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1. INTRODUCTION 

Let R be a commutative ring, and let x be an indeterminate over R. For 
a polynomial .fe R[s]. denote by c(f)-the so-called conrenl qfJ”--the 
ideal of R generated by the coefficients of J: Let CT = {.fg R[s 1, ,f manic ;i 
and v= (fe R[x], c(f) = R)- = R[x] - U (mR[x]. 172 maximal ideal 
of R j. CT and f~’ are multiplicatively closed subsets of R[.x]. Set 
R(xj =R[s], and R(x) = R[x] v. Then R[x]c R(x) c R(s), R(s) is a 
localization of R( x >, and both R(x) and R(x) are faithfully flat R modules. 

Ever since R(x) played a prominent role in Quillen’s solution to Serre’s 
conjecture [25]? and its succeeding generalizations to non-Noetherian 
rings [6,20], there has been a considerable amount of interest in the 
properties of R<s). This interest expanded to include similarly constructed 
localizations of R[x]. Notable among these constructions is the ring R(x), 
which, through a variety of useful properties, provides a tool for proving 
results on R via passage to R(s). 

The interest in the properties of R(x) and R(x) branched in many direc- 
tions [l-S, 7, 8: 12. 14-16, 21, 23, 26). Several of these directions consider 
homological properties of these two rings. Ferrand [IS] and McDonald 
and Waterhouse [23] investigate finitely generated projective modules 
over R(x). The behavior of the weak dimensions of R(x) and R(x) is 
investigated through the exploration of ascent and descent of Von 
Neumann regularity, semihereditarity and related conditions, and coherent 
regularity of the extensions R --f R(x) and R + R(x). In [II], Le Riche 
determines conditions for the semihereditarity of R(x). D. D. Anderson, 
D. F. Anderson, and Markanda 141, and Huckaba and Papick [15; $63 
consider conditions related to semihereditarity such as being a Priifer or 
Priifcr-like ring, for both ring constructions. In Glaz 1121, we consider the 
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exact relations between the weak dimensions of the three rings involved, 
with applications to ascent and descent of Von Neumann regularity, semi- 
hereditarity, and coherent regularity. So far, the behavior of the global 
dimensions of R(s) and R(x) has been touched only incidentally, in the 
presence of Noetherianness which forces its equality to the weak dimen- 
sion. Thus, [l2] considers semisimplicity, that is, global dimension equal 
to zero, while [4] and [21] consider the property of being a Dedekind 
domain, that is, a domain of global dimension one. Both semisimple rings 
and Dedekind domains are Noetherian. 

In this paper we consider some aspects of the behavior of the global 
dimensions of R(x) and R(x), without any Noetherianness assumption on 
the ring R. 

Let R and S be two rings of finite global dimension. We say that the 
extension R + S ascends global dimension if gldim R = n implies that 
gldim S < 11, the extension R + S descends global dimension if gl.dim S = n 
implies that gl.dim R d II. If an extension R -+ S both ascends and descends 
global dimension, then gl.dim R = gl.dim S. 

In Section 2 we prove that the extensions R + R(x) and R -+ R(x) both 
ascend and descend hereditarity, that is, global dimension equal to one. In 
Section 3 we show that for K,-Noetherian rings these extensions descend 
any finite global dimension, and provide an example of a class of local, 
stably coherent, N,-Noetherian rings R of global dimension equal to two, 
for which the extension R + R(x) does not ascend global dimension. 

2. HEREDITARITY 

The main result of this section, Theorem 5, proves that the extensions 
R + R(x) and R --f R(x) ascend and descend hereditarity. Before proving 
our main theorem, we require a short discussion and several preliminary 
results. 

Throughout this paper we will maintain the following notation: 
For a polynomial f~ R[x], L(f) will denote the leading coefficient of J; 

that is, iff=a,x”+ ... + a,, with ai E R and a, # 0 then L(f) = a,,. For an 
ideal Z of R[x], L,(Z) will denote the ideal of R consisting of the leading 
coefficients of all the polynomials in Z of degree less or equal to r7, and L(Z) 
will denote the ideal of R consisting of the leading coefficients of all 
the polynomials in I. We have that Z n R = L,(Z) c L,(Z) c . . . . and 
L(I) = u L(Z). 

