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1. INTRODUCTION

Let R be a commutative ring and let f(z) be a polynomial with
coefficients in R,

f=f(t) =a,t’+ - +a,.

The content ideal of f(¢t), or simply the content of f, is the ideal
(ay,...,a.)R. We denote it by c¢(f). One of its properties is that c(-) is
semi-multiplicative, that is

c(f-g) cc(f)-c(g).

We examine the case in which for a fixed f this relation is an equality for
all polynomials g; f is then said to be a multiplicative or a Gaussian
polynomial. From what one can tell this property may not be independent
of the generators of c(f); it may even depend on the sequence of its
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coefficients. Also, it may not behave well under change of rings more
general than epimorphisms. On the other hand the set of these polynomi-
als is a monoid.

Examples of Gaussian polynomials are those with a content ¢(f) which
is a principal ideal at each localization, or, if (R, m) is a local Artinian ring
with m? = 0 then any polynomial of R[¢] is Gaussian.

Our guiding question is the following broad converse of the classical
lemma of Gauss.

Conjecture 1.1. Let R be an integral domain. If f(¢) € R[t] is a
Gaussian polynomial then ¢(f) is an invertible ideal.

Questions on the behavior of the content of polynomials have been
raised by several workers [1, 2, 4, 9]. One of the authors heard the question
above from Irving Kaplansky in the early 1960’s. It also appeared in the
thesis of H. T. Tsang [9] (but not in her paper [10]).

In this note we settle this question in the affirmative for all Noetherian
normal domains (Theorem 4.4). Actually, if the ring has finite characteris-
tic, then being integrally closed will suffice (Theorem 3.1). Several other
special cases are dealt with as well.

2. HILBERT FUNCTIONS

We may assume throughout that (R, m) is a local ring, and f(¢) is a
Gaussian polynomial. We use the notation »(M) for the minimum number
of generators of an R-module M.

The path to our analysis is a close examination of the numerical
function

n = wv(c(f"). (1)

One gives a combinatorial setting for this function as follows. Set I = ¢(f)
and let

R[IT] =R + IT + I*T? + - CR[T]

be the Rees algebra of the ideal I. The function (1) is then the Hilbert
function of the special fiber F(I) of the ring R[IT], that is of the graded
ring

F(I)=R[IT]® R/m = @ I"/mI",

n>0

where m is the maximal ideal of R.
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ProposITION 2.1. If f(¢) is a Gaussian polynomial then the Hilbert
polynomial of F(I) has degree at most 1.

Proof. Denote d = deg(f). For any integer n, by definition we have
that c(f") = c(f)". This implies that

dim F(I), = v(c(f)") <dn +1, (2)

since f" has at most dn + 1 coefficients.
As dim F(I), is bounded by a polynomial of degree 1, the Hilbert
polynomial of F(I) must be a form e,n + e,, of degree at most 1, that is

dim F(I), = eyn + e, n >0,

as asserted. |

By abuse of terminology we say that e,n + e, is the Hilbert polynomial
of f(¢).

At this point we have not used the Noetherianess of R, just that of F(I)
which is finitely generated over the residue field f = R/m. If f is infinite,
F(I) admits a Noether normalization

f[z] = F(I),

where z is a set of 1 or 2 algebraically independent elements according to
whether the Krull dimension dim F(I) is 1 or 2, which is reflected in its
Hilbert polynomial by the conditions e, = 0 or e, # 0, respectively. Fur-
thermore, the elements of z can be chosen in degree 1, z € F(I),. When
lifted to I this gives rise to an equality

I" = (a,b)I"* (3)

valid for all n > 0. The ideal J = (a,b) c I (orjust J = (a) if ¢, = 0)is a
reduction of I (see [8] for these basic facts).

If £ is finite, we make a field extension such as f - K = f(x) (or, at the
local ring level, the faithfully flat extension R — R(x) = Rlx],, g} that
leaves the Hilbert function unchanged and obtain the equality

I"R(x) = (a,b)I" 'R(x), (4)

where (a, b) € IR(x). Note that we are not asserting that the polynomial
f(¢) remains Gaussian after the base ring change, only that its Hilbert
polynomial is unchanged.

Our means to test Conjecture 1.1 are the following two elementary
criteria.
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PROPOSITION 2.2. Let R be an integrally closed local domain and let f(t)
be a Gaussian polynomial. Then c(f) is principal if and only if e, = 0.

Proof. By the faithfully flat change of rings indicated above (which
preserves normality and the Hilbert polynomial of f(¢)), we may assume
that the residue field is infinite.

