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0 INTRODUCTION
The concept of a splitting ring dates back to Szekeres (1948). The motivation

for his work was the fact that the ring of p-adic integers, ﬁp, “splits" any torsion-free
A
finite rank abelian group G in the sense that Zp @ZG is isomorphic to the direct sum

of a free and a divisible Z -module. Here, a torsion-free abelian group G is an
additive subgroup of a vector space over the field of rational numbers Q; and the rank
of G is the dimension of the subspace spanned by G. If A is any subfield of the

field of p-adic numbers, (A)p. and R=An ﬁ D then Szekeres called A a splitting
field for G if R eZG is isomorphic to the direct sum of a free and a divisible
R-module. For our purposes, an R-module M is divisible if nM =M for all nonzero
integers n; every R-module M contains a unique maximal divisible submodule
div(M); and M is reduced if div(M) = 0. The main result in (Szekeres 1948) is that
each G has a unique minimal splitting field.

In a series of papers, Lady made an extensive study of splitting fields and
splitting rings. In Lady (1977, 1980a, 1980b) he works with torsion-free modules over
a discrete valuation domain V. In this context a splitting ring R for a V-module G
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is a pure subring of the completion of V such that the reduced tensor product
R*G=(R ®VG)/div(R evG) is a finitely generated R-module. In Lady (1983) he
obtains global results, working with modules over a Dedekind domain W with
quotient field Q(W). Here a splitting ring is a reduced torsion-free commutative
W-algebra [ such that p-rank I = dimW/p(IIpI) =1 for all prime ideals p of W;
and I is quasi-isomorphic (defined below) to the product of W-algebras Wlx “ X Wt,
where each Wi is a Dedekind domain such that Q(W)Wi is a field. Lady's general
approach is to consider the W-modules split by a fixed splitting ring L.

In this paper we follow a different path by fixing a torsion-free reduced
Zp-module G of finite p-rank and considering splitting rings for G. Here Zp
denotes the localization of the ring of integers at a fixed prime p; and the p-rank of G
is the Z/pZ-dimension of G/pG. For us a splitting ring for G is a commutative
Z_-algebra R whose additive group is torsion-free reduced of finite p-rank. We say
that such an R splits G if the reduced tensor product R * G is quasi-isomorphic to a
free R-module, that is, R * G contains a free R-module F such that (R * G)/F is
finite. We have chosen to work with Z_-modules for the sake of simplicity. Our
results extend immediately to modules over a discrete valuation ring.

Every torsion-free Z_-module G contains a p-basic submodule, that is, a free
Zp-submodule B such that G/B is torsion-free divisible. We call a submodule B of
G pure whenever G/B is torsion-free. To each p-basic submodule B of G we

associate a “canonical splitting ring" Rpg which is a pure subring of Z . While RB
depends on B as well as G, we show that all the Rp's have a common field of
quotients A (Corollary 2.5). This A is just the splitting field of Szekeres -- seen
from a different point of view. We show that there exist minimal canonical splitting
rings if G has finite rank (Theorem 3,6). On the other hand, not every splitting ring
will contain a canonical one (Example 4.1). However, if R is a splitting ring for G
such that the additive group R+ of R has finite rank, then R contains a unique
minimal canonical splitting ring S, and S = RB for each p-basic submodule B of G
(Theorem 4.5).

Throughout, we work in the category of reduced torsion-free Z_-modules of
finite p-rank and quasi-homomorphisms. The objects of this category are called simply
p-local groups. Let G and H be p-local groups. The group of quasi-homomorphisms
from G to H is QHom(G,H). Two subgroups G and H of a group K are

quasi-equal (G = H) provided nG¢cH and nH ¢ G for some non-zero integer n. If
G and H are p-local groups, then we can assume n= pr for some r 2 0. In this

case, GMmH and H/nG are finite p-groups. Quasi-isomorphism () and
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quasi-containment (C) are defined similarly. If X is a subset of a group G, we use
<X>, for the pure subgroup generated by X and writt A is quasi-pure in B to

mean that A =<A nB>,, the purification being taken in B. The Q-subspace
generated by a torsion-free group G is written QG . If R is a torsion-free ring then
QR is endowed with the natural ring structure.