For an ideal Z of R[x], c(Z)--the content of Z- will denote the ideal of 
R generated by the coefficients of all the polynomials in I. We recall 
the content formula [9]; for f; gE R[x] with deg g=nz we have 
C(fy+l c(g) = c(f)“’ c(f;g). In particular, if c(f) = R then c(g) = c(.fg), 
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and if R is a domain and c(f) is an invertible ideal of R, then 
c(f) c(g) = dfg). 

Max R = {ME Spec R, ~TI is a maximal ideal of Rl. 
Min R = { p E Spec R, p is a minimal ideal of R) and 

MiniMax R = Min R n Max R. 
Finally, K will stand for the total ring of quotients of R, and L for the 

total ring of quotients of R(x). Note that L is also the total ring of 
quotients of R(X). 

PROPOSITION 1. Let R be a 1,‘orz Neumann regular ring; then ihe 
Ufollonairzg conditions are equicalent: 

1. R is a hereditary ring. 

2. R(x) is a Izereditarj, ring. 

3. R(s) is a hereditary ring. 

Prooj: 1 -+ 2. Let I be an ideal of R(x). We aim to show that 1 is 
projective. Since R is a Von Neumann regular ring, so is R(s) [ 12. 
Corollary 21, and thus, R(.x),iI is a flat R module. By [1 I, 
Theorem 1.2.151, I is a pure ideal of R(x); therefore, for every maximal 
ideal 134 of R( .u ) either I,,,f = 0 or I ,,., = R(.u ) )\,. We conclude that I = I’. 

Write I= JR(x), where J is an ideal of R[s] containing no manic poly- 
nomial. Since I is a proper ideal of R(x), c(J), the contenl of J, is a proper 
ideal of R. To see this, note that since R is a Von Neumann regular ring. 
every prime ideal of R is maximal; hence, the prime ideals of R(.u ), 
necessarily maximal, are of the form mR<.u) for nz ~Spec R. As Ic mR(x) 
for some prime ideal m of R, we have J c mR[.v] and c(J) c ~1. 

Since R is a hereditary ring, e(J) is a projective ideal; therefore, ci J) 
is equal to a direct sum of principal ideals of R [ 18, Theorem 41. As 
every principal ideal of R is generated by an idempotent, we have 
c(J)=~Re,,e,~c(Jj,e~=e,,ande~e~=Ofori#~~.Now:/=1~~I~(J)R<.~)= 
I(@ Rei) R(.u) = (0 Re,)@. IR(x) = @ (Re,OR IR(x)) = @ Ze,cI; 
thus I= @ Ie,, and to show that I is projective it suffices to show that Ie, 
is projective for every i. 

Consider the ideal Ie,@R(Uy)(l-e,). We claim that Zei@R(?c)(l-e,) 
is not contained in any maximal ideal of R(x). Assume that 
le~OR(x)(1-e,)cmR(.u)forsomeprimeidealmofR;then1-e,~n~R(.u~ 
and IejcmR(r). As 1 -eiEmR<x), e,$mR(x); therefore, ZcmR(s). 
But then ei E c(J) c m c mR(x). This contradiction shows that 
Iei@ R(.u )( 1 - ei) = R(x), and thus, le, is projective. 

2 --f 3. Since R(x) is a localization of R(x) we have 
gl.dim R(s) d gl.dim R(x) < 1, and R(x) is a hereditary ring. 
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3 --t 1. Let I be an ideal of R. We aim to show that I is projective. 
Since R(.r) is a hereditary ring, 1R(.x) is a projective ideal of R(xj. As R(x) 
is a Von Neumann regular ring [ 12, Corollary 21, IR(x) = @ R(x)e, with 
ei~IR(s), e,?=e,, and e,ei=O for i#j. By [4, Theorem 2.41, eiER 
and, therefore, ei E IR(.u) A R = I. The ideal J = @ Re,c I satisfies 
JOR R(x) =IOR R(x). Since R(x) is a faithfully flat R module, J= I and, 
thus, I is projective. 

COROLLARY 2. Let R be a commutative ring; then the following hold: 

1. !f R is a hereditaty ring then so is L, the total ring of quotients of 
R(x). 

