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0. Introduction. We continue here the study of the structure

of commutative rings in terms of the properties exhibited by its
rank one flat modules. Particular classes of such modules are
now emphasizeu -~ e.g., flat epimorphisms of finite type -- or,
the ring itself is conveniently restricted -- e.g., Krull domains
or rings of dimension one. Thus, for flat epimorphisms of
finite type we shall discuss a bound for the number of genera-
tora needed, and for Krull domains we examine the endomorphism
ring of a flat rank one module with the intention of ascertain-
ing when they are epimorphisms. For domains of dimension one
and Noetherian spectrum it is shown that every rank one flat
module is a directed union of projective submodules.

A closely allied topic is the nature of the integral
closure of a coherent domain of Krull dimension one. There are

several cases where this closure is again coherent, leading to
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200 GLAZ AND VASCONCELOS
a conjecture that it might always be coherent, We look at this

unresolved question indirectly--that is, via the examination of

several expected properties of large classes of stably (i.e.,

polynomially) coherent rings.
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1. Flat epimorphisms of finite type.

Throughout rings are commutative with identity. A flat
module I of such a ring R is said to have rank one if AzI = 0,
When R is an integral domain with field of quotients K, this
condition simply means that I is isomorphic to a flat submodule
of K. Rather loosely, we shall refer to the submodules of K as
ideals. When we want to emphasize that I is iromorphic to an
(proper) ideal of R we shall say that I is a fractional ideal.
As basic references on flat modules, we will use [B], [L].
We begin this discussion on flat ideals with added atrﬁctures
by giving a dimension dependent bound on the number of generators
of flat epimorphisms of finite type. It is reminiscent of the
Swan-Foster bound [S] on the number of generators for modules in
terms of local data.
Let R 5> 8 be a flat epimorphism. Following [L], this will
imply that for each prime ideal P of 8, R, = Sq forQs= m'l(P).
Proposition 1.1, Let R be a ring with Noetherien prime spectrum
of Krull dimention d. Let R 2> S be a flat epimorphism of finite

type. Then § can be generated (as an R-algebra) by d elements.
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Proof: We may assume RC S. Let S = R[nl, ceey un] and let
n
I=aN(R: n“i)‘ then IS = 8. Pick J a finitely generated sub-
i=1

ideal of T satisfying JS = S. Note that V3 = vI, [L].
We will first show by induction on the Krull dimention of R
that there exists By eoey By € J satisfying:
(*) ‘8= R+ (ay, o0y 8y)8
For the case where R is a zero dimensiongl ring, one can"easny check
by localization that o is surjective. For the higher dimensional '
cage, one can see that if equation (%) holds modulo NS, with
N = nilradical of R, a similar equation will be valid in S.
Thus, we assume R iz & reduced ring and let ay be a regular
element of J, the existence of it being assured by the fact
that R has finitely many minimal prime ideals,R < S and JS = S.
Pass to the flat epimorphism R' = R/(al) —_ S/als = 3', Note
that the ideal J' = J/(al) still satisfies J'S''= 8'., By the
induction hypothesis, there are aé, seey a& € J' such ttat
8§t = R' + (aé, esey a&)s', and hence S =R + (‘1’ ceey °d)s
vhere a; = a, (mod al) .
To complete the proof note that the equality (%) multiplied
by J gives rise to the equality JS=8 =7 + (a,, ...,ad).rs =
J+ (a.l, ceny ad)s and thus we obtain an equation:
(%) J.-za.+:,fla.aa.1 H 3
We claim that S = R[sl, coey sd]. Indeed, if x € S, as x has

ag€J, s, €8,

a polynomial expression in the ui's, there exists a power r,
such that xJ° € R. Raise the equation (**) to the r-th power
and multiply it by x, to get a representetion of x as a
polynomial in the 83'8' .

Remark. In the sequel, we make use of the following fact:
From the equality S = IS = JS, with J = finitely generated,

and VT = VI we wrote, rather redundantly, S =R + J3. If,
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moreover , I = Jy + 3%, it follows immediately that § = R + I3
without necessarily assuming J:Io = V7.