If ¢, =0, we have I" = (a)I"~* for some n > 0, which means that the
elements of the fractionary ideal Ia~! are integral over R, and thus
I c (a). The converse is clear. |

PropPosITION 2.3. Let R be a local domain. If f(¢) is a Gaussian
polynomial where c(f) is generated by at most 2 elements then c(f) is
principal.

Proof. If c¢(f) is not principal, suppose the generators a,b of c(f)
occur in degrees m and n (achievable through Nakayama lemma). We
write

f(1) = ag(1) + bh(1),

where g(¢) has a coefficient of 1 in degree m and 0 in degree n, and A(t)
has in those degrees the reverse coefficients.

Consider the polynomial r(¢) = ag(¢) — bh(t), c(r) = (a, b). By hypoth-
esis

c(f-r) = (a,b),

while
c(f-r) c(a? b?).

Thus a2 and b2 form a generating set for (a, b)?.
Now consider the polynomial g(¢) = bg(¢) + ah(¢). Note that c(g) =
(a, b). By hypothesis,

c(f+q) = (a,b)",
while obviously
c(f-q) c (ab,a* + b?).
This means that
(a,b)? = (ab,a® + b?).

If (a,b) is not principal, this equation says that (a, b)? is minimally
generated by ab and a? + b2. It follows that

ab = aa® + Bb?,

where either « or B is a unit.
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Consider now the polynomial p(¢) = Bbg(t) + aah(t). Then c(p) =
(Bb, aa), and from

f(t) -p(t) = Babg® + (aa® + pb?)gh + aabh?,
we get

(a,b)(Bb, aa) = c(f)e(p) =c(f-p) < (ab),

but since o or B is a unit ab € (a, b) Bb, aa). Therefore (ab) =
(a,b)( Bb, aa) and c(f) = (a, b) is invertible. 1

3. PRIME CHARACTERISTIC

We establish the conjecture for these algebras. In this section, it will be
seen that “finite” will refer to the characteristic of the residue fields of
local rings.

THEOREM 3.1. Let (R, m) be a local integral domain (not necessarily
Noetherian) with residue field of characteristic p > 0. If f(¢) is a Gaussian
polynomial over R then e, = 0. In particular if R is also integrally closed, then
c(f) is principal.

Proof. The proof is similar to that of Proposition 2.1, except that we
take n to be of the form p™, with p = char R/m. We claim that

v(e(£)") = v(e(f") <d +1,

which will permit us to obtain e, = 0, since the Hilbert function of F(I) is
bounded. For this, it suffices to note that for m = p”, the coefficients of
f™ are combinations of mth powers of the generators of ¢(f) and power
products of “degree” m in those elements:

Z(ao,_r_”_,ad)ago asdv Zai=m'

Since all the multinomial coefficients, except those with a single power a",
are divisible by p, by Nakayama lemma all those mixed powers can be
thrown away in the generation of c¢(f)™.

The last assertion now follows from Proposition 2.2. ||
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4. CHARACTERISTIC ZERO

We discuss the conjecture in rings of characteristic zero but only settle it
for Noetherian rings.

Let R be a local ring containing the rational numbers and assume f(z) is
a Gaussian polynomial. We can now be much more precise regarding the
function v(I"), where I = c(f).

ProposITION 4.1.  If R is a local ring containing the rational numbers ()
and f(t) is a Gaussian polynomial with Hilbert polynomial eyn + e, then
ey < 1.

Proof. By assumption the ideal I admits a reduction (a, b), that is there
exists an integer s such that I°* = (a, b)I*, with (a, b) C I, guaranteed by
the fact that the residue field of R is infinite.

Consider the polynomials

g()= ¥ abit,

i+j=rn

where r, n are arbitrary positive integers. Suppose now that n > s and r is
still arbitrary. We have

c(f()"-g(1)) =c(f") - c(g) =I"(a,b)" =1""",
since f(¢)" is also Gaussian. Thus
v(I™*") =ey(rn +n) +e, <dn+rn+1,

since c¢(f)"-g(¢t) has degree dn + rn and therefore its content can be
generated by at most dn + rn + 1 coefficients. This implies that
d r 1-e d-1 1-¢

< + + = + :
i (r+1)n r+1 (r+1)n

Given that n and r can be made arbitrarily large and e, is an integer while
d and e, are fixed, we must have ¢, < 1, as asserted. ||

THEOREM 4.2. Let (R, m) be an integrally closed Noetherian local do-
main containing the rationals and let f(t) be a Gaussian polynomial. Then
c(f) is principal.

Proof. Let J = (a,b) be a reduction of the ideal I = c(f). We first
show that 7 = J. If I # J, let p be a minimal prime ideal of the annihilator
of the module 7/J. Localizing at p, preserves all the hypotheses: R, is
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integrally closed, contains @, and f(¢) is still Gaussian. Changing notation
we will still denote this localization R and its maximal ideal by m and may
assume that 7/J # 0 is a module of finite length and dim R > 2.

