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1. INTRODUCTION

Let R be a commutative ring, and let x be an indeterminate over R. For
a polynomial fe R[x], denote by c¢(f)—the so-called content of f—the
ideal of R generated by the coefficients of f. Let U= {fe R[x], f monic}
and V={feR[x], o(f)=R}=R[x]-U {mR[x], m maximal ideal
of R}. U and ¥V are multiplicatively closed subsets of R[x]. Set
R{x»=R[x], and R(x)=R[x],. Then R[x]c R{x>c R(x), R(x) is a
localization of R{x ), and both R{x) and R(x) are faithfully flat R modules.

Ever since R{x> played a prominent role in Quillen’s solution to Serre’s
conjecture {257, and its succeeding generalizations to non-Noetherian
rings [6,207, there has been a considerable amount of interest in the
properties of R{x ). This interest expanded to include similarly constructed
localizations of R[x]. Notable among these constructions is the ring R(x),
which, through a variety of useful properties, provides a tool for proving
results on R via passage to R(x).

The interest in the properties of R{x > and R(x) branched in many direc-
tions [1-5, 7, 8, 12, 14-16, 21, 23, 267. Several of these directions consider
homological properties of these two rings. Ferrand [8] and McDonald
and Waterhouse [237 investigate finitely generated projective modules
over R(x). The behavior of the weak dimensions of R{x)> and R(x) is
investigated through the exploration of ascent and descent of Von
Neumann regularity, semihereditarity and related conditions, and coherant
regularity of the extensions R — R{x> and R— R(x). In {21], Le Riche
determines conditions for the semihereditarity of R{x>. D. D. Anderson,
D. F. Anderson, and Markanda [4], and Huckaba and Papick [15, 161
consider conditions related to semihereditarity such as being a Priifer or
Priifer-like ring, for both ring constructions. In Glaz [ 127, we consider the
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exact relations between the weak dimensions of the three rings involved,
with applications to ascent and descent of Von Neumann regularity, semi-
hereditarity, and coherent regularity. So far, the behavior of the global
dimensions of R{x) and R(x) has been touched only incidentally, in the
presence of Noetherianness which forces its equality to the weak dimen-
sion. Thus, [12] considers semisimplicity, that is, global dimension equal
to zero, while [4] and [21] consider the property of being a Dedekind
domain, that is, a domain of global dimension one. Both semisimple rings
and Dedekind domains are Noetherian.

In this paper we consider some aspects of the behavior of the global
dimensions of R{x) and R(x), without any Noetherianness assumption on
the ring R.

Let R and S be two rings of finite giobal dimension. We say that the
extension R — S ascends global dimension if gldim R=n implies that
gl.dim S <n, the extension R — S descends global dimension if gldim S=n
implies that gl.dim R < #n. If an extension R — S both ascends and descends
global dimension, then gl.dim R = gl.dim S.

In Section 2 we prove that the extensions R - R{x ) and R - R(x) both
ascend and descend hereditarity, that is, global dimension equal to one. In
Section 3 we show that for X,-Noetherian rings these extensions descend
any finite global dimension, and provide an example of a class of local,
stably coherent, X,-Noetherian rings R of global dimension equal to two,
for which the extension R — R{x)> does not ascend global dimension.

2. HEREDITARITY

The main result of this section, Theorem 5, proves that the extensions
R — R<{x> and R— R(x) ascend and descend hereditarity. Before proving
our main theorem, we require a short discussion and several preliminary
results.

Throughout this paper we will maintain the following notation:

For a polynomial f € Rf x], L(f) will denote the leading coefficient of /,
that is, if f=a,x"+ -+ +ay, with g;e R and a,#0 then L(f)=a,. For an
ideal I of R[x1, L,(I) will denote the ideal of R consisting of the leading
coefficients of all the polynomials in 7 of degree less or equal to x, and L(])
will denote the ideal of R consisting of the leading coefficients of all
the polynomials in I. We have that I n R = Ly(I) = L\(I) = .., and
L= L,(I).

