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1. INTRODUCTION 

 

This article consists of a collection of  problems in Commutative Ring 

Theory sent to us, in response to our request,  by the authors of articles in this 

volume. It also includes our contribution of a fair number of unsolved problems.  

Some of these one hundred problems already appear in  other articles of this 

volume; some are related to the topics  but do not appear in another article; yet 

others are problems unrelated to any of the articles, but that the authors consider 

of importance. For all problems, we gave a few useful references, which will lead 

readers to other relevant references. There is no attempt to be encyclopedic. We 

added  definitions and clarifying comments to make the problems more self 

contained, but, as a rule, if undefined notions are used the reader can find the 

relevant definitions in the cited references. Finally, this is an article whose 

purpose is to generate many more articles. We hope the problems posed here will 

keep researchers busy for many years, and would appreciate very much being 

sent preprints of their solutions. 

 

2. OPEN PROBLEMS 



2 
 

The underlying assumption is that, unless otherwise stated, all rings are 

commutative with 1, and the term “local ring” refers to a, not necessarily 

Noetherian, ring with only one maximal ideal.      

 

1.    Let D be a domain and let G(D) denote  its group of divisibility. For which 

lattice ordered groups G is there a  non-Bezout GCD domain D with G(D) order 

isomorphic to G? Useful references: [4, Problem # 28], [77], [5, Question 4.5]. 

 

2.   Let R be a domain, let M be an R module and let SR(M) denote the symmetric 

algebra of M over R . When is SR(M) a GCD domain? ([5, Question 4.7]). 

Several answers to this question can be found in [78]. Another useful reference: 

[3]. 
 

3. Let R be a ring. When is the power series ring R[[x]] a GCD domain? ([5, 

Question 4.10], and [4, Problem #17]). Another useful reference: [3]. 

 

4. Let D be a domain. For a polynomial f in D[x], let c(f) denote the content of f. 

f is called a primitive polynomial if c(f)P = D for every prime ideal P of D. f is 

called a superprimitive polynomial if (c(f)-1)-1 = D. D is said to satisfy PSP if 

each primitive polynomial in D[x] is superprimitive. D is said to satisfy PSP2 if 

each primitive linear polynomial in D[x] is superprimitive. Does PSP2 imply 

PSP? Some useful references:  [5, Question 6.1], [6]. 
 

5. Let R be a local ring and let f be a Gaussian polynomial in R[x], that is c(fg) = 

c(f)c(g) for every polynomial g in R[x]. Suppose that c(f) is a regular ideal. Is 

c(f) an invertible (principal) ideal? Kaplansky conjectured that the answer to this 

problem is affirmative for a domain R. For a Noetherian ring R the answer is 

affirmative [54], [62]. Other useful  references: [7], [53], [63]. 

 

6. Which  domains D satisfy c(fg)* = (c(f)c(g))* for all nonzero power series f 

and g in D[[x]], where * denotes the star operation d or v or t?  Versions of this 

question appear in [4, Problem # 17] , and in [5, Question 8.7]. Another useful 

reference: [7] 

 

7.  Which domains D satisfy c(fg)* = (c(f)c(g))* for all nonzero (linear) f in D[x] 

and g in D[[x]], where * is the star operation d or t? Useful references: [5, 

Question 8.8], [7] 

 

8. Let R be a domain, let Tt(R) denote the group of t-invertible (fractional) t-

ideals of R under t-multiplication, Print(R) be its subgroup of principal 

(fractional) ideals, and Clt(R) = Tt(R)/Print(R). Let R[x] be the polynomial ring in 

one variable over R. There is a natural morphism :Clt(R)Clt(R[x]) given by [(I)] = 

[IR[x]]. is an isomorphism if and only if R is integrally closed [42]. If R is not 
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integrally closed does split? Determine Clt(R[x])/Clt(R) when R is not integrally 

closed. Another useful reference: [11].    
 

9. Let R be a domain. Compute Clt(R) when R is a monoid domain, or more 

generally, a graded domain. Useful reference: [11]. 
 