All rings are commutative with identity and subrings are assumed to contain the
identity. If R is a ring, a divisible R-module is an R-module M such that M+ isa
divisible group. A ring R is called a p-local ring if R+ is a p-local group. For a

p-local ring R, ﬁ denotes the p-adic completion of R and R is regarded as a

subring of ﬁ . All unadomed tensor products are taken over Z and, if G is a group
and R is aring, then R @ G is endowed with the natural R-module structure.

1 SPLITTING RINGS FOR p-LOCAL GROUPS
Throughout, G is a reduced p-local torsion-free abelian group of finite p-rank
r=r(G). As previously noted, we will refer to G simply as a "p-local group.” For

such a G, it is well known that the ring ﬁp splittk' G in the sense that

A
% eG= Z:; o D, where D is a divisible ﬁp-module. This fact motivates our first

definition.

DEFINITION 1.1 Let G be a p-local group and let R be a p-local ring . We say

that R splits G if, as an R-module, R® G = Rt o D, where t is a positive integer
and D is a divisible R-module. We also call such an R a splitting ring for G.

In this section we present some simple facts, most of them easy generalizations
of results contained in Lady (1977-83), on splitting rings.

LEMMA 1.2 Let G be a p-local group and let R and S be p-local rings.
(a) If R is quasi-isomorphic to a subring of S and R splits G then so does S.
(b) If R splits G then so does R/l where I is any ideal of R.

(c) f ReG2R'eD,then t=r=p-rank G.

Proof: (a) Wolog, assume RcS. If ReG v Rt oD, where D is a divisible

R-module, then apply S ep— to obtain Se G «~ St o (S eRD) .
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(®) If ReGR'eD then apply Rilep__.

(c) Let ReG~ R'@D. Then there is an exact sequence of R-modules
0—-oRt<aD——oR®G——vA—-oO, where A is finite. Since R'eD and Re G are
torsion-free of finite p-rank it follows that p-rank(Rt ® D) = p-rank(R @ G). But

p-rank(Rt @ D) = t(p-rank R) and p-rank(R @ G) = (p-rank R)(p-rank G) =
r(p-rank R) . Since p-rank R <= we have t=r.

Note that if R is any ring such that R splits G then R must automatically
be p-local because G is. Further, Lemma 1.2(b) allows us to add the standing
assumption that all “p-local rings" are torsion-free and reduced.

THEOREM 1.3 (Lady 1977, Theorem 4.1) Let R be a p-local ring and let G bea
p-local group of p-rank r. Then R splits G if and only if G is isomorphic to a

subgroup G' of R' suchthat G’ is quasi-pure in R™ and RG = R".

Proof: The proof, identical to that in Lady (1977). is included for the reader's
convenience. Suppose ¢: R e G — R'e D is an R-quasi-isomorphism. By Lemma
1.2(c), t=r=p-rank G. Let =m: ¢(R®G)—0Rr be quasi-projection and let

G =a¢l eG). We have G’ ¢ R" and, since n$ is an R-map, RG’ = R".
Additionally, 1® G is purein R® G since pR# R . Hence ¢(1 » G) is quasi-pure

in RFeD and, since ¢(1 e G) is reduced, 1 e G)nD =(0). It follows that
G’ =G andthat G’ is quasi-pure in R'.

Conversely, let G be quasi-pure in R° with RG=zR". Definc
0:ReG—R" by &reg)—rg. Then 6 is an R-quasi-cpimorphism, hence

quasi-splits. That is ReG=FeK, where F=R" and K=Ker0. But since
p-rank R < =, we must have p-rank K =0, i.e, K is divisible.

COROLLARY 1.4 (Lady 1977, Corollary 2.2) Let R be a pure subring of ﬁp. Then
R splits R+.

Proof: In this case p-rank R+ =1 and R is pure in R, so Theorem 1.3 applies.
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2 CANONICAL SPLITTING RINGS

Let G be a p-local group. In this section, for each p-basic submodule Bc G,
we construct a canonical splitting ring Rp . These rings RB , in general, will depend
on B, but all of them will have a common field of quotients A . The field A will be
the p-local splitting field for G as defined in Szekeres (1948). See also Turgi (1977)
and Lady (1977). Our original motivation was to investigate the connection between
p-basic submodules and splitting rings. The main result, Theorem 2.2, is a key to the
results in Sections 3 and 4. A byproduct is a simple proof of Szekeres' original
theorem.

