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1. INTRODUCTION 
 

The finite conductor property of a domain R, that is the finite generation of the conductor ideals (I:J) for principal 

ideals I and J of R, came into prominence with the publication of Mc Adam's work [36]. The definition of a finite 

conductor domain appears in an early unpublished version of Mc Adam's manuscript, but it appears in print for the 

first time in [11]. The notion embodies, in its various aspects, both factoriality properties and finiteness conditions. 

Indeed, the class of domains where (I:J) is itself principal is precisely that of Greatest Common Divisor (GCD) 

domains, while the requirement that (I:J) be finitely generated is a necessary condition for the coherence of a domain. 

For that reason the finite conductor property makes frequent, explicit or implicit, appearance in the literature in two 

kinds of, occasionally intermingling, investigations: those involving factoriality and those concerned with finiteness, 

coherent-like conditions, of domains. Regarding investigations involving factoriality : GCD domains were 

investigated in their own right for a variety of structural properties, as an aspect of properties of various ring 

constructions, and as a source of generalizations to other classes of rings. Articles [2, 3, 5, 6, 9, 10, 11, 12, 15, 18, 32, 

33, 45, 51] provide just a partial list of references on the subject. Providing a list of references that will do justice to 

the research done in the subclass of the GCD domains which are UFDs is a formidable task (see [4] for an account 

and bibliography in this direction). We will just mention here the work of Gilmer, and Gilmer and Parker [17], [18], 

which has a direct bearing on the central theme of this article. Gilmer and Parker [18] determine conditions under 

which group rings are UFDs (and GCDs). Gilmer [17] uses this characterization to provide examples of rings which 

are non Noetherian UFDs, therefore separating the finite conductor condition from Noetherianess. The rings 

constructed in Gilmer's examples are all coherent. The second kind of investigation involves the 
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interconnection between various finiteness, coherent-like, conditions and the finite 

conductor property. Here also the literature is too vast to cite in its entirety, for once all 

research done in coherent rings falls into this category (see [22] for an account on research 

in coherent rings till 1989). Other coherent-like conditions include Mori domains, PVMD 

domains, v-domains, v-coherent domains, DVF domains, quasi coherent domains, and 

several others. [15] defines all these notions and exhibits some of the relations between 

them. Some articles relating directly between one of the mentioned coherent-like 

conditions and finite conductor domains are [7, 12, 13, 15, 37, 40, 50]. Quasi coherence in  

domains, a property falling between finite conductor and coherence, which will play an 

important role in our investigation, was defined by Barrucci, D.F. Anderson and Dobbs in 

[7], as part of this kind of investigation.     

Our interest in the relation between the finite conductor property and coherence 

was aroused when we encountered the following statement regarding a domain R, in 

Gabelli and Houston's paper [15]: "To our knowledge, there are no known examples which 

prove that these properties are distinct". Gabelli and Houston's paper investigate a number 

of coherent-like conditions in pullback rings. The nature of the conditions found in [15], 

necessary to insure that pullback rings are coherent, quasi coherent or finite conductor 

domains does not yield a ready example differentiating between coherence and the other 

two properties. The same phenomenon, for D+M constructions, occurs [12]. 

This survey article centers around the work done  in Glaz [25 ] whose original 

purpose was to generate various examples of non coherent finite conductor domains. These 

examples are reproduced here in Sections 5 and 6. The investigation [25] branched out in 

a more general inquiry on the relation between the finite conductor property and coherence.  

We follow this inquiry through the extension of the notions of finite conductor and quasi-

coherence to rings with zero-divisors. The introduction of  zero divisors into play 

simplified the work of producing counterexamples (see the examples of Section 2), but 

also introduced a new complexity when attempting to generate positive results. The ring 

theoretic techniques which worked so well in case the ring is a domain did not suffice to 

tackle rings with zero divisors. Homological algebra methods, an interplay between 

finiteness and flatness, turned out to be more useful in this case. Sections 2 and 3 display 

several basic ascent and descent results under flat extensions, and clarify the relation 

between these properties for rings of small weak and global dimension. Section 4 highlights 

the work done in G-GCD rings. G-GCD rings, a  class of finite conductor rings defined by 

Glaz [25 ],  generalize GCD domains, G-GCD domains defined by the Andersons [2], and 

coherent regular rings. We explore the interplay between finiteness, flatness and 

projectivity of ideals in G-GCD rings; the nature of their localizations, minimal prime 

spectrum, total ring of quotients; and their behavior under flat extensions. We end the 

section with an example [25] of a total ring of quotients which is not a finite conductor ring. 