Remark. The following question illustrates the need for
determining the exact number of generators of a flat epimorphism
R —> 8. Assume S = R[lw, z], and let J be the kernel of a
map from the polynomial ring R[x,y) to S. It follows from the
exact sequence of modules of differentials [M], that «J’/Jz is a
free S-module of rarnk two, J can then be generated by three
elements: If it cannot be generated by two elements, then, using
Serre's construction, a rank two indecomposable projective
module over R[x,y] would arise. Later on we shall discuss
examples of non-simply generated flat epimorphisms; we know,
aowever, very little about deciding when J dis generated by
rk(3/5%) elements.

Remark. Note that the proof of (1.1) does not use the
full strength of the Noetherian hypothesis on the prime
spectrum of R. In particular, the result is valid for all
domains of Krull dimension one and several other kinds of
rings. Thisrtaises the question on whether the bound of (1.1)
is valid for all rings.

(a) Special rings: We consider now some special cases
where a lower bound is attainable.

Proposition 1.2, lLet R = D[Tl, cooy Tn], D a
Noetherian ring of Krull dimension d, and let R —> § be
a flat epimorphism of finite type. Then S 18 generated by
d+l elements.

Proof: With the notation of proposition 1.1, we will show
by a similar inductive procedure the existence of elements
8ys +eoy By €1 satisfying S=R + (a), ..., 8,,)5, and
conclude as in proposition 1l.1l.

~
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We may assume that D is a reduced ring and that R& S.

Let K be the total quotient ring of D. Since X 1is a product
of fields, R® K is a product of U.F.D.'s, thus S®K=R® K[u).
This implies the existence of a regular element t € D satisfying
tIc(f),fel. If t is a unit then I = (f) and we are
done. Otherwise pass to the ring R/(t), and apply induction

to obtain &), ..., 8; € I such that SAs = R/(t) + (“1' seey
ad)s/ts or S=R + (a]_, cers By t)S. Multiply this equality

by I toget S=1I+ (al, «esy 85, T)S and the conclusion
follows. ®

A different case is that of an affine regular Z-algebra,

R. In this case a flat homomoprhism R —> S of finite type is
simply written ag 8 = RiI™Y) » vhere I is an invertible
(proper) ideal of R. To estimate the number of generators of
8, we use the following.

Proposition 1.3. Let R be an affine Z-algebra of Krull
dimension d > 1. Let I be a projective ideal. Then there
exists a power J = 1" such that J'/-‘.l’2 is generated by d-1
elements., In particular J 4s generated by 4 elements.

Note that I itself might in general require d+l generators.

Proof: Consider the inductive series of identificationsa:
:t/I2 = Ly & projective ideal of R(y) = R/I

La-2)/12, ,, & - -

(a-z)/:.(d_z) L(g.1) = Projective ideal of Riy 1y = Ry 5)/B(g p)-
It might as well happen that R(r) =0 for r <d-l, in which
case we would stop with R(r-l.)' We focus on the projective ideal
I‘(d-l) of the one-dimensional ring R(d-.l)‘ By [C-V] there is a
pover £ such that&'Li, ) is principal. Teking the £-th tensor

pover of the last identification, we get

203
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& (ba.2)/La-2)) = @ (Pa2)®%a-2)) = (€0(a 2)) @(Ra ) ()

¥ a2 ® Raz)Ha-2) ¥ a2y Uawz) 2 Ha-zy/Man2)
being principal implies that L% a-2) can be generated by two
elemerts., If a projective ideal L 1is generated by t
elements, then L" is genereted by t elements as well,

L 241
and thus L (d—3)/1‘(d-3) will be generated by

three elements. Continuing the process we

can eventually conclude that I”/I“l is generated by d-l
elements. The quotient I'/12% 1s generated by d-1 elements
as well. Thus setting J = Iz we obtain the desired conclu-
sion. ®

Corollary 1.k, Let R be an affine regular Z-algebra
of Krull dimension 4 >1l. let R —> S be a flat epi-
wmorphism of finite type. Then S can be generated by d-1
elements.