To each p-basic submodule B of G, we associate a unique splitting ring RB
as follows. The exact sequence

0—-B—G—D—0

where D is p-torsion-free and divisible, induces a split exact sequence of ﬁp-modules
f
A — A A
O—theB—-'Zp@G—ﬂZpeD—-»O.

Note that since ﬁp ® B is p-reduced, the splitting map f: ﬁp G — ﬁp ®B is

uniquely determined by the fact that the restriction of f to ﬁp @ B is the identity.

Define Ry to be the smallest pure subring of Z , such that (1eG)cRpoB. If
R and S are two pure subrings of ﬁp,then (RnS)eB=(ReB)n(SeB), sothat

Rg=n{R | R is a pure subring of ﬁp and f(1eG)cReB}. This equality
demonstrates both the existence and the uniqueness of RB .

We now have an induced exact sequence
™ 0-+RBoB——oRB®G—ﬂRB®D—-oO.
Moreover, the restriction of the map f to RB @ G provides an RB-module splitting
of (¥*), since f(RB 2 G)= RBf(l e G)¢c RB(RB e B)= RB ® B . Clearly, RB eB is
a free RB-module. while RB e D is a torsion-free divisible RB-module. It follows
that RB is a splitting ring for G .

Note that if X is a maximal Z-independent subset of G then Rg is the

smallest pure subring of ﬁp such that f(1 ¢ X) ¢ RB @ B . In particular, this implies
the following result which also appears in Szekeres (1948), Turgi (1977) and Lady
(1977).

PROPOSITION 2.1 Let G be a p-local group of finite rank. Then, for each p-basic

submodule B¢ G, Rg is purely finitely generated as a subring of ﬁp .
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Our next theorem allows us to derive the main result of Szekeres (1948).

THEOREM 22 Let B be a p-basic submodule of a p-local group G and let S bea
splitting ring for G. Then there is an element u€ S such that u is a unit in Q§

and such that RB is isomorphic to a subring of S[u'l] .
Proof: Let r=p-rank G and consider the diagram,

0

1

0—G —LRBaB—LgeBsgr

le %

st 3 § r
The pure embedding f is the composition of the natural embedding G-1eG and
the splitting map f from the definition of RB . The pure embedding y comes from

the natural inclusion of ﬁ D in § . The embedding 6 is derived as in Theorem 1.3
from the fact that S is a splitting ring for G, and & is the canonical embedding. We

will use also that S6&G)=S". The lifting 'é, of @, is the unique §-map which
makes the diagram commute. That is, 9 is the g-map satisfying 'éyﬁ = 06.

The homomorphism 8 can be represented as a matrix A € Mat l,(§) with
respect to a basis for 1 @ B in g ® B and the canonical basis for §r . Indeed, since
’é(leB) =&B)cS ,Ac Mat (S) . As noted above, S6(G)=S", so that
§3(1@B) = §r . It follows that the map 9 isa quasi-isomorphism. Let A"l be the
matrix for the quasi-isomorphism Ié'l with respect to the same bases used for A .
Then A’!

A‘l

€ Mat l,(Q§) ,and u=det AeS is a unit in Qg . However,
=uwl@dja), so  AleMa(Sw'D.  The latter implies that
18(G) ¢ XRgeB) n A™!(s") cSu!)eB. Since B is frec and y:Ry e B — SeB

is the natural inclusion map, it follows that RB is isomorphic to a subring of S[u'I]
and the proof is complete.

COROLLARY 2.3 Let B be a p-basic submodule of a p-local group G and let S
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be a pure subring of 2 D which splits G. Then RB c S), where Q(S) is the
quotient field of S taken in the field ﬁp.

Proof: Applying Theorem 2.2, R ¢ Su™1c S) ép .

The equivalence of (a) and (b) in the next corollary appears as Proposition 1.21
in Lady (1983).

COROLLARY 2.4 Let G be a p-local group of p-rank r and R a p-local ring such
that QR is a field. The following are equivalent.
(a) R splits G.

(b) G is quasi-isomorphic to a pure subgroup of R.
(c) For every basic submodule B of G, RB cR.