For an ideal I of R[x], ¢(I)——the content of I— will denote the ideal of
R generated by the coefficients of all the polynomials in I. We recall
the content formula [9]; for f, ge R[x] with deg g=m we have
()" e(g)=c(f)" c(fg). In particular, if ¢(f)=R then c(g)=c(/g),



~

HEREDITARY LOCALIZATIONS 103

and if R is a domain and c¢(f) is an invertible ideal of R, then
c(f) c(g)=clfg).

Max R= {M eSpec R, m is a maximal ideal of R}.

Min R = {p e Spec R, p is a nminimal ideal of R} and
MiniMax R=Min R nMax R.

Finally, K will stand for the total ring of quotients of R, and L for the
total ring of quotients of R{x). Note that L is also the total ring of
quotients of R(x).

PROPOSITION 1. Let R be a Von Neumann regular ring, then the
following conditions are equivalent:

L. R is a hereditary ring.
2. R{x> is a hereditary ring.
3. R(x) is a hereditary ring.

Proof. 1—2. Let I be an ideal of R(x). We aim to show that I is
projective. Since R is a Von Neumann regular ring, so is R{x} [12,
Corollary 2], and thus, R{x)/[ is a flat R module. By [II,
Theorem 1.2.157, I is a pure ideal of R{x); therefore, for every maximal
ideal M of R{x) either I,,=0 or I,,= R{x),,. We conclude that I=1".

Write I=JR{x), where J is an ideal of R[x] containing no monic poly-
nomial. Since I is a proper ideal of R{x ), ¢(J), the content of J, is a proper
ideal of R. To see this. note that since R is a Von Neumann regular ring.
every prime ideal of R is maximal; hence, the prime ideals of R<{x),
necessarily maximal, are of the form mR{x) for meSpec R. As I mR{x)
for some prime ideal m of R, we have JemR{x] and c{J)cm.

Since R is a hereditary ring, ¢(J) is a projective ideal; therefore, c{J)
is equal to a direct sum of principal ideals of R [18, Theorem 4]. As
every principal ideal of R is generated by an idempotent, we have
co(/)=E@ Re;,e;e c(J),e;=e;,ande,e;=0fori#j Now: [=I*cIc(J)R{x) =
I(@® Re,) R(x> = (@ Re) @ IR(xY = ® (Re,® [R(x)) = D le, < 1
thus 7= @ Ie,, and to show that I is projective it suffices to show that /e,
is projective for every 1.

Consider the ideal Je;® R{x>(1 —e¢;). We claim that le,® R{x>(l —¢;}
is not contained in any maximal ideal of R<{x). Assume that
Ie,® R{xY(1—e,)emR{x ) forsome prime ideal m of R;then 1 —e,emR{x)
and Ie,cmR{x>. As | —e,emR{x), ¢;¢ mR{x); therefore, IcmR{x).
But then e; € o(J) @ m « mR{x). This contradiction shows that
Ie,® R{x (1 —e;)= R{x), and thus, le, is projective.

23 Since R(x) is a localization of R{x) we have
gldim R(x) < gldim R{x> <1, and R(x) is a hereditary ring.
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3 1. Let I be an ideal of R. We aim to show that [ is projective.
Since R(x) is a hereditary ring, IR(x) is a projective ideal of R(x). As R(x)
is a Von Neumann regular ring [12, Corollary 2], IR(x)= @ R(x)e; with
e;€IR(x), el=e¢;, and e;e;=0 for i#j. By [4, Theorem 24], ¢, R
and, therefore, ¢; € IR(x) ~ R = I. The ideal J = @ Re,c [ satisfies
J®z R(x)=1® R(x). Since R(x) is a faithfully flat R module, /=1 and,
thus, I is projective.

COROLLARY 2. Let R be a commutative ring; then the following hold.

1. If R is a hereditary ring then so is L, the total ring of quotients of
R(x).
2. If R(x) is a hereditary ring then so is K, the total ring of quotients
of R.