2. If R(x) is a hereditary ring then so is K, the total ring of quotients 
of R. 

ProoJ: 1. Since R is a hereditary ring, it is in particular a coherent 
ring of finite weak dimension and, therefore, K is a Von Neumann regular 
ring [ll, Theorem 42.181. As gl.dim K<gl.dim R < 1, K is a hereditary 
ring. By Proposition 1, K(x) is a hereditary ring. 

Let A = {r E R, P is a nonzero divisor in R) and B = (f/g E R(x), 
fig is a nonzero divisor in R(x) >; then B = {f/g, f, g6 R[x], 
c(g)= R and (O:.c(f))=O)xA. Thus, L=R(x),=(R(.x),),=K(x), and 
gl.dim L < gl.dim K(x) < 1. Thus, L is a hereditary ring. 

3 -. Assume that R(x) is a hereditary ring; write K(x) = R(x).~ to 
obtain that K(x) is a hereditary ring. Since R(x) is in particular semi- 
hereditary, it follows that so is R [12, Corollary 31 and, therefore, K is a 
Von Neumann regular ring. By Proposition 1 we conclude that K is a 
hereditary ring. 

PROPOSITION 3. Let R be a hereditary ring; then the following hold: 

1. Krull dim R 6 1. 

2. Every ideal m E Max R - MiniMax R is finitely generated. 

3. Euerj> ideal p E Min R is of the form p = @ Re, with ei E p, e; = ei, 
and eiej = 0 jbr i # j. In particular, anj’ two distinct minitnal prime ideals oj- 
R are comaximal. 

Proof: 1. Let p E Spec R; then w.dim R, < w.dim R < gl.dim R < 1. 
If w.dim R,, = 0 then depth R, = 0 [ 12, Lemma 31. Since R, is a domain 

[ 11, Corollary 4.2.41, R, is a field and, thus, p is a minimal prime ideal 
of R. 

If w.dim R, = 1, then R, is a valuation domain [ 11, Corollary 4.2.61 and 
gl.dim R, = w.dim R, = 1; thus, pR, is finitely generated [29], and free. It 
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follows that R, is a discrete valuation ring and ht p d 1. Thus, 
Krull dim R < 1. 

2. Let 112 E Max R - MiniMax R; then UI is a projective ideal not 
contained in any minimal prime ideal of R. By C30, Proposition 1.61 !?I is 
finitely generated. 

3. Let p E Min R. R is hereditary and, therefore, pK is a proper pro,- 
jective ideal of the Von Neumann regular ring K. Let pK= @ Ke, with 
e,EpK, e:=e,, and eie,= 0 for i# j. Since every localization of R is a 
domain eiER; thus, e,EpKnR=p. It follows that p=pKnR=@ Re,. 
Now if p and q are two distinct prime ideals of R, write p = @ Re, witi? 
e,~ p, ef = ei and eiej = 0 for i #j. Since p # q, ei$ q for some i; thus, 
1 -e,~q and 1 =e,+ (1 -ei)~p+q. We conclude that p and q are 
comaximal. 

We now cite a result of Marot [22] which we will use in the proof of 
our main theorem. The reader can find proofs of various versions of this 
result in [ll, Corollary 42.20; 30, Theorem 1.8; 22, Proposition 3.41. 

PROPOSITION 4. Let R be a conmutatiue ring with tota! ring of quotients 
E, then the .following conditions are equionlent: 

1. R is a hereditar? ring. 

3 L. K is a hereditar.)? ring and ez1ery ideal sf R 17of corltained in ar?~~ 
minimal prime ideal of R is prqjectiae. 

We are now ready for the main result of this section 

THEOREM 5. Let R be a commutative ring; therz the following conditiom 
are equioalent. 

1. R is a hereditary ring. 

2. R(x) is a hereditary ring. 

3. R(x) is a hereditarjl ring. 

Proof: 1 -+ 2. Assume that R is a hereditary ring. Ry Corollary :! we 
have that L is a hereditary ring. Hence, by Proposition 4, we have to show 
that if an ideal I is not contained in any minimal prime ideal of R( .X >, then 
I is projective. Since Gull dim R G 1, R(x) is a semihereditary ring [ 12, 
Corollary 4); therefore, to achieve our goal it suffices to show that 1 is 
finitely generated. We will first consider the cases where I is a prime idea1 
of R(.x j and then proceed to the general case. 