10. Given a * operation one definesanalogously to the definition of Clt(R), by 

replacing t by * (see Problem 8). For which * operations on a domain R, does the 

*-class group yield useful information about R. Useful reference: [11] 
 

11. Let D be a domain and let I be an ideal of D. I is called strongly divisorial if it 

is a divisorial ideal satisfying II-1 = I. Is a domain D completely integrally closed 

if and only if no prime ideal is strongly divisorial? For a Mori domain the answer 

is affirmative [14, Corollary 14]. Another useful reference: [15]. 
 

12. Is a finite (or with finite character) intersection of strong Mori domains a 

strong Mori domain? Strong Mori domains are defined in [38]. This questions 

appears in [39]. Another useful reference: [15]. 

 

13.  A Mori domain D is called a transcendental Mori domain if the polynomial 

ring D[x] is also Mori. Are the polynomial rings in two or more variables over a 

trancendental Mori domain, Mori? This question appears in [15, Section 6]. 

Another useful reference: [13]. 

 

14. Is the polynomial ring in infinitely many indeterminates over a Noetherian 

domain a Mori domain? This question appears in [15, Section 6]. 

 

15. Construct examples of strong Mori domains which are neither Noetherian nor 

Krull domains. Useful references: [15], [38], [39], [59], [60]. 

 

16. Is the complete integral closure of a strong Mori domain a Krull domain? 

Useful references: [15], [38], [39], [59], [60], [85]. 

 

17. Let E be a subset of a rank one valuation domain V, let K be the field of 

quotients of V and denote by Int (E, V) the ring of integer valued polynomials on 

E. Let denote the completion of E. The compactness of  is a sufficient condition 

for Int (E, V) to be a Prufer domain which satisfies the almost strong Skolem 

property [22, Theorem 3.1, Proposition 3.4]. Is the compactness of  necessary for 

Int (E, V) to be a Prufer domain? Is the compactness of  necessary for Int (E, V) 

to satisfy the almost strong Skolem property?  Useful references: [22, Remark 

3.9], [21]. 

 

18. Let E be a subset of a domain D, and denote by Int (E, D) the ring of integer 
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valued polynomials on E. Is the almost strong Skolem property of Int (E, D) a 

local property, that is, if Int (E, D) satisfies the almost strong Skolem property 

does it follow that Int (E, Dm) satisfies the almost strong Skolem property for 

each maximal ideal m of D? The converse is true, and the answer is possitive in 

the Noetherian case, when E = D [22]. In particular, if D is a Dedekind domain, 

is it necessary for Int (E, D) to satisfy the almost strong Skolem property that, for 

each maximal ideal m, the completion of E in the m-adic topology is compact? 

Useful references: [22, Remark 3.9], [21]. 
 

19. Let E be a subset of a DVR, V with maximal ideal m, such that ,the 

completion of E in the m-adic topology is compact. In this case there is a one-to-

one correspondence between the prime ideals of  Int (E, V) lying over m and the 

elements of E [22, Theorem 2.8]. Does this result still hold if V is a one 

dimensional, local, Noetherian, possibly unibranched (or analytically irreducible, 

or with ch V/m > 0), domain? Useful reference: [22, Remarks 2.9 and 2.12]. 

 

20. Let E be a subset of a  domain V and let Int (E, V) be the ring of integer 

valued polynomials on E. The Stone-Weirerstrass Theorem [22, Theorem 2.4], 

and the almost strong Skolem property [22, Proposition 3.4] extend from the case 

where V is a DVR to the case where V is a one dimensional, local, Noetherian 

domain which is analytically irreducible. Can these results be extended to a larger 

class of , not necessarily Noetherian, one dimensional, local domains V? 