Proof: Let S = RII™Y) and et /1% be generated
bY 8y, eeep 8y, . Weclaimthat S=R+ (a), ..., a5 _,)8.
To prove this equality suffices to check it at every localiza-
tion at a prime P containing I. But at every such localization

Iu

is generated by the aJ's and S = IS = I"S. The conclusion
now follows, =

(b) sSimple flat epimorphisms. We next examine flat epimorphisms

of the type S = R[z), where R 1s an integral domain.
Richman (R) proved that if R is integrally closed and

z = a/b, then (a,b) is an invertible ideal of R. We now
give an "explanation' of this result. Recall, first., that
R is said to be seminormal if the canonical map

Pic(R) —> Pic(R[T]) i3 an isomorphism, that is, if every
invertible ideal of R[T]), T = indeterminate, is extended

from R.
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Proposition 1.5. The following conditions are equivalent
for an integral domain R.

i) R is seminormal,

i1)  For each simple (principal) flat epimorphism
S = R[z), the R-fractional ideal (1,2z) is invertible,

Proof: 1) —> 1i): Let S = R[z], z = a/b, be a flat
epimorphism over R, and let I be the kernel of the sur-
Jectior R[T} —> 5, sending T to 2. I is an invertible
ideal of R[T], and its so called content, ¢(I), that is, the
ideal of R generated by the coefficients of the polynomials
in I, is the unit ideal, (V] and [0-R]. Since by the
definition of seminormality I is extended from R, there
exists and invertible ideal J of R and an element f in
K[T), X being the field of quotients of R, such that
I = JfR[T), bT - a € I. It follows that f =T -4 for
Bya € K and bT - & =c(8T -n). Thus (1,2) = (o, 8)(87))
is invertible if (x,8) is an invertible R-fractional ideal.
But I = JfR[T] implies R = ¢(I) = J(x, B) and we are done.

{i1) —> 1) For the converse, we use the following
characterization of seminormality [B-6], [G-H), [S]: A
domain R is seminormal if whenever xz, x3 ¢ R for x
in the field of quotient K of R, we have x € R. Assume
R 1is not seminormal and pick x € K for which the preceding
condition fails. lLet I be the ideal of R[T] generated by
x°T% -1 and x°T - x%, that is the Schanuel's ideal of R
[S]. I 4s an invertible ideal [loc. cit.] which is not
extended., On the other hand, since the content of I is (1),
RIT)/T is a flat R-medule [V], [0-R), necessarily a flat
epimorphism since I contains linear polynomials. But
R[T}/I may be identified with R[z) for =z = xa/xB, it
follows easily that (x°,x°) is not an invertible ideal. ®
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Remark. The restriction that R be a domain can be
slightly relaxed if one uses an extended notion cf semi-
normality [RU], 1.e.: A ring R 1is seminormal if R 1is
reduced and whenever b, ¢ € R satisfy b3 = cz, there is
an a in R with a2=b and aB-c.

If b and c¢ are regular elements of R satisfying
b5 = cz, the Schanuel-like ideals of R[T]: I = (c¢T-b,.
b1® - 1) and J = (b%, cT - b) satisfy IJ = (cT-b).
Thus in this case I is an invertible ideal. The ring
R(z], z = b/c is a flat epimorphism of R (V], [0-R]. It
follows easily that (b, c) is invertible if and only if

there is an element a in R with az =b end 33 a

c,
and Proposition 1.5 is valid in this case.

An example. To find examples of flat epimorphisms of finite
type that are not simply generated one may proceed in the
manner pointed out by Akiba [A]. Let A = C[x,y,z] vhere

2

yzz + yza = x3 - xz°© and let B be the localization of A

at the origin. Let P = (x,y); according to Tate [T], (0, 0)

is a non-torsion point of the elliptic curve yz +ys= x3 - X.

et S be the P-transform of A. According to the Zariski's
theorem [N], S 13 a flat epimorphic image of finite type over A.
Suppose S = A[v], v = a/b, a, b.€ A, From Proposition 1.5

(a2, b) is then an invertible ideal of the graded ring A. The
isomorphism of divisor class groups CL(A) = C1(B) (F, (10.3)]

show that (a,bd) is principal, and thus one can write S = Al1/u],
w € A. This shows that (u) has for radical the ideal P. But in
the elliptic curve this would translate as saying that P is a

torsion-point, contradicting the choice made.

2, Krull domains.
let R be an integral domain of field of quotients K.