Proof. 1. Since R is a hereditary ring, it is in particular a coherent
ring of finite weak dimension and, therefore, K is a Von Neumann regular
ring [11, Theorem 4.2.187]. As gldim K< gldim R<1, K is a hereditary
ring. By Proposition 1, K(x) is a hereditary ring.

Let A={reR, r is a nonzero divisor in R} and B= {f/ge R(x),
flg is a mnonzero divisor in R(x)}; then B={flg f, ge R[x],
c(g)=Rand (0:xc(f))=0} > A. Thus, L= R(x)z=(R(x),)s=K(x)p and
gldim L < gldim K(x)< 1. Thus, L is a hereditary ring,

2. Assume that R(x) is a hereditary ring; write K(x)=R(x), to
obtain that K(x) is a hereditary ring. Since R(x) is in particular semi-
hereditary, it follows that so is R [12, Corollary 3] and, therefore, K is a
Von Neumann regular ring. By Proposition 1 we conclude that K is a
hereditary ring.

PROPOSITION 3. Ler R be a hereditary ring; then the following hold:

1. Krulldim R< 1.

2. Every ideal me Max R— MiniMax R is finitely generaied.

3. Every ideal pe Min R is of the form p= @ Re, with e;€ p, ¢ =e,,
and e,e;=0 for i # j. In particular, any two distinct minimal prime ideals of
R are comaximal.

Proof. 1. Let peSpec R; then w.dim R, < w.dim R<gldim R< 1.

If w.dim R, =0 then depth R,=0 [12, Lemma 3]. Since R, is a domain
[11, Corollary 4.2.4], R, is a field and, thus, p is a minimal prime ideal
of R.

If wdim R, =1, then R, is a valuation domain [11, Corollary 4.2.6] and
gldim R, =w.dim R,=1; thus, pR,, is finitely generated [29], and free. It
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follows that R, is a discrete valuation ring and ht p < 1. Thus,
Krull dim R< 1.

2. Let me Max R—MiniMax R; then m is a projective ideal not
contained in any minimal prime ideal of R. By {30, Proposition 1.6 ni is
finitely generated.

3. Let peMin R. R is hereditary and, therefore, pK is a proper pro-
jective ideal of the Von Neumann regular ring K. Let pK= @ Ke; with
e;e pK, el =e,, and e;e;=0 for i#j. Since every localization of Ris a
domain ¢,€ R; thus, e,€ pKn R= p. It follows that p=pKnR=@ Re,.
Now if p and ¢ are two distinct prime ideals of R, write p= § Re; with
e;€p, e;=e, and e,e;=0 for i#j. Since p#q, ¢;¢q for some i thus,
l—e;eq and l=e,+ (1l —¢)ep+g. We conclude that p and g are
comaximal.

We now cite a result of Marot [22] which we will use in the proof of
our main theorem. The reader can find proofs of various versions of this
result in [11, Corollary 4.2.20; 30, Theorem 1.8: 22, Proposition 3.4].

ProPOSITION 4. Let R be a commutative ring with 1wral ring of quotients
K; then the following conditions are equivalent:.

1. R is a hereditary ring.

2. K is a hereditary ring and every ideal of R not contained in any
minimal prime ideal of R is projective.

We are now ready for the main result of this section.

THEOREM 5. Ler R be a commutative ring; then the following conditions
are equivalent.

L. R is a hereditary ring.
2. R<{xY is a hereditary ring.
3. R(x) is a heredirary ring.

Proof. 1-—2. Assume that R is a hereditary ring. By Corollary 2 we
have that L is a hereditary ring. Hence, by Proposition 4, we have to show
that if an ideal [ is not contained in any minimal prime ideal of R{x ). then
I is projective. Since Krull dim R< 1, R{x) is a semihereditary ring [12,
Corollary 47; therefore, to achieve our goal it suffices to show that 7 is
finitely generated. We will first consider the cases where [ is a prime ideal
of R{x’ and then proceed to the general case.