Section 5 explores the interplay between the (quasi) coherence of a ring R and finite 

conductor properties of the polynomial ring R[x]. In particular  if R is an integrally closed 

coherent domain then R[x] is quasi coherent [25]; and if R is a coherent regular ring then 

R[x] is actually a G-GCD ring [25]. In view of the difficulties involved in ascending the 

coherence of a ring R to the polynomial ring R[x] (see [22] and [49] for accounts on stable 

coherence), it is interesting to note that for such a large class of coherent rings at least the 

quasi coherence (and G-GCD) property ascends to R[x]. We also exhibit an example of a 

local domain R of w.dim R=2 which is finite conductor (GCD) domain but not coherent 

[25]. In Section 6 we explore the conditions under which a fixed subring RG preserves the 

quasi coherence and finite conductor properties of the ring R. We display an example of a 
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non coherent UFD fixed ring [25], and utilizing a result and idea of Gilmer and Parker 

[17,18], we provide a sequence of non coherent UFD group rings with strictly increasing 

Krull dimensions.   
The article is a blend of results appearing in the literature and a number of new examples 

and results that are nevertheless, in keeping with the survey article tradition, given here 

without proofs. 

 

2. PRELIMINARIES 
 

Let R be a commutative ring. For two ideals I and J of R, (I:J) denotes the conductor of J 

into I, that is (I:J) = {r∈R / rJ⊂I}. If I=aR and J=bR we write (a:b) for (I:J). µ(I) denotes 

the cardinality of a minimal set of generators of I. 

 

Definition 1  R is called a finite conductor ring if aR∩bR and (0:c) are finitely generated 

ideals of R for all elements a, b and c of R. R is a called quasi coherent ring if a1R∩...∩anR 

and (0:c) are finitely generated ideals of R for any finite set of elements c and a1,...,an of R. 
 

Proposition 1 [25]  Let R be a ring. The following conditions are equivalent: 
1. R is a finite conductor ring. 

2. Any ideal I of R with µ(I) ≤ 2 is finitely presented. 

3. (a:b) is a finitely generated ideal of R for all elements a and b of R. 

 

Let Q(R) denote the total ring of quotients of R. Then each of the conditions of 

Proposition 1 is equivalent to its analogous statement where the elements of R are replaced 

by the elements of Q(R), ideals of R are replaced by fractionary ideals of R, but "colons" 

are still taken in R. 

In case R is a domain we have an additional equivalent property, which extends 

to the quasi coherent case as well. For a fractionary ideal I of R denote by I-1= {a∈Q(R) / 

aI⊂R}. 
 

Proposition 2 [25] Let R be a domain. Then R is a finite conductor ring (respectively a 

quasi coherent ring) if and only I-1 is finitely generated for any ideal I of R with µ(I) ≤ 2 

(respectively µ(I)< ∞). 
 

Just like in Proposition 1, Proposition 2 remains valid if the ideal I is replaced by 

a fractionary ideal I of R. 

I-1 admits several generalizations to rings with zero divisors, the traditional ones 

being (R:Q(R)I) and I* = HomR(I,R). Both of these modules coincide if I contains a non zero 

divisor. Nevertheless, there is no non-domain equivalent of Proposition 2. What can be said 

is that if R is a finite conductor ring (respectively a quasi coherent ring), and I an ideal 

generated by non zero divisors with µ(I) ≤ 2 (respectively µ(I) <∞), then I-1 is finitely 

generated. Note also that if R is a quasi coherent domain and I is a divisorial ideal of finite 

type-- that is I =(J-1)-1 for a finitely generated ideal J of R, then I is finitely generated.      
 

Example 1 It is relatively easy for a ring or domain not to be finite conductor. Such 

examples abound in the literature. A systematic way one can obtain such examples is by 

considering a Krull domain R possessing a non finitely generated height one prime ideal 
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(such an ideal is an intersection of two principal fractionary ideals). A simple example of 

this kind is R=k[xixj], where k is a field and {xi} countably many indeterminates over k. 