 

21. Let E be a subset of a domain D. We say that E does not have any 

polynomially isolated element if any polynomial with coefficients in the field of 

quotients of D which is integer-valued on the complement in E of a singleton 

{a}, is in fact integer-valued on E. We say that E is a coherent subset of D if any 

polynomial with coefficients in the field of quotients of D which is integer-

valued on the complement in E of a finite subset of elements of E, is in fact 

integer-valued on E.  Is a subset  which does not have any polynomially isolated 

element a coherent subset?  If D is completely integrally closed the answer is 

affirmative [22, Remark 3.9]. Another useful reference: [23].   

22. A domain R is called a half-factorial domain (HFD), if every element of R 

can be written as a product of irreducible elements, and any two such 

factorizations of the same element have the same length. Is every HFD, R, a 

subring of a UFD, D, such that every irreducible element r in R is irreducible in 

D? Useful references: [30], [95], [96].   

 

23. Let G be an abelian group. Does there exist a Dedekind domain D with class 

group G which is an HFD (see Problem 22)? Useful references: [30], [75], [96]. 

 

24. Is there a Krull HFD (see Problem 22), R, which is not a Dedekind domain 

such that | Cl(R)| > 2 ? Useful references: [30], [96]. 
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25. Let G be an abelian group, and let S ⊆ G be a non empty subset. A Dedekind 

domain D with class group isomorphic to G such that the classes that contain 

maximal ideals are precisely the elements of S, is called the Dedekind domain 

associated with {G,S}. Given a finite abelian group G, which generating sets S ⊆ 

G yield associated Dedekind domains which are HFDs (see Problem 22)? Useful 

references: [12], [24], [28], [29], [30]. 

 

26. Describe all d < 0 for which the ring of algebraic integers in Q() is an HFD 

(see Problem 22)? Useful references: [30], [34]. 

 

27. A domain D is called atomic if every nonzero nonunit element of D can be 

written as a product of irreducible elements of D.  Let R be an HFD (see Problem 

22) and let S be an overring of R which posses a nonunit of boundary 0, then S is 

atomic [34]. Is the converse true? Other useful references: [30], [35]. 

 

28. Let R be an HFD (see Problem 22), and denote by, the integral closure of R. 

Ifis atomic, does it follow thatis an HFD? Useful references: [30], [35]. 

 

29. Are there an infinite number of (integrally closed) real quadratic HFDs (see 

Problem 22)? Useful references: [30], [34]. 

 

30. Does there exist a real quadratic HFD (see Problem 22) containing infinitely 

many orders that also have the half-factorial property? Useful references: [30], 

[34]. 

 

31.Let x and y be indeterminates over a ring R. If R[x] is an HFD, is R[x,y] an 

HFD? This question has an affirmative answer if R is Noetherian [26]. Other 

useful references: [30], [32], [35]. 

 

32. If R[[x]], the power series ring in one variable over a ring R, is an HFD (see 

Problem 22), does it follow that R is integrally closed? Useful references: [30], 

[35]. 

 

33. Let G be a finite abelian group. A zero sequence {g1,...,gn} of G is a sequence 

of nonzero elements of G whose sum is equal to 0. If a zero sequence of G 

contains no proper zero subsequence it is called a minimal zero sequence of G. 

The Davenport constant of G, denoted by D(G), is the maximal length of a 

minimal zero sequence of G. Find a formula for the Davenport constant of an 

arbitrary finite abelian group G. Useful references: [24], [25]. 
 

34. Let G = be a finite abelian group with ni | ni+1  for 1 i t-1. Let D(G) denote the 

Davenport constant of G, and let M(G) = . It is known that  D(G) = M(G) for p 

groups and for groups of rank 2, but not  in general [24], [25]. Does this equality 
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hold if the rank of G is 3? 
 

35. Let G be a finite abelian group and let g be a nonzero element of G. Find the 

maximal length of a minimal zero sequence of G containing g. Useful references: 

[25], [27]. 

 

36. Let G be a finite abelian group and let P be a minimal zero sequence of G. 

Find an algorithm for constructing a maximal length zero sequence of G 

containing P. Useful references: [25],[27]. 