Proof: The statement (a) implies (b) is Theorem 1.3; and (c) implies (a) is Lemma
1.2(a). For (b) implies (c), let B be a p-basic submodule of G and suppose G is

quasi-equal to a pure subgroup of R'. Then RB is a free R-submodule of R" of rank

r. Since QR is a field, it follows that RB = R". Thus, RG= R' and R isa
splitting ring for G by Theorem 1.3. Therefore, by Corollary 2.3, RB c Q(R) = QR.

Also, RBcﬁpcﬁ. Since ﬁnQR:R, RBCR.

Following Szekeres (1948), a subfield Ac 6 b is called a splitting field for G
if An 2 p is a splitting ring for G . Szekeres originally defined A to be a splitting

field for G 'if R*G is a finite rank free R-module where R=4n 2 . Our
definition of a splitting ring R for G only requires that R *G be quasi-equal to a

finite rank free R-module. However, if R=4AnN ﬁp for some subfield Ag 6 b then
R+ has p-rank one, so any R-module quasi-equal to R is isomorphic to R. It
follows that any R-module quasi-equal to a free R-module is free. Thus, our
definition of splitting field, restricted to his context, coincides with that of Szekeres.

COROLLARY 2.5 (Szekeres 1948, Theorem 3). Let G be a p-local group with

p-basic submodule B and let A=Q(Rp)C ép. Then A is a unique minimal
splitting field for G (and, thus, is an invariant of G).
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Proof: Let A=Q(Rg) andlet K¢ ép be a splitting field for G . Then KnZ ) is
a splitting ring so, by Corollary 2.3, RB cQKn 2 p) . Hence AcK.

In particular, Corollary 2.5 implies that Q(RB) = Q(RB,) for any p-basic
submodules B,B’ ¢ G. If A is algebraic over the rational number field Q we can
conclude RB = RB' .

COROLLARY 2.6 Let G be a p-local group and suppose that A = A(G) is algebraic
over Q. Then Rg= RB' for all p-basic submodules B,B' ¢ G .

Proof: Since Rp,Rp.CAC ép and A/Q is algebraic, then Q(Rp) = QR .
A
Q(RB') = QRB’ , where QRB , QRB, are the divisible hulls of RB . RB' in Qp".

Furthermore, RB and RB’ are pure in ﬁp. Thus,

A A a3 A
RB =QRBan=Q(RB)an= Q(RB,) an =QRB, an: RB' .
EXAMPLE 2.7 Let G be the pure subgroup of v b generated by l,a and o ,
where @ is a transcendental p-adic unit. Let B=<I> and B’ =<a>. Plainly, B
and B’ are p-basic submodules of G . It is easy to see that RB is the pure subring

of ﬁp generated by | and «, while RB' is purely generated by 1,a and a'l.

Thus, RB is properly contained in RB' . Note, however, that the quotient fields of
RB and RB' coincide.

3 MINIMAL CANONICAL SPLITTING RINGS

In this section we investigate the existence of minimal canonical splitting rings
for a group G. A canonical splitting ring RB is called minimal if no canonical
splitting ring is properly contained in RB . Example 2.7 shows that not all canonical
splitting rings are minimal. However, there are useful criteria for determining
containment relationships between canonical splitting rings.

Let B and B’ be p-basic submodules of the p-local group G and denote
R= RB ,R’' = RB’ . We will employ the following diagram:
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f
A —_ A
Z 8B —Z oG
e P
Ty T1
fl
A — A
Z eB"——Z oG
e’ P

Here ff’ are the unique splitting maps for the natural inclusion maps e, e’
and the isomorphism 7y makes the diagram commute.

By choosing bases for 1 @Bc_:ﬁ eB and 1eB’ gﬁ eB’, we can
represent the isomorphism y by a matrix Ce Matr(R) as in the proof of Theorem

1 1

22. Similarly ¥  can be represented by C € Matr(R’). Moreover, if

u = det C'l ,then R¢ R’[u_[] = R’[det C] . The next lemma follows directly.

LEMMA 3.1 The following are equivalent:
(a) RcR’

(b) Ce Matr(R’)

(c) detCeR’

LEMMA 3.2 Continuing with the same notation, let d =det C. Then R is properly

contained in R’ if and only if de (R")"R" , where ~ denotes the multiplicative
group of units in a ring.

L'¢ R . Inview of Lemma 3.1, RER’ (proper

Proof: We have de R, dl=det
containment) if and only if de R’ and d'l¢R. Thus, RER’ if and only if

* *
de R)R".
LEMMA 3.3 Suppose RER’ . Then (R’) /R" is infinite.