Let L be the quotient field of R. Then R=k[xi]∩L, and is therefore a Krull domain. The 

ideal P generated by all x0xi is a non finitely generated height one prime ideal of R. R has 

infinite Krull dimension. An example along the same lines of a Krull domain of Krull 

dimension three was constructed in [14]. 
 

Example 2 The classical finite conductor domains are Unique Factorization Domains 

(UFDs), and Greatest Common Divisor domains (GCD domains). In both cases aR∩bR is 

a principal ideal for all a and b in R, therefore these domains are also quasi coherent. 

Somewhat less known are the so called Generalized Greatest Common Divisor domains 

(G-GCD domains) defined in [2]. A domain R is a G-GCD domain if the intersection of 

two invertible ideals of R is an invertible ideal of R. As this property extends to the 

intersection of finitely many invertible ideals such a domain is quasi coherent. 
 

Example 3 [25] There are finite conductor (quasi coherent) domains R for which not all 

aR∩bR are invertible ideals of R. One such Noetherian domain appears in [30]. 
R=k[x2,x3,y,xy], where k is a field and x and y are indeterminates over k. m=(x2,x3,y,xy) is 

a non invertible-- in fact mm-1=m, maximal ideal of R, and x2R∩x3R=x3m is not invertible. 
The same phenomenon occurs in any local Noetherian domain of Krull dimension 1 which 

is not a DVR. 

 

Example 4 There are finite conductor (quasi coherent) rings which are not coherent rings. 

Based on a construction of Quentel [43], we let Ri=C[x,y,z] be countably many copies of 

the polynomial ring in three variables over the complex field C. Let R=∏Ri. Let a=(ai) and 

b=(bi) be elements of R. Since C[x,y,z] is a UFD there are elements ci in C[x,y,z] with 

(ai:bi)=ciRi, then (a:b)=cR for c=(ci). It follows that R is quasi coherent. On the other hand 

as seen in [43] (and [49] Example 8.11), R is not a coherent ring. 
 

Example 5 [25] Let R=∏Ri and let I=∏Ii and J=∏Ji be two ideals of R, then I∩J=∏(Ii∩Ji). 

Similarly, for an element c=(ci) in R (0:c)=∏(0:ci). Thus I∩J is a finitely generated ideal of 

R if and only if sup{µ(Ii∩Ji)}<∞; and (0:c) is finitely generated if and only if 

sup{µ((0:ci))<∞. In particular if each Ri is a finite conductor ring (respectively a quasi 

coherent ring), then R=∏n
i=1Ri is a finite conductor ring (respectively a quasi coherent ring). 

 

3. FLATNESS 
 

Flat Limits 
 

Let {Ri} be a directed system of rings with directed index set, and let R=lim Ri. 

Recall that R is called a flat direct limit of Ri, if for every j ≥ i, Rj is flat over Ri. R is called 

a faithfully flat direct limit of Ri, if for every j ≥ i, Rj is faithfully flat over Ri. 
 

Proposition 3 Let {Ri} be a directed system of rings with directed index set, and let 
R=lim Ri be a flat direct limit of Ri. If for every i, Ri is a finite conductor ring (respectively 

a quasi coherent ring), then R is a finite conductor ring (respectively a quasi coherent ring). 
 

Flat Ring Extensions 
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Proposition 4 [25] Let A → B be a ring extension. If B is faithfully flat over A and B is a 

finite conductor ring (respectively a quasi coherent ring), then A is a finite conductor ring 

(respectively a quasi coherent ring). 
 

Example 6 [25] If A⊂B and B is merely flat over A the extension does not need to descend 

the finite conductor property, even when A and B are both domains and B is a Noetherian 

UFD. To see this let A=k[x,yx,yw,y2w,y3w,...]⊂B=k[x,y], where k is a field, x and y are 

indeterminates over k, and w=yx+1. It is shown in [21] that B is flat over A. A is not a 

finite conductor domain as (yx:x)=(yx,yw,y2w,y3w,...) is not a finitely generated ideal of A. 
 

Localizations   
 

Proposition 5 [25] Let S be a multiplicatively closed subset of R. If R is a finite conductor 

ring (respectively a quasi coherent ring) then RS is a finite conductor ring (respectively a 

quasi coherent ring). 
 