 

37. Let D be a Dedekind domain and let (n) denote the nth generalized set of 

lengths for D [25, Definition 4.14]. Assume that in addition D has a prime ideal 

in every ideal class. Is (n) an interval for all positive integers n 2? Another useful 

reference: [27]. 
 

38.  Let Cn be the cyclic group of order n. Does (3) = n + 1 for all positive 

integers n  2? For the definition of (n) see [27]. Another useful reference: [25]. 
 

39. For which finite abelian groups G does (3) = ? Here D(G) is the Davenport 

constant of G and (n) is defined in [27]. Another useful reference: [24]. 
 

40. Let (n) denote the cardinality of the set (n).  Let D be a  -finite domain, that is 

(n) is finite for each n. Does (n)/n exist? Useful references: [25], [26], [27], [28]. 

 

41. Let G be a finite abelian group. An r by s matrix with entries from G is a 

factorization matrix if the nonzero elements of each row and column form 

minimal zero sequences and each row and column contains nonzero entries. Let r 

= (3) =  . Is there an r by 3 factorization matrix of G which has a column of 

nonzero entries? Useful references: [24], [25], [27]. 

 

42. If R is a going-down domain of Krull dimension 2, must the integral closure 

of R also be a going-down domain? Useful references: [36], [37]. 

 

43. If R is a domain such that the polynomial ring in one variable R[x] is 

catenarian, must R be universally catenarian? Useful references: [19], [37]. 

 

44. Let R be a domain with field of quotient K. Denote by F(R) the set of all non 

zero R submodules of K. A mapping F(R)     F(R), E     E* is called a semistar 

operation on R if for all nonzero x ε K, and E, F ε F(R): 

1. (xE)* = xE*, 

2. E ⊆ E*, and E ⊆ F implies that  E* ⊆ F* 

3. E** = E* 

Let {Rα / αεA} be a family of overrings of a ring R. Assume that for each α ε A,   

*α is a semistar operation on Rα, then E    E*A, where E*A = ∩ αεA(ERα)*α , 
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defines a semistar operation on R. Find conditions on  *A to be of finite type. 

Useful references: [2], [40].                       
   

45. Let ℱ be a localizing system of a domain R (for definition see [40]). For each 

E ε F(R), the map E     Eℱ = ∪ Jεℱ(E : J) defines a semistar operation on R denoted 

by *ℱ.  To a localizing system ℱ one can associate a localizing system of finite 

type ℱf  ([40, Lemma 3.1]). To a semistar operation *  one can associate a 

semistar operation of finite type *f  ([40, Section 1]).  Characterize all localizing 

systems ℱ such that *ℱf = (*ℱ)f .  Other useful references: [59], [41]. 
 

46. A semistar operation * on a domain R (see Problem 44) is called spectral, if 

there is a family Δ of prime ideal of R , such that for every E ε F(R),   

E* = ∩PεΔ ERP. A semistar operation * on R is called quasi spectral if for every 

ideal I of R such that I*∩ R ≠ R, there exists a prime ideal P of R with I ⊆ P and 

P*∩ R = P. Spectral semistar operations are quasi spectral [40]. To a  semistar 

operation * one can associate a spectral semistar operation *sp  ([40, Section 4]). 

With the notation of Problem 45, if * is a quasi spectral semistar operation on a 

domain R, is (*f)sp = (*sp)f ?                                  
 

47. Is there an example of a finitely spectral non-spectral localizing system? (See 

Problems 44-46). Useful reference: [40]. 

 

48. A pullback diagram of type ☐ is a diagram:              R         D 

                                                             

                                                                                    T   k 

 

where D and T are domains, M is a maximal ideal of T, kT/M, and :Tk is the 

canonical map. In a diagram of type ☐  we have 

Krull dim (R) =  max {htT (M) + Krull dim (D), Krull dim (T)} [44, Corollary 

1.10]. Is there a similar formula for the t-dimension? If K is the field of quotients 

of R, this is related to the problem of determining whether, given a prime t-ideal 

P of R not containing M, Q is necessarily a t-ideal of T, where Q is the unique 

prime of T which satisfies QR = P. 
 