Proof: By Lemma 3.2, if R ER’ then de (R’)*\R’|= . Since d e R, we must have
{d-'|j €EZ}n R = {1}. Otherwise deR for some j>0, whence
al= did('l'j) €eR and de R' , a contradiction.

Let OR, QR’ be the divisible hulls of R, R’ taken in Q o Then QR, QR’
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are subrings of ép and we have:
LEMMA 3.4 Suppose R R’ . Then (QR’) /A(QR)" is infinite.

Proof: By Lemma 33, (R’) /R is infinite. Moreover, (QR)" = QR" and since R
ispurein R, R"nQR =R . Thus, (R’)*/R’k embeds into (QR')*/(QR)* via x
+R —x+(QR)" and (QR")*/QR)" is infinite.

To prove our main theorem, we employ Lemma 3.4 together with a result on
the multiplicative group of units of a ring. For the reader's convenience we give a
complete statement of this latter result.

LEMMA 3.5 (Krempa 1985, Theorem 1.4). Let A cB be domains such that A is
integrally closed in B and B is finitely generated as an A-algebra. If A is a Krull

domain, then B*/A:'= is a free abelian group of finite rank.

THEOREM 3.6 Let G be a reduced p-local group of finite rank. Then there exists a
p-basic submodule B of G such that the corresponding canonical splitting ring RB
is minimal in the set of canonical splitting rings.

Proof: Plainly, it is enough to show that under the assumptions of Theorem 3.6 there

exists no sequence of p-basic submodules B, B, B3,... for G such that the

corresponding sequence Rl’ R2’ R3,..., where Ri = RB. , forms a properly descending
i

chain of canonical splitting rings.

Assume the contrary. Then, since each Ri is pure in ﬁp , we have a properly
decending chain: QRl o) QR2 o] QR3 > ---. Since G is of finite rank, each Ri is
purely finitely generated as a ring by Proposition 2.1. Hence each QRi is a finitely
generated Q-algebra.

Let Fi be the algebraic closure of Q in QRi . Then F1 2 F2 2 F3 2 isa
descending chain of algebraic number fields. Choose t such that F = Ft " for all

t
j20. For i>t each QRi is an algebra over F= Ft' Apply Lemma 3.5 with

A=F,B= QRi ,i2t, to conclude that, for each i>t, (QRi)*/F* is a free abelian
£

group of finite rank. But, for i>t, [(QRi)*/F VI(QR; +l)*/F*] = (QRi)*/(QRi+1)* is

infinite by Lemma 3.4. This implies that, for all i2t¢, rank(QRi _'.l)"‘/lf""= <
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rank(QRi)*/F* , an impossibility. Thus, no infinite proper descending chain of
canonical splitting rings exists and the proof is complete.

4 FINITE RANK SPLITTING RINGS
The following example shows that Theorem 2.2 cannot be strengthened: not
every splitting ring contains a canonical splitting ring.

EXAMPLE 4.1 Let G=<q¢, 1-d2>* c ﬁp , where « is a transcendental p-adic unit,

and let S be the pure subring of Z o generated by 1 and o Let 6:SeG-~+S be
given by 9().‘.si@,<;i)=£sigi . Then 6 is an S-map which is epic since

fl(aea)+(1e-c?N]=1.
Hence, SeG=SeKerf. But p-rank(S e G) = (p-rank S)p-rank G)=1, so
p-rank Ker6 =0, i.e., Ker@ is divisible. Thus, S is a splitting ring for G .
We claim that S contains no canonical splitting ring. To see this, consider the
possibilities for p-basic submodules B of G. First suppose B =<a>. If f is the

splitting map for ﬁp ® <> — ﬁp ® G, then f(1 e a)=1e a. Therefore, by p-adic

continuity, f[l ® (l-az)] = l&a ® . Thus, in this case, RB is the pure subring of

1-o?

o Next suppose B=<f>, f=ua+ v(l-az) .
uweQ,v#0. Then {B, @} isa maximal linearly independent set in G and, if

A
Zp generated by 1 and

is’ the splitting map for 2p@<[3>—-oﬁp00, then flef)=1ep,

flea)= % ® B . In this case RB is the pure subring of ﬁp generated by 1 and
o/ . In neither case is RB contained in S.