By [21, Theorem 3.7] Kruli dim R{x} < 1. The minimal prime ideals of
R{x> are of the form gR{x), where geMin R; thercfore, a prime ideal
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I which is not minimal is either equal to mR{x ) for m € Max R —MiniMax R
or it is equal to PR{x), where P is a prime ideal of R[x] containing no
monic polynomial, Pn R= p, pe Min R —MiniMax R, and pR[x]& P.

Case 1. I=mR{x)», me Max R— MiniMax R.

In this case [ is finitely generated by Proposition 3.

Case 2. [=PR{x», P prime ideal of R[x] containing no monic
polynomial, PN R= p, pe Min R — MiniMax R, and pR[x] < P.

We first remark that such a prime ideal P contains a polynomial f, with
c(f)=R. To see this we will follow an argument of Ferrand [8]. Since
PR{x> is a maximal ideal of R{x>, P ¢ mR[x] for every meMax R.
For every meMax R choose f,eP with c(f,) ¢ m; then the sets
D(c(f,,))={peSpec R, c(f,) ¢ p} are open in Spec R and cover Spec R.
Since Spec R is quasi-compact, there are f1, .., f;€ { fin}menax z SUCh that
Spec R=J;_, D(c(f;)). Let d>deg f;, then f =Y x?f;e P and ¢(f)=R.

We now proceed with the proof of Case 2.

Let p=Ly(p)<= L,(p)<.., and L(P)={) L,(P) be the ideals of leading
coefficients of polynomials in 7 corresponding to the notation preceding
Proposition 1. We claim that L(P) ¢ g for any geMin R. Assume the
contrary; let L(P)c=q for some ge Min R, then p=Ly(P)c L(P)cq and
p=q. Let ge P and write g=a,x"+a,_x"~ '+ -+ +ay, ;€ R, 0<i<n,
then L(g)=a,e L, (P)< p. Since p is a minimal prime ideal of R, there
exists a be P— p such that ba,=0 [11, Lemma 3.3.4, Corollary 4.24,
Theorem 4.2.3(4)]. Then bgeP and either ba,_=0 or ba, =
L(bg)eL, (P)cp. In either case, a,_,ep. Continue to obtain
gepR[x] and P= pR[x]. Thus, L(P) & ¢ for any g€ Min R.

R is a hereditary ring; therefore L(P) is a projective ideal not contained
in any minimal prime ideal of R, and, thus, L(P) is finitely generated. It
follows that the chain Ly(P)c L,(P)c ---stops. Let u be the first non-
negative integer such that L, (P)c g for some g€ Min R; then p= Ly(P) =
L(P)cgq and p=gq. For i>u we have that L,(P) ¢ g for any ge Min R
and, therefore, L,(P) is finitely generated. We have thus far obtained the
following situation. p=Ly(P)=--- =L {P)S L, (P)S ---SL,(P)=
L, (P)=---=L(P)and L, ;(P) are finitely generated.

Let f,, .., f, be polynomials in P whose leading coefficients generate
L, (P),.., L (P), and such that if L(f;) is a generator of L,(P) then
deg f; <.

Let g € P; by an argument similar to the proof of Hilbert basis
theorem [19, Theorem 69], we obtain that g = 37_, r; f; + g', with
¥, € R[x], deg g’ < u, then g’ € P and L(g') € L,(P) = p. Repeating
the argument of the previous paragraph we obtain g’ € pR[x]; thus:
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P (fyv s f) RIx] + PRIX] < (fis s fin /) R[x] + pR(x] P and
P=(fi, .. [, /) R[x]+ pRIx].

Finally, we claim that I = PR{x)> = (f\, ..., fs, [YR{x). For that,
it suffices to show that for every maximal ideal M of R{x> we have
PREXD p=Af15 r [oo [) REX D 0y

PR{x) is a maximal ideal of R{x); we have, therefore, to prove the
following:

(i) For M=PR{x), PR{xD ;= (f1s s f5: /) RCXD 44
(ii) For M #PRLXS, (frsom for fYR(XY & M.