By [21, Theorem 3.71 Krull dim R(x) G 1. The minimal prime ideals of 
R(x) are of the form qR(x), where qEMin R: therefore, a prime ideal 
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I which is not minimal is either equal to mR(x) for rn E Max R - MiniMax R 
or it is equal to PR(x), where P is a prime ideal of R[.v] containing no 
manic polynomial, P n R = p, p E Min R - MiniMax R, and pR[x] s P. 

Case 1. I= mR(x), m E Max R - MiniMax R. 

In this case I is finitely generated by Proposition 3. 

Case 2. I= PR(x), P prime ideal of R[.x] containing no manic 
polynomial, P n R = p, p E Min R - MiniMax R, and pR[x] s P. 

We first remark that such a prime ideal P contains a polynomialf, with 
c(f) = R. To see this we will follow an argument of Ferrand [S]. Since 
PR(x) is a maximal ideal of R(x), P p mR[x] for every ~r?~Max R. 
For every fn E Max R choose f, E P with c(fnl) $ 111; then the sets 
NcKA) = (PE Spec R, c(h) + 1’1 are open in Spec R and cover Spec R. 
Since Spec R is quasi-compact, there are fi, . . . . f5 E { fm),nEhlax R such that 
Spec R = (J;= 1 D(c(-A)). Let d> degf., thenf= 1 .Y”~E P and c(f) = R. 

We now proceed with the proof of Case 2. 
Let p=L,(p)cL,(p)c..., and L(P)= U L,(P) be the ideals of leading 

coefficients of polynomials in Z corresponding to the notation preceding 
Proposition 1. We claim that L(P) @ q for any qE Min R. Assume the 
contrary; let L( Pj c q for some q E Min R, then p = L,(P) c L(P) c q and 
p = q. Let g E P and write g = a,,x” + a,, ~~ 1 Y- ’ + . . + a,, ai E R, 0 < i < n, 

then L(g) = a, E L,,(P) c p. Since p is a minimal prime ideal of R, there 
exists a b E P- p such that ba, =0 [ll, Lemma 3.3.4, Corollary 4.2.4, 
Theorem 4.2.3(4 j]. Then bg E P and either ba,- , = 0 or ha,,- I = 
L(bg) E L,,+ ,(P) c p. In either case, tz,>_, E p. Continue to obtain 
ge pR[x] and P= pR[x]. Thus, L(P) $ q for any qE Min R. 

R is a hereditary ring; therefore L(P) is a projective ideal not contained 
in any minimal prime ideal of R, and, thus, L(P) is finitely generated. It 
follows that the chain L,(P) c L,(P) c . . . stops. Let u be the first non- 
negative integer such that L,(P) c q for some q E Min R; then p = L,(P) c 
L,,(P) c q and p = q. For i > u we have that L.,(P) $ q for any q E Min R 
and, therefore, L,(P) is finitely generated. We have thus far obtained the 
following situation. p = L,(P) = . . . = L,J P) 5 I.,, ,(P) E . . . G L,(P) = 
L,,-,(P)= ... =L(P) and L,+,(P) are finitely generated. 

Let fi ) . . . . .f, be polynomials in P whose leading coefficients generate 
L,,,(P), . . . . L,,(P), and such that if L(fj) is a generator of L,(P) then 
deg fi < j. 

Let g E P; by an argument similar to the proof of Hilbert basis 
theorem [19, Theorem 691, we obtain that g = zy= 1 rj fi + g’, with 
‘) E R[x], deg g’ < II, then g’ E P and L(g’) E L,(P) = p. Repeating 
the argument of the previous paragraph we obtain g’ E pR[x]; thus: 
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p = (.J;, . . ..A) RCxl + pRC-xl = (J-1, -,.L,.f, N-VI + PKx-1 = p and 
p = u-1 5 ..b, f,, f) xx1 + PN.Yl. 