49. A DVF domain is a domain such that each divisorial ideal is v-finite. 

Characterize pullback diagrams of the type ☐ (see Problem 48)  where R is a 

DVF domain. This has been done in [43, Theorem 4.20] in the case where T is 

local. Another useful reference: [44]. 
 

50. Study the transfer of ideal-theoretic properties in a diagram which is of the 

type ☐ (see Problem 48) except that M is not necessarily assumed to be a 

maximal ideal of T. When T is a valuation domain, some results along these lines 
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have been obtained in [76]. Another useful reference: [44]. 

 

51. In a diagram of the type ☐ (see Problem 48), let I be an ideal of R, and 

assume that (I) can be generated by n elements in D, and that IT can be generated 

by r elements in T. Then I can be generated by n + r elements [44, Theorem 

2.26]. Is this bound the best possible in general? This problem appears in [44, 

Problem 2.31]. 

 

52. Determine whether there exists a diagram of the type ☐ (see Problem 48) in 

which R is a Prufer domain containing a finitely generated ideal which requires 

more than two generators. This problem appears in [44, Problem 2.32]. 

 

53. Let R be a ring and let A(R) be the set of Artinian subrings of R. Determine 

conditions under which R can be expressed as a directed union of elements of 

A(R). Of particular interest is the case where R is Von Neumann regular. This 

question appears in [48, Remark 3.14]. Another useful reference: [49].   
 

54. Let R be a ring, and denote by N(R) the nilradical of R. If R / N(R) can be 

expressed as a directed union of Artinian subrings, can R itself be so expressed? 

This question appears in [48, Remark 3.14]. Another useful reference: [49]. 

 

55. Let R be a ring and let A(R) denote the set of Artinian subrings of R. 

Determine when A(R) is a directed set. This question appears in: [48, Remark 

3.14]. Another useful reference: [49]. 
 

56. Let F be an indexed family of fields and let C be a class of rings. Determine 

equivalent conditions in order for F to be the family of residue fields of a ring 

from C. A special case of the problem will be to determine what indexed families 

of fields can be realized as the family of residue fields of a commutative ring. 

[48, Section 6] discusses the case C = Z, [66] considers the case C = the class of 

PIDs. 
 

57. Find an example of a ring or a domain which is a finite conductor ring [52, 

Definition 2.1], but not a quasi coherent ring [52, Definition 2.2]. In [43] it was 

speculated that the two properties might coincide in case the ring is a domain. 

Another useful reference: [51]. 

 

58. A ring R is called regular if every finitely generated ideal of R has finite 

projective dimension. In [51, Proposition 3.4] it is shown that a coherent regular 

ring is a G-GCD ring [51], [52, Definition 4.1]. Is a finite conductor regular ring 

a G-GCD ring? 

 

59. Let R be a G-GCD ring. Is the polynomial ring in one variable R[x] a G-GCD 

ring? The answer is affirmative in case R is a domain [3]. The answer is also 
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affirmative for another large class of G-GCD rings, namely the class of coherent 

regular rings [51], [52]. 

 

60. Let R be a ring. When is the power series ring R[[x]] a G-GCD ring? Useful 

references: [51], [52]. 

 

61. Let R be a ring, let M be an R module and let SR(M) denote the symmetric 

algebra of M over R. When is SR(M) a G-GCD ring? See Problem 2 for the case 

where R is a domain and the condition in question is the GCD property. The 

problem was partially solved for the condition of coherent regularity [56]. Other 

useful references: [51], [52]. 
 

62. Querre proved the following result in [82]: Let R be a domain and let I be a 

divisorial ideal of the polynomial ring in one variable R[x]. Then: 

1.  I R = J 0 implies that I = JR[x].   

2. I R = 0 implies that  I = fJR[x],  for a divisorial ideal J ⊆ R and an f ε R[x]. 

Can Querre’s result be extended to rings with zero divisors? Other useful 

references: [51], [52]. 