To prove (i) we write R{x) preey=RLx1p=R,[x]pg 1. Since p is a
minimal prime ideal of R, R, is a field; thus, pR, =0, s0 pR{X ) pr¢yy =0.
The claim is now clear.

To prove (ii) let M = QR{x)> with Q a prime ideal of R[x] containing
no monic polynomial. Let M~ R=Q n R=g; then either ge Max R, in
which case @ =¢R[x] and M=gR{x>, or geMin R —MiniMax R, in
which case ¢gR[x] g Q and p #4. In the first case, if (f}, ..., f;, f) R{x> <
gR<{x>, we in particular have that R=c(f)<gq, which is not possible. In
the second case, if (f}, ... f,, /) R{x> = QR{x} we have L(f)e L(Q) for
1<i<s; thus, L,(P)c L(Q) for all i, in particular, p=Ly(P) < L{Q). We
also have g=Q0 N R=Ly(Q)<= L(Q). Since p and ¢ are comaximal we
obtain L(Q)=R. Let 1 =3 r,u, with r,e¢ R and u,c L(Q) and let g, O with
L(g;)=u;; then for n>deg g,=n,, g=3 r;x" ""g,e Q and is monic. This
contradiction concludes Case 2.

Case 3. [is a general ideal of R{x)> which is not contained in any
minimal prime ideal of R{x).

Let /=JR{x) with J an ideal of R[x] containing no monic polynomial;
then J ¢ gR[x] for any g€ Min R, and, thus, ¢(J) ¢ g for any ge Min R.

As in Case 2, consider the chain Ly(J)<= L (/Y= ---, and L{(J)= L,(J).
We claim that L(J) ¢ g for any ge Min R. Too see this, assume that
L(J)< ¢q for some geMin R, and let geJ; write g=a,x"+ --- +4a, with
@;€ R. Repeat the argument given in the similar situation of Case 2 to
obtain that a,& ¢ for 0 < i< n and, thus, ¢(J) < g, which is a contradiction.
As in Case 2 we can now conclude that L{J) is a finitely generated ideal of
R, and let f|, .., f,eJ, whose leading coefficients generate L(J). Then
(fis- fi) R[x] ¢ qR[x] for any ge Min R and, thus, (f,, ... f,) R{(x)> ¢
qR<{x for any ge Min R.

Consider the ring R{x>/(f1, . f;) R{x). The prime ideals of this ring
correspond to prime ideals of R{x> containing (f}, ... f,) R{x). Since
none of those arc minimal they are precisely the kind of prime ideals of
R{x) described in Cases 1 and 2 and are, therefore, finitely generated. It
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follows that R<{x>/(fi, .. f,) R{x)> is a Noectherian ring and, thus,
I(f1, o fo) R{x) is finitely generated. We conclude that 7 itself is finitely
generated.

2—-3. Clear.

3 —>1. Assume that R(x) is a hereditary ring. By Corollary 2, K is a
hereditary ring. By Proposition 4, we have only to show that if /7 is an ideal
of R not contained in any minimal prime ideal of R, then I is projective.
The ideal /R(x) ¢ ¢gR(x) for any g € Min R. Since R(x) is hereditary IR(x)
is a projective ideal of R(x) which is not contained in any minimal prime
ideal of R(x), and, thus, IR(x) is finitely generated. Since R(x) is a faith-
fully flat R module, 7 is finitely generated. Since R is a semihereditary ring
[12, Corollary 3], I is projective.

COROLLARY 6 [4,21]. Ler R be a commutative ring; then the following
conditions are equivalent.

