L
, which satisfies the following 

four properties: 

 

 1. R is a reduced ring. 
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 2.  R = Q(R). 

3. Min R, the set of all minimal prime ideals of R in the induced 

    Zariski topology, is compact.                

 4. R is not a Von Neumann regular ring. 

 

Since R = Q(R), every element of R is either a unit or a zero divisor, and 

therefore R has no regular ideals. Thus R is a Prüfer ring.  It is proved in 

[13] that R is not a Gaussian ring. 

 

 We are not sure which additional property will provide necessary 

and sufficient conditions for the reversal of the implication of  

Theorem 3.4.1. We just remark that Prüfer rings are very close to being 

Gaussian rings, namely: 

 

THEOREM 3.4.3.  Let R be a Prüfer ring, and let f and g be two 
polynomials in R[x]. If c(f) is a regular ideal, then c(fg) = c(f)c(g). 
 

Proof. It is straightforward from Tsang’s [23] result which states that 

polynomials with invertible content ideal are Gaussian. 
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