 

63. Let R be an integrally closed coherent ring. Is the polynomial ring in one 

variable, R[x], a quasi coherent ring? The answer is yes in case R is a domain 

[51]. Another useful reference: [52]. 

 

64. A coherent ring R is called stably coherent if the polynomial rings in finitely 

many variables over R are coherent rings. Let R be a coherent ring with the 

polynomial ring in one variable R[x] coherent, is R a stably coherent ring? This is 

a question posed by Vasconcelos [89]. For an account of the known results 

regarding the coherence of polynomial rings see [55, Chapter 7]. 

 

65.  Is the integral closure of a one dimensional coherent domain in its field of 

quotients a Prufer domain? This is a question posed by Vasconcelos which had 

been answered positively in many, but not all, cases. A useful reference which 

will lead to many other useful references: [55, Chapter 5 (Section 3) and Chapter 

7 (Section 4)].      

 

66. A ring R is called a total ring of quotients if every element of R is either a unit 

or a zero divisors. There are total ring of quotients which are not finite conductor 

rings [51, Example 3.5]. Find necessary and sufficient conditions for a total ring 

of quotients to be a finite conductor ring. Other useful references: [52], [55].   

 

67. Let R be a ring, let G be an abelian group and denote by RG the group ring of 

G over R. Find necessary and sufficient conditions for RG to be a G-GCD ring, 

or a finite conductor ring. Necessary and sufficient conditions for RG to be 
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coherent or coherent regular were found in [57]. Other useful references: [51], 

[52], [55]. 

 

68. Let R be a ring, let G be a group of automorphisms of R, and denote by RG 

the fixed ring of G, that is RG = { a ε R/ g(a) = a for all g ε G}. Conditions under 

which the finite conductor property descends from R to RG were investigated in 

[51], [52]. Under what condition does the extension RG ⊆ R ascend the finite 

conductor property from RG to R? The corresponding question for coherence was 

partially answered in [58, Theorem 4 and Example 5]. 
 

69. A local ring R with maximal ideal M is called a generalized local ring if M is 

finitely generated and Mk = 0. A local ring S with maximal ideal N is unramified 

with respect to a local ring R with maximal ideal M if R is a subring of S , N = 

MS and Nk R = Mk for each positive integer k. Let F be a family of generalized 

local rings Ri with maximal ideals Mi , so that for any pair of rings Ri and Rj in F 

there exists an Rk in F such that Rk is unramified with respect to both Ri and Rj . 

If each Ri is Noetherian, is  S = Ri necessarily Noetherian? This is a question 

posed by I.S. Cohen in [31]. Another useful reference: [64]. 
 

70. Let R be a generalized local ring with maximal ideal M, and let J be an ideal 

of R which is closed in the M-adic topology. Assume that J is the closure of a 

properly smaller ideal. Does it follow that J is the closure of a non finitely 

generated ideal? Useful reference: [64]. 

 

71.  Let R be a generalized local ring with maximal ideal M and with M-adic 

completion . If each primary ideal of R is contracted from , does it follow that R 

is Noetherian? Useful references: [31], [64]. 

 

72. Let R be a domain and let M be a maximal ideal of R. If M2 is two-generated, 

does it follow that M is finitely generated? Useful references: [50], [64]. 
 

73. Let  R be a seminormal (or an integrally closed, or a completely integrally 

closed) domain and let M be a maximal ideal of R with Mk finitely generated for 

some k > 1. Is M finitely generated? Useful references: [64], [86]. 
 

74. Let R be a domain. The trace of an R module M is the ideal of R generated by 

f(m), where m runs over all the elements of M and f runs over all the elements of 

HomR(M,R).  R satisfies RTP if the trace of any ideal of R is either equal to R or 

is a radical ideal of R. R satisfies TPP if the trace of each primary ideal of R is 

either equal to R or is a prime ideal of R. Is RTP equivalent to TPP for any 

domain R? This questions appears in [68]. Another useful reference: [74]. 
 