L. R is a Dedekind domain.
2. R{x) is a Dedekind domain.
3. R(x) is a Dedekind domain.

3. ExampLEs

When considering global dimensions higher than one, we cannot obtain
the ascend and descend results of Theorem 5. According to the Hilbert—
Syzygies theorem [30, Theorem 0.14] we always have gldim R{x)> <
gldim R+ 1 and gl.dim R(x) < gldim R + 1. If the ring R is X,-Noetherian,
we can do better than that.

Recall that a ring R is called Ry-Noetherian if every ideal of R is
countably generated.

ProposITION 7. Let R be an Ry-Noetherian ring; then the extensions
R — R{x> and R — R(x) descend global dimension.

Proof. Assume that gldim R{(x>=n< o0 and let { be an ideal of R.
Since R is Xy-Noetherian, every submodule of a countably generated R
module is countably generated [17, Lemma 1]; we, therefore, have an
exact sequence, SN F, N F, LN F, %, 70, with F; countably
generated and free and K,=kerd; countably presented. Tensor this
sequence with — ® p R{x). As gl.dim R{x)> =# we have that K,®@ z R{x)
is a projective R{x > module for some i< n— 2. It follows from [27, Part1,
3.1.4] that K, is a projective R module, and, thus, proj.dim, /<n—1. We
conclude that gl.dim R < gl.dim R{x>.
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A similar argument yields gl.dim R < gl.dim R(x).

The extension R — R<{x ) does not have to ascend global dimension even
in the presence of N,-Noetherianess. Here we present an example of a class
of local, stably coherent N,-Noetherian rings R of gldim R=2 but
ghdim R{x)> =3.

EXAMPLE. Let V be a valuation domain of gldim V = 2; then the
Jollowing hold:

. gldim V(x)=2.

2. If Krulldim V' =3, then gl.dim V'{(x)>=3.

3. If Krulldim V=2 and for the prime ideal of height one of V, p. V',
is not a discrete valuation domain, then gldim V{x} =3. If V, is a discrete
valuation domain, then gl.dim V{x},, <2 for every prime ideal M of V{x>.

4. If Krull dim V<1, then gldim V(X =2.

According to [24], Theorem A7 (see also [30, Theorem 2.17), for a
valuation domain J to have global dimension two it is necessary and suf-
ficient that V be X,-Noetherian—but not Noetherian unless gl.dim V' =1.
Therefore, there exist valuation domains of global dimension two and any
given, finite, Krull dimension [13, Sect. 7]. Valuation domains } are
stably coherent rings; that is, the polynomial rings in finitely many
variables over ¥ are coherent rings [11, Corollary 7.3.47; in particular,
both V(x> and F{(x) are coherent rings. Note also that for every prime
ideal p of a valuation domain 7 and any e V'~ p we have bp= p, There-
fore, by Nakayama’s lemma, no prime ideal of V is finitely generated unless
it is 0 or maximal.

By Proposition 7, we have 2 < gldim F'{x) <3 and 2 < gl.dim V(x)<3.

I. 1In this case V(x) itself is a valuation domain [12, Corollary 3}
and clearly R,-Noetherian. Thus, gldim V(x)=2.

2. We first reduce to the case where Krulldim F"=3. Assume that
Krull dim V"> 3 and let p be a prime ideal of V of ht p=3. Then ¥, is a
valuation domain of gldim¥,=2 and Krulldim},=3. By [4
Lemma 2.5], V,{(x) is a localization of F(x); thus, gldim },(x><
gldim (x>, and the reduction is complete.

Assume now that Krulldim V=3 and let Spec V={0cpcgam).
Krulldim F{x]=4 [19, Theorems 39, 68 and, therefore, Krulldim F'(x 3 =3
[21, Theorem 2.1]. Let Q be a prime ideal of V{x] containing no monic
polynomial, O n V=g, and ¢V[x]< Q. ht 0 =3: thus QF{(x)> is a
maximal ideal of I"{x), and so  contains a polynomial f with ¢{f)= V"
It is clear that for every ae g, the sequence {a, f} is a regular sequence in
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V[x] and, therefore, it is a regular sequence in V'{x} g, .. In particular,
depth V<{x)gy¢y =2, and as w.dim V{x},y(y <2 [12, Lemma 4], we
have that w.dim V<{x3,,.,, =2 [12, Lemma 3].