Let R[JT] be the Rees algebra of J; the embedding R[JT] < R[IT]
makes R[IT] a finitely generated module over R[JT]. By Proposition 4.1,
we may assume that the Hilbert polynomial of f(¢) is a form n + e,. This
means that the ring F(I) = R[IT] ® R/m is a module of rank 1 over the
ring of polynomials F(J) = R[JT] ® R/m (which is its Noether normal-
ization).

The ideal J being generated by two elements of a normal Noetherian
domain, it is of linear type according to [6, Proposition 1.5]. This means
that the Rees algebra R[JT] coincides with the symmetric algebra of J
(see [12, Chapter 2] for a full discussion of these conditions). In particular
if L denotes the module of relations of the ideal (a, b),

0->L—->R®&R—> (a,b) >0,
the algebra R[JT] has a presentation
0—->L & R[x,y] > R[x,y] = R[JT] - 0, x—aT, y — bT.

LEMMA 4.3. Let I = (m, aT, bT) be the irrelevant maximal ideal of the
graded algebra R[JT]. Then the grade of the ideal I is at least 3.

Proof. This grade can also be determined as the P = (i, x, y)-depth
of R[JT] as a module over R[x,y]. Since R is integrally closed of
dimension at least 2, the grade of m is at least 2 and therefore the grade
of P is at least 4. By the same token, the module L, being a syzygy module
of an ideal, has ni-depth at least 2 so that the R[x, y]-module L ®, R[x, y]
will have P-depth at least 4. We now may use the depth-lemma on the
exact sequence (see [3, Proposition 1.2.9]), to get the assertion. ||

We are now ready to assemble all parts of the proof of the theorem.
Consider the embedding of Rees algebras

0> R[JT] > R[IT] > C -0, (5)

viewed as a sequence of R[JT]-modules. By assumption, I and J coincide
in every proper localization of R, and therefore C is annihilated by some
power of mt. Using precisely the same argument in the proof of [11,
Proposition 2.2], we are going to show that the module C is either zero
(and I =J as desired) or has Krull dimension 2 and m R[JT] is its unique
associated prime ideal.

Suppose C # 0 and let P be a prime ideal of R[JT] which is associated
to C; since C is a graded module, P is a homogeneous ideal. We claim
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that P = mR[JT]. Note that otherwise, as 11 must be contained in P and
dim R[JT]/P <1, I is minimal over (P,h) for any (homogeneous)
element in P\ P. This implies that grade P > 2, since under these
conditions the grade of ¢ can go up by at most 1 from grade P.

Applying the functor Hom,,((R[JT]/P,-) to the sequence (5), we get
the exact sequence

0 — Homp,r(R[JT1/P, R[JT]) = Hom,(R[JT]/P, R[IT])
— Homy,74(R[JT]/P,C) = Exth,(R[JT]/P, R[JT]),
where the modules in the top row vanish by natural reasons and
Extk,r(R[JT]/P, R[JT]) =0,

because grade P > 2. This shows that P = m R[JT] and establishes that if
C # 0 then its Krull dimension must be 2.

As the final step, tensoring (5) with R /m we get the exact sequence
F(J) S F(I) > C/mC > 0.

Note that ¢ must be an embedding as F(J) is a polynomial ring of
dimension 2 and F(I) is finite (integral) over it of the same dimension.
Since the rank of F(I) over F(J)is e, = 1, C/mC must be a module of
rank 0 over F(J), that is the Krull dimension of C/mC is less than 2.

Suppose that dim C/mC < 2, which means that there is an ideal L C
R[JT] such that L ¢ mR[JT] with L-C c mC. Localizing at mR[JT]
and using Nakayama lemma, we get that there exists & & mR[JT] such
that AC = 0. This contradicts the assertion above that m R[JT] was the
only associated prime of C.

Finally, with ¢(f) =1 =1J = (a,b), we appeal to Proposition 2.3 to
complete the proof. ||

Putting Theorems 3.1 and 4.2 together, we have:

THEOREM 4.4. If R is a Noetherian normal domain then Conjecture 1.1
holds.

Remark 4.5. If R is not integrally closed one may still say something
about the content of a Gaussian polynomial f(z), after noting that f(¢) is
still Gaussian as a polynomial over the integral closure S of R. If S is
Noetherian, one can easily see that e, = 0 (the “old” and “new” e,’s
coincide). If S is not Noetherian, S is still a Krull domain and its prime
spectrum is Noetherian [5]. These conditions may be sufficient to allow for
modifications in the proof that lead to e, = 0.
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