75. Let R be a domain. R satisfies LTP if for each trace ideal I of R and each 

prime P minimal over I, IRP = PRP.  With RTP and TPP as in Problem 74, is RTP 
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or TPP equivalent to LTP for any domain R? Useful references: [68], [74]. 
 

76. Let K be a field, and let {Vi} be a set of valuation domains all of which have 

residue fields equal to K. Give  necessary and sufficient conditions on the set 

{Vi}, 
so that Vi is a Prufer domain with residue field K. Useful references: [1], [47], 

[72], [73]. 
 

77.  Swan [88] proved that for each positive integer n there is a Prufer domain 

with a finitely generated ideal requiring n generators. His proof and others’ 

reproving this result use tools outside ring theory. Give a construction which 

yields, for each positive integer n, a Prufer domain containing a finitely generated 

ideal requiring n generators, such that the proof of the necessity of n generators 

can be carried out using elementary ring theoretical techniques without any 

reliance on geometry. Other useful references: [69], [70], [73]. 

 

78. A ring R is called t-closed if whenever a3 + arc - c2 = 0 for elements a, c and r 

in R, there exist an element b in R such that b2 - rb = a and b3 - rb2 = c. The 

notion of t-closedness (of rings and morphisms) originated in K-theory, but there 

is no characterization of this notion by means of K-theory functors. Find such a 

characterization. Useful references: [16], [79], [80]. 
 

79. Let R be a ring and let G be a group or a monoid. Find conditions on R and 

on G for the group (monoid) ring RG to be t-closed. This problem was solved for 

seminormality, a condition related to t-closedness, in [9], [10], [16], [87]. 

Another  useful reference: [80]. 

 

80. Let R be a ring. Find general conditions for the power series ring in one 

variable R[[x]], to be t-closed. Partial answers were obtained in [17], [18], [79]. 

Another useful reference: [80]. 

 

81.  Let RS be a ring extension. An element bB is subintegral over A if there 

exists a non negative integer p and elements c1,..., cp in B such that R for all n 

large enough [84]. The morphism R  S is  subintegral if and only if every element 

of S is subintegral over R. Can one generalize the theory of subintegrality to 

infra-integrality defined in [80]. Another useful reference: [83].     
 

82. Let R be a ring and denote by R+ , the additive group of R. R is an E-ring 

provided R is ring isomorphic to End (R+) under the map that sends rR to left 

multiplication by r. Is there a ring R such that REnd (R+), but R is not an E-ring? 

This question was posed by Schultz [20], and also appears (with a reward 

attached to its solution) in [90]. 
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83. Let R be a ring. An R module M is called an E-module over R if HomR(R,M) 

= HomZ(R,M). Which classes of groups are E-modules over an E-ring (see 

Problem 82)? This problem was posed by Pierce [81], and also appears in [90]. 
 

84. Let R be a ring. Can the class of all E-modules over R be constructed from 

the torsion E-modules and the torsion-free ones (see Problem 82)? This problem 

was posed by Pierce [81], and also appears in [90]. 

 

85. Let R be a ring. The E-ring core of R, denoted by , is defined in [61],  through 

a construction of nested rings inside R , , for every cardinality . The E-ring core 

of R is an E-ring [61].  Must the E-ring core of a strongly irreducible domain be 

strongly irreducible? For which rings R does ? These and other questions 

regarding the E-core of R are posed with more information in [61] and [90]. 

 

86. Investigate the structure of two-sided E-rings of finite rank. Two side E-rings 

are defined in [90], in which this problem appears and which provides additional 

useful information. 

 

87. Extend results on E-rings, E-modules and related concepts to modules over 

more general rings. Useful reference: [90]. 

 

88. Let R be a ring for which there exists a positive integer n such that every 

finitely generated (finitely presented) module is a direct sum of modules 

generated by at most n elements. Such a ring is called an FG(n) ring. If R is a 

Noetherian FG(n) ring then R is FG(2) [91]. Is this true in general? How about 

FG(3)? This problem appears in [93, Question 1.8]. 