Assume that gl.dim F'{x) =2; then gldim F{x) gy =2

Since w.dim V{x}gp¢.y =2, V{xDpp (s, is not a valuation domain. As

ht QV{x) =3, Krulldim V{x)p(.y=3; therefore, F'{x>,, ., is not a

-Noetherian regular ring. According to [28; 30, Theorem 2.2, V<x}pi¢ys

has to be an umbrella ring. In particular, ¥<x),, ., has to contain a

nonzero prime ideal P satisfying:

(1) P=PV<{xD>gycc;)p, that is, for any geV{x)ppcs—P,
gP=">.
(ii)) ¥V<{x>/QV{x> is a Noectherian regular local ring of Krull
dimension equal to two.

Note that no such prime ideal P can be finitely generated unless it is
maximal.

Property (ii) implies that such an ideal P will necessarily satisfy
ht(P)= 1. Thus, either P=pV{(x>ppc> OF P=NV{xDgp(xy, Where N is
a nonzero prime ideal of R[x] containing no monic polynomial and
satisfying NnV=0. But f(pV{x)opce) #PV{X)gvery, and N is a
finitely generated ideal of V[x] [10, Corollary 4.127. We conclude that
gldim V{x)gr¢v, # 2; therefore, gldim V<{x)=3.

3. Let Spec V={0c pcm}. Let P be a prime ideal of ¥[x] con-
taining no monic polynomial and satisfying PnV=p and pV[x]& P.
Then P contains a polynomial f with ¢(f) =) and PV{x) is a maximal
ideal of V{(x). As in the previous case we obtain that
w.dim V{x) ¢,y =2. Assuming that gldim V(x> =2, we obtain that
gldim V{x)pp¢oy=2. V{X)pyc,, is not a valuation domain, and since
Krull dim ¥ {x)p,. ., =2, it is not an umbrella ring. Thus, V{x)py(y; is
a Noetherian regular ring. In particular, p¥(x} p,,, is finitely generated,
and choosing a set of generators contained in p, we see that pF{x )y,
is finitely generated. Now V{x),.c.s=VIx1,vra=V,[x1m 3= V,(x);
thus, p¥, is finitely generated. It follows that V), is a discrete valuation
domain, and the conclusion follows.

On the other hand, if V, is a discrete valuation domain, a case by case
analysis of the localizations of ¥F{x) by prime ideals shows that I"'{x} is
locally of global dimension two. The prime ideals of height one of V<{x)
are pV<{x> and NV{x)>, where N is a nonzero prime ideal of V[x]
containing no monic polynomial and satisfying N n V= 0. In the first case,
VXD ey =V, (x). In the second case, V<{xDyy¢xy=F[X]yprxy 1S 2
Noetherian, local regular ring of Krull dimension one. Therefore, both
localizations have global dimension one. The prime ideals of height two
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of V{x) are m{x> and PV{x), where P is a prime ideal of ¥V[x]
containing no monic polynomial, Pn ¥ =p and pV[x]< P. In the first
case, V<X ¢y = V(x). In the second case, V<{x}pp(iy= V,[x] prox] @
localization of the Noetherian regular ring of Krull dimension two ¥,{x]
by a height two prime ideal. In both cases the global dimension of the

localizations is two.

4. 1In this case, '{(x) is a semihereditary ring [12, Corollary 4],
and X,-Noetherian; therefore, gldim V{x)<w.dim V{x>+1=2 [17.
Theorem 1], and, thus, gldim V{x)=2.