In view of Example 4.1, the best we could hope for is to show that each
splitting ring R contains a subring of p-rank one which is a splitting ring. The logical

candidate for such a subring is the ring RO = 2 nR. More precisely, if R is any
p-local ring, then Z p’l is the pure subring generated by 1€ R. Write R/Z b’ 1) =
DeC where D is divisible and C is reduced. It is easy to see that if R0 is the
subgroup of R such that ROI(ZP- 1) =D, then R0 is a subring of R of p-rank one.

It is possible to regard R =:2 NnR by identifying R and v =ﬁ -1 as subrings of
0™ %p PP

the completion R of R.
If R is a splitting ring for G, when does R0 split G? We begin our



234 Glaz et al.

discussion of this question by providing two examples where this is not the case.
Example 4.2 shows that R0 does not have to split G even if RO is a discrete

valuation domain (equivalently, since R0 is a pure subring of ﬁp, QR is a field).
In this example, G cannot be embedded in Ror, where r = p-rank(G). In contrast,

Example 4.3 provides a ring R0 for which G can be purely embedded in Ror, but
still R0 does not split G. By (Lady 1977, Proposition 1.2), such an R0 cannot be a
discrete valuation ring.

EXAMPLE 4.2 Supposc S is a pure subring of ﬁp properly containing Z b and that

a and B are units of ﬁp which are algebraically independent over S. Further

suppose that the polynomial f(x) = ozﬁx2 + x + 1 is irreducible over S. This will be-
the case, for example, if p=2. Let d be a root of f(x), let R be the pure subring

of the ring 2 [d] generated by (S, ad, Bd, d} and let G be the pure subgroup of
ReR gcncraled by {(0,1), (d,0), (cd,y)}, where 7y is some element of S\Z . D The
construction guarantees that G is a strongly indecomposable group of rank three and
p-rank two. Moreover, RG =R @R, since (0,1)¢ G and (1.0) = -Bd[(ad, ) - 10.1)]
-(d.0) e RG. Thus, R is a splitting ring for G by Theorem 1.3.

The next step is to show that R0 =Rn ﬁ D = S. For this it suffices to show

Q(Rnﬁ )=QS, since S is pure in R and 74 Clearly, Q(R nZ )cQS[a,ﬁ] c

D
Q Furthermore, QR is isomorphic to the quotient ring QS[ax, Bx, x]/(f(x)) where
a,ﬁ and x are considered as indeterminates over QS. Note that all these rings may

be regarded as subrings of Qp[x]/(f(x)). Thus, an element @a.f) of QRN Zp)
gives rise to an equation @(o.f) - w(ax.px.x) = mf(x), where ¢ and vy are

A
polynomials with coefficients in QS, and m € Qp[x]. Morcover, for a given ¢, we

may choose y, regarded as a polynomial in ép[x], to be of minimal degree in X. In
this case, it must be that m=0 and we QS. If m#0, then the term of mf(x) of

highest degree in x has the highest term in f(x), aﬁxz, as a factor. This term must
also be the term of highest degree in x in y(ox,fx,x). Then employing the

substitution ozﬁx2 = f(x) - (x + 1) and transposing the ensuing multiple of f(x), we
obtain an equation ¢(c.p) - Y(ax,px,x) = m'f(x) with y of lower degree in x than

v. This completes the proof that R n 7 =S.
Finally, we show that RO = S .is not a splitting ring for G. To see this, let
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0 e Hom(G,S). Write 6(d,0) =seS and 6(01) =te€ S. Then, by continuity,
&od,y) = os + 1t is an element of S. However, Y€ S, whence #te S; and @ is
transcendental over S, so s=0. This shows that (d,0) is in the kernel of every map
in Hom(G,S). In particular, G cannot be embedded into a direct sum of copies of S.
By Theorem 1.3, S does not split G.

Our next example is constructed in a similar fashion.