In particular every localization of a finite conductor ring (respectively a quasi 

coherent ring) at a maximal ideal is a finite conductor ring (respectively a quasi coherent 

ring). The converse holds for a ring R with finitely many maximal ideals mi, since then the 

ring T=∏Rmi is a finite conductor ring (respectively a quasi coherent ring) which is 

faithfully flat over R; but does not hold in general. Nagata-Harris example [39],[27] (see 

[22] pages 51- 54 for details) provides a non finite conductor ring (not a domain) whose 

localizations at every maximal ideal is a field or a DVR. An example of a non finite 

conductor domain whose every localization at a maximal ideal is a finite conductor ring is  

given [37]. 
 

Rings of Small Weak and Global Dimensions     
 

We now turn our attention to rings of small weak and global dimensions. Rings R 

of  w.dim R=0 are precisely the Von Neumann regular rings and as such coherent. The next 

result clarifies the situation for rings or weak dimension 1. 

 

Proposition 6 [25] Let R be a ring of w.dim R=1. The following conditions are equivalent: 
1. R is a semihereditary ring. 

2. R is a coherent ring. 

3. (0:c) is a finitely generated ideal of R for every element c of R. 

In particular a domain R of w.dim R=1 is a coherent ring. 

 

Thus for a ring of weak dimension 1 the finite conductor, the quasi coherent, and 

the coherent conditions coincide. If the weak dimension of R is two this is not necessarily 

true. 

 

Theorem 7 [25] Let R be a ring of w.dim R=2. If R is a finite conductor ring then R is a 

quasi coherent ring. 
 

We remark that if w.dim R=2, the finite conductor, and hence quasi coherence, 
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property does not necessarily imply coherence, even in case R is a local domain. This is 

shown in Example xxx 

As a consequence we can clarify the relation between the three properties for rings 

of small global dimension. 1 and 2 of Corollary 8 are well known. 

 

Corollary 8 Let R be a ring. Then: 
1. gl.dim R=0 if and only if R is semisimple. Hence in this case R is Noetherian. 

2. gl.dim R=1 if and only if R is hereditary. Hence in this case R is coherent. 

3. If gl.dim R=2, R is coherent if and only if (0:c) is finitely generated for every element c 

of R. 

 

4. G-GCD RINGS 
 

In this section we explore the properties of G-GCD rings defined in [25]. These rings 

generalize GCD domains, G-GCD domains defined and explored in [2], and coherent 

regular rings. The motivation behind our definition is the result of Theorem 7, and indeed 

a finite conductor ring R of w.dim R=2 will be an example of a G-GCD ring. 

Let R be a ring, and denote by Q(R) the total ring of quotient of R. For a 

fractionary ideal of R, I, let I-1={ a∈Q(R) / aI⊂R}. A fractionary ideal I of R is called 

invertible if II-1=R. Write a1b1+...+anbn=1, with ai∈I and bi∈I-1, i≥1. Then it is clear that I 

is finitely generated-- by a1,...,an, and that I contains a non zero divisor-- the multiplication 

of all the denominators of bi. It is well known (see for example [47]) that a fractionary ideal 

I is invertible if and only if I is a projective R module containing a non zero divisor. 
   

Definition 2 [25] A ring R is called a G-GCD ring if the following two conditions hold: 
C1. Every principal ideal of R is projective. 

C2. The intersection of any two finitely generated flat ideals of R is a finitely generated 

flat ideal of R.      

 

A ring satisfying C1 is sometimes known in the literature as a pp ring. Note that 

C1is equivalent to: (0:c) is a finitely generated ideal and cR is a flat ideal for every element 

c of R. In the presence of C1, C2 becomes equivalent to: The intersection of any two 

principal (fractionary) ideals of R is a finitely generated flat (fractionary) ideal of R. 

Also note that if R is a domain the above definition coincides with the definition 

of a G-GCD domain. It is clear that G-GCD rings are quasi coherent rings. 

In the following propositions we collect some properties of a G-GCD ring. 

 

Proposition 9 [25] Let R be a G-GCD ring. Then the following hold: 
1. R is a reduced ring and RP is a GCD domain for every prime ideal P of R. 
2. R is integrally closed in its total ring of quotients. 