Finally, we claim that I = PR(x) = (.f,, . . . . f,, .f‘j R(s >. For that: 
it suffices to show that for every maximal ideal M of R(x) we have 

f’R(x), = cf,, . . . . fs, .f J R<-~>.t,. 
PR(x> is a maximal ideal of R(X); we have, therefore, to prove the 

following: 

(i) For hf= PR(.u), PR(s).,,= (f,. . . . . J;,.f) R(x).,,. 

(ii) For Mf PR(.u), (.f;, . . . . f,..f) R(s) St hf. 

To prove (i) we write R(.Y)~~<.~)= R[.u]~ = Rp[x]PRpC.rl. Since p is a 
minimal prime ideal of R, R, is a field; thus, pR, = 0, SO ~R(.Y),,~,, =ci. 
The claim is now clear. 

To prove (iij let M = QR(x) with Q a prime ideal of R[.Y] containing 
no manic polynomial. Let 1Lfn R = Q n R = q; then either q E Max R, in 
which case Q =qR[x] and M=qR(.u), or qE Min R- MiniMax R, in 
which case qR[x] 5 Q and p #q. In the first case, if (f,, . . . . ,J,, f) R(s) c 
qR(x), we in particular have that R = c(.fj c q, which is not possible. In 
the second case, if (f,, . . ..f..f) R(x) c QR(.uj we have L(~,)EL(Q) for 
lGi6s; thus, Li(PjcL(Q) for all i, in particular, p=L,(P)cL(Q). We 
also have q = Q n R= L,(Q) c L( Q). Since p and y are comaximal we 
obtain I.(Q)= R. Let 1 =C I’;u; with r’i~ R and u,EL(Q) and let 30;~ Q with 
L(g,)=ui; then for n>degg;=n,, g= C ri.~‘z+‘zigi~ Q and is manic This 
contradiction concludes Case 2. 

Cuse 3. I is a general ideal of R(s) which is not contained in any 
minimal prime ideal of R<.r ). 

Let I= JR(x) with J an ideal of R[x] containing no manic polynomial: 
then J q! qR[x] for any q E Min R, and, thus, r(J) $ q for any q E Mm R. 

As in Case 2; consider the chain L,(J) c I.,(J) c ..., and I.(J) = u L,(J). 
We claim that L(J) q! q for any q E Min R. Too see this, assume that 
L(J) c q for some q E Min R, and let g E J; write g = a,z.~” + . . + u0 with 
CITE R. Repeat the argument given in the similar situation of Case 2 to 
obtain that ai E q for 0 < i 6 II and, thus, c(J) c q, which is a contradiction. 
As in Case 2 we can now conclude that ,5(J) is a finitely generated ideal of 
R, and let ,fi, . . . . f, E J. whose leading coefficients generate L(J). Then 
(.f,, . . . . f,) R[x] $ qR[-‘I-] for any q E Min R and, thus, (.fi. . . . . .f,) R(s) $ 
qR<x) for any q E Min R. 

Consider the ring R(sj/(,f,, . . . . fs) R(s). The prime ideals of this ring 
correspond to prime ideals of R(s) containing (.f,: . . . . fi) R(x). Since 
none of those are minimal they are precisely the kind of prime ideals of 
R(s) described in Cases 1 and 2 and are, therefore, finitely generated. It 
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follows that R(x)/(f,, . . . . fJ) R(.uj is a Noetherian ring and, thus, 
Z/(f,, . . . . J;.) R(x) is finitely generated. We conclude that Z itself is finitely 
generated. 

2 --t 3. Clear. 

3-+ 1. Assume that R(x) is a hereditary ring. By Corollary 2, K is a 
hereditary ring. By Proposition 4, we have only to show that if I is an ideal 
of R not contained in any minimal prime ideal of R, then I is projective. 
The ideal ZR(x) # qR(s) for any 4 E Min R. Since R(x) is hereditary ZR(x) 
is a projective ideal of R(x) which is not contained in any minimal prime 
ideal of R(s), and, thus, ZR(.v) is finitely generated. Since R(x) is a faith- 
fully flat R module, Z is finitely generated. Since R is a semihereditary ring 
[12, Corollary 31, I is projective. 

COROLLARY 6 [4, 211. Let R be a commutative ring; then the following 
conditions are equivalent. 