In any classification of the flat submodules of K, two classes
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stand out: The flat fractional ideals and the flat epimorphisms.
That these classes should play basic but independent roles rests
on their relative simplicity, plus the fact that they are quite
apart from each other, as the following remarks show. Suppose
the fractional ideal I and the flat epimorphism S of R are
isomorphic. Let

08 —>I

denote the iscmorphism and put x = o{1). Then, for a/b € 8
we have o(bea/b) = bw(afo) = ap(l) = ax. Thus o(a/v) =
(a/b)x, and I = Sx. In particular, if 8 € S then s'x €I
for all n. If R satisfies some form of 'complete integral
clogure' restriction--e.g., R i3 a Krull domain, as we shall
assume often, one would have s € R and consequently I would
be principal,

In this section, we study the question of whether for a
rank one flat module I over a Krull domain R, the ring of
endomorphisms 8 = HomR(I »I) 1is a flat epimorphism. All
cages discussed here lead to the suspicion that it might always
be so. At least such endomorphism ringsshare a large number
of properties of flat epimorphisms.

Our basic tool is the notion of semi-divigoriality and
the following result [G-V].

Theoren 2;1. Iet I be'a flat fractional ideal of the
Krull domain R. Then I 1s finitely generated.

Remark. Let R be a Krull domain, let X be its field
of quotients and let I be a flat submodule of K. The Rees
ring B = R(It) = Symn(I) is integrally closed and
LaTt+It% oo ~I®B s a flat ideal of B. L is
finitely generated iff I is finitely generated. Thus B is
a Krull domain iff I 4s finitely generated.
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We will briefly recall the notion of semi-divigoriality
For any finitely generated ideal J with generators Byseevia,
congider the exact sequence.
1) o—rir sc—o
where &(1) = (al, vesy an), and C = Coker(®). 1If
Jlo(xeX|xI SR} =R, C 1isa torsion free module. A
torsion free module E will be called semidivisorial if
E®C is torsion free.for every finitely generated ideal J
with JF = R. A submodule E of the field of quotient of
R is semidivisorial iff E is a directed union of divisorial
ideals (S-V]; and two semidivisorial modules are equal iff
they have the same localization at each height one prime of R.

We look now at the endomorphisms of a rank one flat ideal
ICK;8=aI:l =HomR(I,I).

Proposition 2.2. S 1g semidivisorial.

-1

Proof: For a finitely generated ideal J, J ~ =R,

consider the correaponding sequence (1) ® I:

0—>I1%1"—>18C—>0
I®C is a torsion-free R-module. Apply HcmR(I , =) to get
1

¢
0—>8 —J>sn—>HomA(I,Io c).

Since HomR(I ,I®C) is torsion-free and COkex-(¢3,) embeds

in HomR(I , I ®C), we conclude that S is semidivisorial. ®
Proposition 2,3. Let I be a flat ideal (ICK) of a

Krull domain and let S = I :I. For any multiplicative system

T of R we have T 18 = 2 lr:rlr.

Proof: Denote T X:T'I = sT and observe T s c 8.

15 and ST

Since T are both semidivisorial ideals and R is
a Krull domain, to show equality it suffices to check at the

height one prime ideals of R.

e e e —ee oo - e e o saastas et -y oy gy
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Let P be a height one prime ideal, If PI # I, then,
[Sv], I

Thus

p Rp-principal and thus (T'll)P = (T'IR)P also.
T -, -1 3 TS VA -
CRNENC I FE o WY 2 SEY o 4 vy, < (1),
If, on the other hand, PI =1, P'I =1 and Pl cS. Then
T
.8p = K and again (s )PC(T S)P ]
Remark. The same proof applies if T is a multiplicative
system of §: Just notice that since I®S=1I, I can also

11 ie a flat R-ideal.

be viewed as a flat S-ideal and that T
Proposition 2.4, Let R be an integral domain. Suppose
that the flat ideal I is finitely generated over S. Then S
is a flat epimorphism of R.
Proof: let Q be a prime ideal of S eand put P = QNR.
Since QI # I, PI # I as well. Thus I, 1s principal (s-v] and
SP = Ip : IP = AP.
Corollary 2.5. Let I be a flat submodule of K. If
11, then S = Hom(I,I) isa flat epinorphic izage of R,
Proof: Since S is remidivisorial, § is a Kruil domain
As I mRs = T, and I2 < I, I can be viewed as a flat ideal of
the Krull domain S. By (2.1) I is finitely generated (over §)
and (2.4) applies. =
A similar situation arises when IP = K for only finitely
many height one primes. Let P(R) denote the set of height one prime
ideals of R and let I be a flat ideal. Let

p(1)={PeP(R) I, =K1}

Corollary 2.6, If D_(I) 4is finite, then S=1I:I isa
flat epimorphism.