3. Min R, the set of all minimal prime ideals of R, is compact in the induced Zariski topology. 

4. Q(R), the total ring of quotients of R, is a Von Neumann regular ring. 

 

 

G-GCD rings are well behaved with respect to faithfully flat extensions.     

 

Proposition 10 
1. Let {Ri} be a directed system of rings with directed index set, and let R = lim Ri be a 
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faithfully flat direct limit of Ri. If each Ri is a G-GCD ring, then R is a G-GCD ring. 
2. Let A → B be a ring extension with B faithfully flat over A. If B is a G-GCD ring then A 

is a G-GCD ring. 

 

At first glance it seems that we could define two stronger generalizations of a G-

GCD domain by requiring that principal ideals of R are projective and replacing the second 

condition by either of the following: 

C2'. The intersection of two finitely generated projective ideals of R is a finitely generated 

projective ideal of R. 

C2''. The intersection of two invertible ideals of R is an invertible ideal of R. 

The next result, somewhat surprisingly,  shows that neither of these requirements 

generates a new class of rings. 

 

Theorem 11 [25] 
1. Let R be a ring whose principal ideals are projective and let I be a finitely generated flat 

ideal of R. Then I is a projective ideal. In particular, R is a G-GCD ring if and only if C1  

and C2. are satisfied. 

2. Let R be a ring whose principal ideals are projective. If aR∩bR is finitely generated 

projective for any two non zero divisors a and b of R, then aR∩bR is finitely generated 

projective for any two elements  a and b of R. In particular, R is a G-GCD ring if and only 

if C1 and C2'' are satisfied. 

 

In [3] D.D. Anderson and Markanda defined a GCD ring as a ring R in which 

every two non zero divisors have a greatest common divisor. Like in the domain case this 

condition is equivalent to aR∩bR is principal for any two non zero divisors a and b in R. 

If principal ideals of such a ring R are projective then, by Theorem 11, aR∩bR is principal 

for any two elements a and b in R. We, therefore, include this condition in the definition of 

a GCD ring. A ring R is a GCD ring if principal ideals of R are projective and the 

intersection of any two principal ideals of R is a principal ideal of R. With this definition, 

GCD rings are G-GCD rings, and thus satisfy the properties of Proposition 4.1. It also holds 

that faithfully flat direct limits ascend the GCD property. But it might not be the case that 

a faithfully flat extension A → B descends the GCD property as IB being principal for an 

ideal I of A, does not guarantee that I is principal.       
As befitting a generalization of GCD domains, not all coherent rings are G-GCD 

rings ( Example 3), neither are all G-GCD rings coherent ( Examples 4, xx, xxx, and xxxx), 

but there is an important class of coherent rings which are G-GCD rings. Recall that a ring 

R is called regular if every finitely generated ideal of R has finite projective dimension. 

This notion, which agrees with the classical definition of regularity in case the ring is 

Noetherian, has been extensively studied for coherent rings as well (see [22] for an 

extensive treatment and bibliography). Coherent rings of finite weak dimension are regular 

rings, though the converse does not necessarily hold.   
 

Proposition 12 [25] Let R be a coherent regular ring then R is a G-GCD ring. 
 

In view of the evidence accumulated so far we hazard the following conjecture: 

 

Conjecture 1 Let R be a finite conductor regular ring then R is a G-GCD ring. 
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Let R be a ring and let Q(R) be its total ring of quotients. In some sense Q(R) is 

simpler then R itself: if R is a reduced ring then Q(R) retains only the minimal prime ideals 

of R; if R is a-- not necessarily coherent, G-GCD ring, then Q(R) is a Von Neumann regular 

ring, and thus coherent. Hence it seems interesting to note that a ring R which is a total ring 

of quotients-- that is every element of R is either a unit or a zero divisor, does not 

necessarily have to be a finite conductor ring. The construction of the following example  

originates in Quentel's paper [41]. Because of various errors in this, otherwise excellent, 

paper (some of which were corrected in [42]), we refer the reader to the fully 

corrected version in [22, Chapter 4, Section 2].    

  

Example 7 [25]  Let K be a countable, algebraically closed field, let I be an arbitrary 

infinite set, and let N be the natural numbers. For two sets A and B denote by AB the set of 

all set maps from B to A. Let S = W(R)⊂KIxN  be the algebra constructed on page 118 of 

[22]. It was shown in [22, 42] that S satisfies the following properties: 
1. S is a reduced ring. 