1. R is a Dedekind domain. 

2. R(x) is a Dedekind domain. 

3. R(x) is a Dedekind domain. 

3. EXAMPLES 

When considering global dimensions higher than one, we cannot obtain 
the ascend and descend results of Theorem 5. According to the Hilbert- 
Syzygies theorem [30, Theorem 0.141 we always have gldim R(x) < 
gldim R + 1 and gldim R(x) < gldim R + 1. If the ring R is N,-Noetherian, 
we can do better than that. 

Recall that a ring R is called NO-Noetherian if every ideal of R is 
countably generated. 

PROPOSITION 7. Let R be an K,-Noetherian ring; then the extensions 
R + R(.Y) and R --f R(x) descend global dimension. 

ProoJ: Assume that gldim R(x) = n < a and let Z be an ideal of R. 
Since R is K,-Noetherian, every submodule of a countably generated R 
module is countably generated [ 17, Lemma I]; we, therefore, have an 
exact sequence, . . . -% F3 * FI -% F,, -% I- 0, with Fi countably 
generated and free and Ki= ker d, countably presented. Tensor this 
sequence with - OR R(x). As gldim R(x) =n we have that K,@, R(x) 
is a projective R(x) module for some i < n - 2. It follows from [27, Part I, 
3.1.41 that Kj is a projective R module, and, thus, proj.dim, Z<n - 1. We 
conclude that gl.dim R d gl.dim R(x). 
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A similar argument yields gl.dim R d gl.dim R(.u). 

The extension R + R(x) does not have to ascend global dimension even 
in the presence of N,-Noetherianess. Here we present an example of a class 
of local, stably coherent N,-Noetherian rings R of gl.dim R= 2 but 
gl.dim R(x) = 3. 

EXAMPLE. Let V be a ualuation domain of gl.dim V = 2; therz ;he 
following hold: 

1. gl.dim V(x) = 2. 

3 -. Zf Krull dim V> 3, then gl.dim V( r ) = 3. 

3. If Krull dim V= 2 and.for the prime ideal of height one of V, p. VP 
is not a discrete valuation domain, then gl.dim V(.u j = 3. If V,? is a discrete 
valuation domain, then gl.dim V(x) ,,I < 2 for ecerJ9 prime ideal M of I,‘(.u ). 

4. 1% Krull dim V< 1, then gl.dim V(X) = 2. 

According to 11241, Theorem A] (see also [30, Theorem 2.1]), for a 
valuation domain V to have global dimension two it is necessary and suf- 
ficient that V be K,-Noetherian-but not Noetherian unless gl.dim V= 1. 
Therefore, there exist valuation domains of global dimension two and any 
given, finite, Krull dimension [ 13, Sect. 71. Valuation domains V are 
stably coherent rings; that is, the polynomial rings in finitely many 
variables over V are coherent rings [11, Corollary 7.3.4); in particular. 
both p’(.v) and r’(,yj are coherent rings. Note also that for every prime 
ideal p of a valuation domain V and any b E V - p we have hp = p. There- 
fore, by Nakayama’s lemma, no prime ideal of V is finitely generated unless 
it is 0 or maximal. 

By Proposition 7, we have 2 G gl.dim V(s) < 3 and 2 d gl.dim V(r) < 3. 

1. In this case V(X) itself is a valuation domain [12, Corollary 3] 
and clearly N,-Noetherian. Thus, gl.dim V(x j = 2. 

2. We first reduce to the case where Krull dim V= 3. Assume that 
Krull dim V> 3 and let p be a prime ideal of V of ht p = 3. Then VP is a 
valuation domain of gl.dim I’, = 2 and Krull dim VP = 3. By [4> 
Lemma 2.51, t/r(~> is a localization of V(.u j; thus, gl.dim C’,(X> d 
gl.dim V(X), and the reduction is complete. 

Assume now that Krull dim V= 3 and let Spec V= (Oc pc qc m). 
Krulldim V[x] = 4 [ 19, Theorems 39,681 and, therefore, Krulldim V(.v > = 3 
[21, Theorem 2.11. Let Q be a prime ideal of V[X] containing no manic 
polynomial, Q n V = q7 and q V[.u] s Q. ht Q = 3: thus Q f;‘(s) is a 
maximal ideal of V(x), and so Q contains a polynomial f with c(f’) = G’. 
It is clear that for every a E y, the sequence (a, f ) is a regular sequence in 
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V[X] and, therefore, it is a regular sequence in V(X),,.,,~. In particular, 
depth V(X)~~,~~~>~, and as w.dim Y(,Y),,,~~G~ [12, Lemma 41: we 
have that w.dim I’(,x)~~<~> = 2 [12, Lemma 33. 