EXAMPLE 4.3 Let o,y be units of ﬁ p which are algebraically independent over
Q. Further assume that f(x) = aﬁx2 + ax + 1 is irreducible over ﬁp, andlet d bea

root of f(x). Let R be the pure subring of 74 p[d] generated by {l,a,08,7d}, and
let G be the pure subgroup of R @ R generated by {(0,1), (2,0), (aB,y)}. Asind2,
G is strongly indecomposable of rank three and p-rank two and RG =R e R. Also,

RO is the pure subring of v4 generated by ({l,a.aB,y}. In particular, G is a pure
subgroup of R, e R, Suppose O is an element of Hom(G,Ro). Denote 6(c.0) =1
and 6(0,1) =s. Thus, &ap.}) =Pr+ 7 by continuity. Since y and s arein Ry
we must have fr in RO‘ Then consideration of the generating set for RO shows that

re aRO. It follows that for any embedding £:G - Roe RO’ we have &a0) =
(ory,015) for some 1.r) € Ry If &0,1) = (s;:5y) € Rye R then ROG(G) =
ary "“2] is invertible in the two by two

matrix ring over QRO. But detMe aRO and a is not a unit in QRO. Thus, by

RO ® RO implies that the matrix M= [
Theorem 1.3, RO is not a splitting ring for G.

The next theorem shows that the class of rings R such that RO =Rn ﬁp isa
discrete valuation ring is quite large. Recall that a ring R is called a local ring
provided it has a unique maximal ideal. A ring R is called a Zariski ring if R is
Noetherian and the integral prime p is contained in the Jacobson radical of R. The

Zariski rings are precisely those rings R such that the p-adic completion ﬁp of R is
a faithfully flat R-module. For a more detailed discussion of Zariski rings, see
Matsumura (1986).

THEOREM 4.4 Let R be a p-local ring and let Ry =R n ﬁp. Then R, isa discrete
valuation ring in either of the following cases :
(a) R is a Zariski ring, or
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(b) R is a local ring of Krull dimension one.

Proof. (a) Since in this case ﬁp is a faithfully flat R module, it follows from (Glaz
1989, Theorem 1.2), that R is an R-pure R-submodule of ﬁp' Let e F nﬁp,
A
where F is the quotient field of R, takenin Q o There exists f € R, with Bo €
A A

R(» so, by R-purity, there exists re R with fr=pa. Since Be RogcZ pC Rp and
A A A

R p is a free Zp-modulc, B is not a zero-divisor in Rp. It follows that a =r €

ﬁp NR=R;. We have shown that Ry=Fn ﬁp. Thus, the only ideals of Ry, are of

the form ano and RO is a discrete valuation ring.
(b) Let M be the unique maximal ideal of R. Since p is not invertible and
is not a zero-divisor in R, M is the unique prime ideal over pR and is therefore the

radical of pR. Thus, if xe M, then x"e PR for some positive integer n. Now let
x€ Ry\pRy. If xe M then x" € pRn Ry = PR It follows that x € M and x is

A
invertible in R. Since x is also invertible in Z_, x is invertible in Ry We have
shown that PR, is the unique maximal ideal of Rq- A similar argument shows that

the only ideals of R0 are of the form anO' Hence, RO is a discrete valuation ring
Our final result stands in contrast to Examples 4.1. 4.2, and 4.3.

THEOREM 4.5 Let G be a p-local group and suppose R is a p-local ring of finite
rank such that R is a splitting ring for G . Then all canonical splitting rings RB are
equal and isomorphic to a subring of R. In particular, each RB is a minimal splitting
ring in R,

Proof: The finite rank hypothesis on R implies, by the Beaumont-Pierce Principal
Theorem (Beaumont and Pierce 1961), that R = S e N, where N is the nil radical of

R and S is a subring of R such that QS is semi-simple. By Lemma 1.2, S & R/N
is a splitting ring for G .

Since QS is semi-simple, there are central idempotents ey.-€n € QS such
that QS = elQS X- X enQS and each eiQS is simple. It follows that
S= €S x-- X e,S , so that each e,S is a splitting ring for G, again by Lemma 1.2.