2. S = Q(S). 

3. Min S is compact. 

4. S is not Von Neumann regular. 

It is shown in [25] that a ring S satisfying the above 4 properties contains an element c such 

that (0:c) is not a finitely generated ideal of S. Therefore S is not a finite conductor domain. 

(We remark in passing that since R is a reduced, but not a Von Neumann regular ring, Krull 

dim R>0.)   

 

5. POLYNOMIAL RINGS 
 

In this section we explore the relation between the (quasi) coherence of a ring R 

and the finite conductor properties of the polynomial ring R[x]. 

It is well known that if R is a UFD (respectively a GCD domain), then R[x] is a 

UFD (respectively a GCD domain) (see for example [16]). In [2], the Andersons proved 

that if R is a G-GCD domain then so is R[x]. Their proof made use of a result of Querre 

[44], which we cite below: 

 

Theorem 13 [44] Let R be an integrally closed domain, and let I be a divisorial ideal of 

R[x]. Then: 
1. I∩R=J≠0 implies that I=JR[x]. 

2. I∩R=0 implies that there is a polynomial f in R[x] and a divisorial ideal J of R such that 

I=fJR[x]. 

 

Along the same lines we can prove: 

 

Proposition 14 Let R be an integrally close quasi coherent domain, and let I be a divisorial 

ideal of finite type of R[x], then I is a finitely generated ideal of R[x]. 
 

Recall that a coherent ring R is called stably coherent if the polynomial rings 

R[x1,...,xn] are coherent for every n. It seems that the crucial step in establishing that a ring 

is stably coherent is the ability to show that R[x] is coherent (although the known proofs 

do not proceed by induction on the number of variables like in the Noetherian case). It is 

known that Von Neumann regular rings, semihereditary rings, hereditary rings, and 
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coherent rings of global dimension two are stably coherent rings. (see [22, Chapter 7] for 

an extensive treatment and bibliography on this topic). Thus coherent rings R of w.dim 

R≤1, and coherent rings R of gl.dim R≤2, are stably coherent. Soublin [46] provided an 

example of a coherent ring R (not a domain) of w.dim R=2, for which R[x] is not coherent. 

Alfonsi [1] refined Soublin's example to the case R is a domain. All the rings mentioned 

are coherent regular rings. It follows that it is not easy for a coherent ring R to ascend 

coherence to R[x]. It is therefore interesting to note that large classes of coherent rings R 

asccend some coherent like properties to R[x]. 
 

Theorem 15 [25] Let R be an integrally closed coherent domain. Then R[x] is a quasi 

coherent domain. 
 

It is not clear to what extent the result of Theorem 15  can be extended to rings 

with zero divisors, R, even in case the zero divisors are controlled (i.e. when principal 

ideals of R are projective).  As Querre’s Theorem 13 seems to play a major role in the proof 

of Theorem 15, a step toward answering this question-- and a question of interest in its own 

right, will be to obtain an extension of Querre's Theorem to rings with zero divisors. Since 

the circulation of [25] in preprint form I have been shown other proofs of Theorem 15, 

which do not involve Querre’s Theorem. These proofs depended heavily on techniques and 

definitions that were considered so far only for domains. At the moment both Querre’s 

Theorem as well as  other domain oriented means of proving Theorem 15 do not seem to 

have non domain extensions, nevertheless in case R is a coherent regular ring a way was 

found to bypass the difficulty, and ascend the G-GCD property to R[x]. 

 

We cite a Lemma that is of interest in its own: 

 

 

Lemma 16 [25] Let R be a ring whose principal ideals are projective, then R[x] satisfies 

the same property. In addition, if f∈R[x] then (0:f)=eR[x] for an idempotent e in R. 
 

Using these Lemma and the conditions found in [1] for acyclicity of complexes 

we have: 

 

Theorem 17 [25] Let R be a coherent regular ring, then R[x] is a G-GCD ring. 
 

In view of the evidence accumulated in this section we will hazard a conjecture: 

 

Conjecture 2  Let R be a G-GCD ring, then R[x] is a G-GCD ring. 
 