Assume that gl.dim V(s) = 2; then gldim V(X)~~,+~ = 2. 
Since w.dim V(x > e I,c-yj =2, V(,XI)~~~~~~ is not a valuation domain. As 

ht QV(x) = 3, Krull dim V(.V)~,(,> = 3; therefore, C’(X)~~~,., is not a 
Noetherian regular ring. According to [28; 30, Theorem 2.21, V(-‘I)~~<~~ 
has to be an umbrella ring. In particular, V(,Y)~~+~ has to contain a 
nonzero prime ideal P satisfying: 

(i) P = P( V(~~)ov~.r~)P, that is, for any ge V(X)~~~~~~>-P, 
gP= P. 

(ii) V/X)/Q V(s) is a Noetherian regular local ring of Krull 
dimension equal to two. 

Note that no such prime ideal P can be finitely generated unless it is 
maximal. 

Property (ii) implies that such an ideal P will necessarily satisfy 
ht(P) = 1. Thus, either P= OVA,,,,> or P= NV(X)~~,+), where N is 
a nonzero prime ideal of R[x] containing no manic polynomial and 
satisfying Nrr V=O. But f(~C’(x)~~,‘(~~j#pI/(~)~~(~;, and N is a 
finitely generated ideal of V[x] [lo, Corollary 4.121. We conclude that 
&dim T’(.x)~~,~,,, # 2; therefore, gl.dim V(x) = 3. 

3. Let Spec I-‘= (0 c p c nz). Let P be a prime ideal of V[x] con- 
taining no manic polynomial and satisfying P n V= p and pV[s] g P. 
Then P contains a polynomial .f with c(f) = F’ and PJf(x) is a maximal 
ideal of V(s). As in the previous case we obtain that 
w.dim V(x),, csi = 2. Assuming that gl.dim V(X) = 2, we obtain that 
gldim V(X),~~-,; = 2. V(.Y),,,~,; is not a valuation domain, and since 
Krull dim I.‘(x)~~,;.,) = 2, it is not an umbrella ring. Thus, V(x),,<,, is 
a Noetherian regular ring. In particular, ~V(X).~~,; is finitely generated, 
and choosing a set of generators contained in p, we see that ~V(X),,~,~ 
is finitely generated. Now V(x),,,<,> = k’[,~]~,~~~~ = I’Jx],,,,~~~ = VJxj; 
thus, pVp is finitely generated. It follows that V,, is a discrete valuation 
domain, and the conclusion follows. 

On the other hand, if VP is a discrete valuation domain. a case by case 
anaIysis of the localizations of V(X) by prime ideals shows that V(X) is 
locally of global dimension two. The prime ideals of height one of V(X) 
are pV(x) and NV(x), where N is a nonzero prime ideal of V[x] 
containing no manic polynomial and satisfying N n V= 0. In the first case, 
V<.~),V(.Y’ = VP(x). In the second case, V<X).%,~...<~? = V[~],v~,r~~ is a 
Noetherian, local regular ring of Krull dimension one. Therefore, both 
localizations have global dimension one. The prime ideals of height two 
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of I/(x> are ml’(x) and PI’(s), where P is a prime ideal of V[x] 
containing no manic polynomial, P n I’= p and ~I’[.Y] $Z P. In the first 
case, V( x),,~,.+) = V(x). In the second case, V(.u),,(,, = VP[.xJPr.,c.,.I a 
localization of the Noetherian regular ring of Krull dimension two V,[x] 
by a height two prime ideal. In both cases the global dimension of the 
localizations is two. 

4. In this case, L’(x) is a semihereditary ring [ 12, Corollary 4], 
and K,-Noetherian; therefore, gl.dim I/(.x > d w.dim I’(r) + 1= 2 117. 
Theorem I], and, thus, gldim P’(x j = 2. 
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