 

89. Let R be a ring. R is called an elementary divisor ring if every matrix (not 

necessarily square) is equivalent to a diagonal matrix. Equivalently, R is an 

elementary divisor ring if every finitely presented module is a direct sum of 

cyclic modules [71]. A classical open problem: Is every Bezout domain an 

elementary divisor ring? The answer for rings with zero divisors is no [45]. 

Another useful reference: [93 , Section 1]. 

 

90. Let R be a reduced Noetherian ring whose integral closure is finitely 

generated, and suppose direct-sum cancellation holds for finitely generated 

torsion-free R modules. Does direct-sum cancellation necessarily hold for all 

finitely generated modules? Characterize all rings R for which this is true. Useful 

reference: [93, Section 3]. 

 

91. Find new examples of non-Gorenstein local Cohen-Macaulay rings with 

finite representation type. There are no known examples of dimension greater 

than 3. For all undefined notions, as well as a broad perspective on the topic and 

more references see [93, Section 5]. 
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92. Characterize the posets that are order isomorphic to Spec R for some 

countable two dimensional (Noetherian) domain. Useful references: [93, Sections 

2 and 4], [65]. 

 

93. Are Spec Q[x,y] and Spec [x,y] order isomorphic, where denotes the 

algebraic closure of the field of rational numbers Q? This problem appears as 

Question 4.8 in [93]. 

 

94. Consider the posets UF = Spec F[x,y], where F ranges over countable fields of 

characteristic zero. Are all these posets order isomorphic? At the other extreme, if 

UF and UK are order isomorphic, must F and K be order isomorphic? Useful 

reference: [93, Sections 2 and 4]. 
 

95. Let R be a ring. Jspec R = {PSpec R / P is an intersection of maximal ideals 

of R}. In [92] the posets that arise as Jspec R for countable Noetherian rings R 

are characterized (see [93, Theorem 6.1]). Is this characterization still valid 

without both (on the ring R and on the poset U) countability assumption? 

 

96. Let R be a ring. The maximal ideal space of R is the set of all maximal ideals 

of R with the induced Zariski topology. Is every compact metric space of 

dimension d homeomorphic to the maximal ideal space of some d-dimensional 

commutative ring? This problem appears as Question 6.4 in [93]. Another useful 

reference: [67]. 

 

97. Let DR be an extension of domains, where R is a generalized ring of fractions 

of D, and let I be a non zero finitely generated ideal of D. Is it true that (IR)-1 = I-

1R? Background material, the definition of a generalized ring of fractions and a 

more general version of this problem appear in [94, Question 2.7 and preceding 

paragraphs]. 
 

98. Let D be a domain. Denote by Max (D) the set of maximal ideals of D, and 

by t-Max (D) the set of maximal t-ideals of D. A set of prime ideals F of D is 

called a defining family of primes if . F is called of finite character if every 

nonzero nonunit of D belongs to finitely many  of PF. F is called independent if 

no distinct primes P and Q of F contain a common nonzero prime ideal. A 

domain D with a defining family F which is independent and of finite character is 

said to be an F-IFC domain. Find an example of an F-IFC domain with Ft-Max 

(D) and FMax (D). This problem appears in [94, Problem 3.6]. Another useful 

reference: [8]. 
 

99. Let D be a domain with a defining family of finite character (see Problem 

98). Characterize all such domains in terms of unidirectional ideals. Useful 
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references: [8], [94, Section 3]. 

 

100. A domain D is called a fgv domain if every finitely generated ideal of D is a   

v-ideal. Is it true that if D is a domain with w = t , then for every maximal t-ideal 

M of D, DM is a fgv domain?  The converse is true, that is if D is a domain and 

for every maximal t-ideal M of D, DM is a fgv domain then At = Aw for every  

fractional ideal of D (M. Zafrullah, private communication). Useful references: 

[94, Section 4], [38]. 
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