REFERENCES

—

. T. AxiBa, On the normality of R(x), J. Math Kyoto Univ. 20 (1980}, 749-753.
. D. D. ANDERSON, Multiplication ideals. multiplication rings and the ring R(x), Canad.
J. Maih 28 (1976), 760-768.
3. D. D. ANpERsON, Some remarks on the ring R{x). Commun. Math. Univ. S1. Pauli 26
(1977), 137--140.
4. D. D. AnDpersoN, D. F. ANDERSON, AND R. Markanpa. The rings R(x) and R{x),
J. Algebra 95 (1985), 96-115.
5. J. ArRNoLD, On the ideal theory of the Kronecker function ring and the domain D{x},
Canad. J. Math 21 (1969), 558-563.
6. J. BREwer aND D. CosTa, Projective modules over some non Noetherian polynomial
rings, J. Pure Appl. Algebra 13 (1978), 157-163.
7. J. BREWER aND W. HEINZER, R Noetherian implies R{x} is a Hilbert ring, J. Aigebra 67
(1980), 204-209.
8. D. FErranD, Trivialisation des modules projectifs, La méthode de Kronecker, J. Pure
Appl. Algebra 24 (1982), 261-264.
9. R. GiLMER, “Multiplicative Ideal Theory,” Queen’s Papers on Pure and Applied. Mathe-
matics, No, 12, 1968.
10. S. GLAz anp W. V. VasconcerLos, Flat ideals IT1, Comm. Algebra 12 (1984), 199-227.
11. S. Graz, “*Commutative Coherent Rings,” Lecture Notes in Mathematics, Vol. {371,
Springer-Verlag, New York/Berlin, 1989.
12, S. Graz, On the coherence and weak dimension of the rings R{x) and R(x), Proc. Amer.
Math. Soc. 106 (1989), 579-587.
13. S. Graz, Commutative coherent rings: Historical perspective and current developments.
preprint.
14. 6. Hinkek anp J. Huckasa, The generalized Kronecker function ring and the ring R(x),
J. Reine Angew. Math 292 (1977), 25-36.
15. J. Huckasa AnD 1. Parick, A localization of R{x], Canad. J. Math. 33 (1981}, 103-115.
16. J. Huckasa anp [. Papick, Quotient rings of polynomial rings, Manuscripta Math. 31
(1980), 167-196.
17. C. U. JenseN, On homological dimensions of rings with countably generated ideals, Afarh.
Scand. 18 (1966), 97-105.
18. 1. KAPLANSKY, Projective modules, Ann. of Math. 68 (1958), 372-377.
19. L. KaPLANSKY, “Commutative Rings,” Allyn & Bacon, Rockleigh, NJ, 1970.
20. Y. LEQuAIN AND A. SiMis, Projective modules over R{x,. .., x,,] R Priifer domain, J. Pure
Appl. Algebra 18 (1980), 165-171.

N

481140718



112 SARAH GLAZ

. L. LERicHE, The ring R{x}, J. Algebra 67 (1980), 327-341.

2. J. MAROT, Anneaux héréditaires commutatifs, C. R. Acad. Sci. Paris 269 (1969), 58-61.

. B. McDonaLD aND W. D. WATERHOUSE, Projective modules over rings with many units,
Proc. Amer. Math. Soc. 83 (1981), 455-458.

24. B. L. Osorsky, Global dimension of valuation rings, Trans. Amer. Math. Soc. 127 (1967),

135-149.
. D. QUILLEN, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167-171.
. L. RATLIFF, A(x) and GB-Noetherian rings, Rocky Mountain J. Marh 9 (1979), 337-353.
. M. RayNauD anND L. GRUSON. Critéres de platitude et de projectivité, [nvent. Marh. 13
(1971), 1-89.
. W. V. VasconceLos, The local rings of global dimension two, Proc. Amer. Math. Soc. 35
(1972), 381-386.

29. W. V. VascoNCELOS, Super regularity in local rings. J. Pure Appl Algebra 7 (1976),

231-233.
. W. V. VasconceLos, “The Rings of Dimension Two,” Lecture Notes in Pure and Applied
Mathematics No. 22, Dekker, New York, 1976.