We now exhibit an example of a local domain R of w.dim R=2 which is a non 

coherent GCD domain. 

 

Example 8 [25] We first consider Soublin's example [46]. Let Si=Q[[t,u]] be countably 

many copies of the power series ring in two variables t and u over the rational numbers Q, 

and let S=∏Si. It is shown in [46] that S is a coherent ring of w.dim S=2 and that the 

polynomial ring S[x] is not a coherent ring. Since S is a coherent regular ring, S[x] is a G-

GCD ring, but S[x] is neither a domain, nor a local ring and w.dim R[x]=3. According to 

[1], there is a localization of S, SP, such that SP[x] is not a coherent ring. As a localization 
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of a regular coherent ring, SP is a domain. Since SP[x] is not coherent w.dim SP=2. Thus 

w.dim SP[x]=3. To knock down the weak dimension by one and obtain a local ring we 

consider the ring R=SP(x)=SP[x]PS [x]. Since SP[x] is not a coherent ring, R is not a coherent 

ring [23], w.dim R=w.dim SP=2  [23]. Clearly R is a GCD domain.        
 

6. FIXED RINGS 
 

In this section we explore the relation between the finite conductor and quasi 

coherence properties of a ring R and that of the fixed ring RG, for a group of automorphisms 

G of R.  Let R be a ring, let G be a group of automorphisms of R, and denote by RG the 

fixed ring of R. RG={a∈R / g(a)=a for all g∈G}. The conditions under which a coherent 

ring R descends coherence to RG were explored in [24]. A crucial restriction involves the 

existence of a module retraction map α:R → RG , that is α is an RG module homomorphism 

satisfying α(a)=a for all a in RG.  If a module retraction map from R to RG exists we say 

that RG is a module retract of R. Note that the existence of the module retraction map α 

implies that R contains RG as an RG module direct summand. It follows that RG is a pure 

RG submodule of R, and that no proper ideal of RG blows up in R. Bergman [8] pointed out 

the existence of such a map in two cases: 
1. G is a finite group and o(G), the order of G, is a unit in R. 

2. G is a locally finite group--that is for every a∈R the orbit of a, Ga, has finite                    

cardinality n(a); and n(a) is a unit in R for every a∈R. 
 

 

 

Proposition 18 [25] Let R be a finite conductor ring (respectively a quasi coherent ring). 

Then RG is a finite conductor ring (respectively a quasi coherent ring) in the following 

cases: 
1. G is a locally finite group and R is a flat RG module. 
2. RG is a module retract of R and R is a flat RG module. 
3. RG is a module retract of R and R is a finitely generated RG module. 
 

Proof. If G is a locally finite group then R is an integral extension of RG, thus in both case 

1 and case 2, R is a faithfully flat RG module, and we can use Proposition 3.2. 
To show 3, let α:R → RG be a module retraction map and let r1,...,rn be a set of generators 

of R as an RG module. Let a∈RG and let (0:Ra) be generated as an ideal of R by a1,...,am. We 

claim that {α(airj) i=1,...,m j=1,...,n} generate (0:R
Ga) as an ideal of RG. aα(airj)=α(aairj)=0, 

thus α(airj)∈(0:R
Ga). If b∈(0:R

Ga), we write b=∑i biai with bi in R, and bi=∑jcijrj with cij in 

RG. Then b=α(b)=∑i∑jα(airj)cij. A similar argument shows that if a1,...,an are elements of 

RG and a1R∩...∩anR is a finitely generated ideal of R, then a1RG∩...∩anRG is a finitely 

generated ideal of RG. 
 

The conditions exhibited in Proposition 18  under which the finite conductor , 

quasi coherence and coherence properties descent from R to RG, although not shown to be 

optimal, are shown to be a pretty tight fit by the multitude of examples provided in [24] of 

coherent rings R which do not descend coherence to RG because RG is not a finite conductor 

ring. The most convincing, and the simplest example is:  R=k[x,y,{zi}], where k is a field 

with ch k≠2 and x,y and {zi} for infinitely many i, are indeterminates over k. G=<g> with 

g the automorphism of R which leaves k fixed and g(x)=-x, g(y)=-y, g(zi)=-zi, for all i. 
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o(G)=2 is a unit in R, and so RG is a module retract of R. R is a coherent domain, but 

RG=k[x2,y2,xy,{z2
i},{xzi},{yzi}] is not a finite conductor domain as the ideal 

(xy:x2)=(y2,xy,{yzi}) is not finitely generated in RG. Nevertheless there is an example were 

neither of the conditions of Proposition 18  hold but R descends UFDness to RG, without 

descending coherence. This is a variation on the famous Nagarajan's example [38]. 
 