For the moment, assume S = elS . In this case QS is simple so there is a
field of definition, F, for S. That is, there exists a subfield F of center QS such
that S is quasi-equal to a free module over E=FnS. Additionally, the ring E is
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an E-ring and is strongly indecomposable as an additive group. See Pierce (1960) or
Vinsonhaler and Wickless (1985) for details. Since S is a splitting ring,

SeG=S"eD, where r= p-rank G and D is divisible. If S=E™ as E-modules,

then as E-modules, (Ee G)" ~EM G +SeG+S e D*E™ e D. Knowing E is
strongly indecomposable we can use the uniqueness of quasi-decompositions to

conclude that Ee G ~E o D, for some divisible E-module D, . Furthermore, this
last quasi-isomorphism can be taken to preserve E-module structure since E is an
E-ring. In fact, if M is any E-module, then fe Hom(M,E) implies fe Homg(M,E).
Indeed, for each m e M, the map given by 6(x) = f(xm) defines a Z-endomorphism
of E. Since E is an E-ring, 0 is left multiplication by 6(1). It follows that f(xm) =

xf(m) forall x e E and me M. Thus, the quasi-projection of Es G onto E' isa
quasi-split E-map whose kernel is a divisible E-module. That is, E is a splitting ring
for G.

Because E is p-local and reduced, we may identify Z p with the pure subring
of E generated by 1. Define Eo to be the inverse image in E of the maximal

divisible subgroup of EJZp . As previously noted, Ey= ip nE if we regard ﬁp and

E as subrings of E . the p-adic completion of E . In particular, E is a pure subring
of E having p-rank one. We will show EO is a splitting ring for G .

Let 1:E®eG — E" be the quasi-epimorphism obtained from E® G «~ E' s D
via quasi-isomorphism and projection. Then n is an E-map. Moreover, since QE is

a field, n(1 @ G) contains a QE-basis for QEr. say {xi =n(l sgi) | 1<i<r}),
chosen so that g e & is a p-basis for G. We may assume that n(l 8 G)c o Exi .

so that for each ge G, m(leg)= eQ X, for a unique r-tuple (ozl el r) € E".
Consider the map (pj :G—E by (pj(g) =g where m(l g g)=»o a;x, . Note that
Z pc_: Im (pj cE. Moreover, ®; #jngig Ker (pj. The last inclusion implies
p-rank(Ker (pj) 2r-1. Thus, p-rank(Im (pj) <1 because p-rank G=r. The
condition Zp clm (pJ cR then implies that Im @ c E‘O' In particular, if

’ _ r ’ T r _
G’ =m(l ®G) then &y pri cG' ¢ & oni . Clearly EOG =@ oni.

Moreover, since Zp ispurein E then | e G=Z_ @G ispurein Ee G . Since D

P
is divisible it follows that G’ is quasi-pure in exairzlExi and, hence, that G’ is

quasi-pure in e{___ IEOXi . Additionally, since p-rank G'=r=p-rank G and Z_e G
is reduced, it follows that = is monicon Z_ e G,ie. G’ =G . Thus, we can apply
Theorem 1.3 to conclude that EO splits G .

Next observe that QEO is the quotient field of E, since E, is a subring of
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an algebraic number field. If B is any p-basic submodule of G, by Corollary 2.4,
RB c EO. Furthermore, RB is independent of B by Corollary 2.6.

Finally, returning to our original S ielS XX enS , we can employ the
mapping r-— (rel,..., ren) to conclude that RB is quasi-isomorphic to a subring of

S, thus quasi-isomorphic to a subring of R =S e N. But quasi-isomorphic p-local
rings of p-rank one are isomorphic. This completes the proof of the theorem.

5 OPEN QUESTIONS
The following questions, which we are unable to answer at present, seem
worthy of further attention.

1. Foragiven G of finite rank is there a uniform bound, expressed in terms of G, on
the lengths of chains of canonical splitting rings?

2. Does every splitting ring contain a minimal one?

Theorem 4.5 shows that every finite rank splitting ring contains a unique
minimal splitting ring which is, in addition, canonical. A minimal splitting ring is
defined as a splitting ring R with no proper pure splitting subrings.

3. When is a p-local group G determined by the collection of its splitting rings?
When is a p-local ring R determined by the collection of splittings rings for R+?

If R is a pure subring of ﬁp then R is a splitting ring for R+ by Corollary
1.4. Moreover, if S is a pure subring of ﬁp such that S splits R+ then by
Theorem 1.3, R+ is isomorphic to a pure subgroup R’ of S such that SR’ =S .
Since R, R’ are pure in ﬁp we have R’ =Rx for some x ¢ ip' Thus, SRx=S.

But then RS=RSRx=RSx=S,s0 S3R. By purity, SoR. Therefore, R can

be identified as the minimal pure subring of 74 D which splits R+ .
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