Example 9 [25] Example of a local non coherent UFD of Krull dimension 2. 
Let F be the field F=Z2({ai},{bi}), where Z2 is the prime field of characteristic 2, and {ai} 

and {bi} are infinitely many variables over Z2. Let S=F[x,y](x,y), where x and y are 

indeterminates over F. Set pi=aix+biy, and define an automorphism g of R by g(x)=x, g(y)=y, 

g(ai)=ai+ypi+1, g(bi)=bi+xpi+1, for all i. Let G=<g>, then o(G)=2, but 2, of course, is not a 

unit in S. Let R0=SG. (The original example of Nagarajan asks S to be F[[x,y]]). R0 is a 

local Krull domain of Krull dimension 2.  R0 is not a coherent ring [25], but  R0 is a UFD 

[28]. (We remark that R0 of the power series case satisfies the ascending chain condition 

for principal ideals [29], therefore if R0 is a GCD domain, then it is a UFD. It is not known 

if this ring is even a finite conductor domain. Is seems to be very difficult to determine if 

even its height one prime ideals-- all of which are intersections of pairs of principal 

fractionary ideals, are finitely generated.) 
 

If Krull dim R=n, and x is an indeterminate over R then 

n+1≤Krull dim R[x]≤2n+1 [16], thus R0[x1]⊂R0[x1,x2]⊂..., for R0 the ring in Example 9 

and {xi} infinitely many indeterminates over R0, provides a chain of non coherent UFDs 

of strictly increasing Krull dimensions. A more interesting example of the same 

phenomenon can be constructed by using group rings. 
Let G be an abelian group. G is said to be cyclically Noetherian if G satisfies the 

ascending chain condition for cyclic subgroups. 
Let R be a ring, let G be an abelian group and denote by RG the group ring of G 

over R. Gilmer and Parker [18] provided the following characterization of UFD group rings. 

 

Theorem 19 [18] Let R be an integral domain and let G be a torsion free abelian group. 

Then RG is a UFD if and only if R is a UFD and G is cyclically Noetherian. 
 

In [17] Gilmer used this characterization to construct non Noetherian UFDs of 

arbitrary Krull dimensions. These rings are all of the form KG, where K is a field and 

therefore coherent rings by [20]. In Example 10 [25], we utilized the idea behind Gilmer's 

construction to exhibit a collection of non coherent UFDs group rings with strictly 

increasing Krull dimensions. 

 

Example 10 [25] Let p be a fixed rational prime, and let Q(p) be the additive group of 

rationals whose denominators are non negative powers of p. Let σ be a p-adic integer which 

is not rational, and let σn be a sequence of rational integers with σn≡σ(mod pn) for all n. 

Choose independent elements a, b in Q(p)⊕Q(p) and put an=p-n(a+σnb) for all n. Let H be 

the group generated by b and the sequence {an}. For every integer m≥2, let Hm=H if m=2 

and Hm=H×Fm-2 if m>2, where Fm-2 is a free group of rank m-2. It is shown in [17, 18, see 

also 16 and 33] that Hm are torsion free cyclically Noetherian groups with rank H=2 and, 

thus, rank Hm=m for m>2. Let R0 be the fixed ring of Example 9.  By Theorem 19 the rings 

Rm=R0Hm are UFDs. It is shown in [17] that for a group G with rank G=t>0, 
Krull dim RG≥Krull dim R+1. Thus Krull dim R2≥3, For m>2, 
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Rm=R2Fm-2=R2[x1,x1
-1,...,xm-2,xm-2

-1]  is integral over the polynomial ring in m-2 variables 
Am-2=R2[x1+x1

-1,...,xm-2+xm-2
-1] [20]. Therefore 

Krull dim R2+m-2 ≤Krull dim Am-2=Krull dim Rm, and so the Krull dimensions of Rm are 

strictly increasing. Rm are not coherent rings [25]. 
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