Proof: let M be a prime ideal of S and let m=RAM.
Suffices to show that R = B for any such M. According

to (2.3) we may assume that R and S are local rings. If
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D (1) = Py «evy pn} if follows that R= SN npln e ARy

since RP L] SP for the other elements of P(R). We then
conclude that R=S [H. p. 311). »

Remarks: 1) If S is a finitely generated R-algebra,
say S = R[“l’ ooy “n]' then D_(I) consists preciaely of
the elements of P(R) containing the ideal L =(YR: R\11_); and
hence it is a finite set.

2) wnen D (I) is cofinite, i.e., D(I) = P(R) - {P ,...,PQ,
Pick 0#d e R satisfying de cRP , =1, ... n; then
setting J = dI we have J (o J and proposition 2.5 applies.

Another setting leading to the flatness of S 4s that of
a Krull domain R with the property that at each localization
by a maximal ideal m, Cl(Rm) is a torsion group. Note that
this condition is weaker thax-: the requirement C1l(R) is a
torsion group.

Proposition 2.7, With R as above, let I be & flat
ideal of R. Then S =1I1:1I 1is a flat epimorphism of R.

Proof: We may assume by (2.3) that R, m} 41s a local
ring and that oS # 8. If R and S differ there is a height
one prime P with RP ¢ SP = K, Thus PI = I. Because the
clags of P is torsion in Pic(R), there is an element d € P
and an integer n so that P" and (4) represent the same
divisor. The gemidivisorial ideals I and 4I agree at all
primes of height one F P. At P, (dI)p = &I, = p;?;? =1,

Thus dI = I and 1/d € S, contradicting mS ¥ 8. ®

Let I be an (integral) ideal of the domain R. Write
1™ for (I“)'l, and let I " =UI™. Wecall I the
I-transforn of R [N]. Put 1= = S(R:I). Since S
is the direct limit of divisorial ideals, it is semidivisorial

If R is a Krull domain, S i3 also a Krull domain. It also
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follows that if P IOIRERY Pn are the prime ideals of height one
that contain I, then S(R:I) = S(R:I'), where I'=Q N...NQ.
and Q 1is the Py-privary component of I.

The introduction of these transforms arises out of the
following need: lLet I be a flat ideal of R and put S =T1:1,
To show that S is a flat epimorphism (R Krull domain) we may,
as in (2.3) assume that (R, m} 4is & local ring and =S # S.
Under these conditions we must have R = S. We check the
equality of these semidivisorisl ideals at the height one
primes. If at such a prime P, I =PI then S will contain the
P-transform of R. 1In particular to contradict S # mS it
suffices to show that these transforms are themselves flat
epimorphisms. Congiderable information about these objects
are, of course, connected with the Hilbert's 1h4th problem,
especially the theorem of Zariski [N] stating that ideal-
transforms of two-dimensional normal affine domains are flat
epimorphisms.

Putting together these remarks, we have

Propositions 2.8, Let R be a two dimensional normal
affine domain and let I be a flat ideal. Then S =I:I is

a flat epimorphism,

3. Rings of dimension one.

We provide here a discription of the rank one flat modules
over one dimensional domains with a Noetherian prime spectrum.
It is essentially the result which is well known for Dedekind
domains.

Theorem 3.1. Iet R be an integral domain with Noetherian
prime spectrum of Krull dimension one. Iet I be a rank one
flat module ovar R. Then I 1is a directed union of projective
submodules.
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Proof., Let K denote the field of quotients of R.
Since I®K3 K, we identify I with a submodule of K.
We begin by observing that we may assume R C I. 1Indeed,
1

let OFx€RNI; then RS Ix T I.
et T=1I/R. T 4s a torsion module and, since R has
Krull dimension one and Noetherian prime spectrum, in the

same manner as for Dedekind domasins, it follows that

T= ||7(P)

Péspec(R) ’

where T(P) 1is the P-primary component of T, that is, each

element of T(P) is annihilcted by an ideal with radical P,
Since R has Krull dimension one, for each maximal ideal

P, I,=K or, I g Ry [GV]. Thus, with respect to each such

prime ideal, two possibilities arise:

(1) 17(p) = K/RP sand let (X) denote the collection of such

primes.

(2) TP) = Ra"/R,, with a € R: and let (Y) denote the

collection of such primes.

From (X) and (Y) we now construct the needed invertible ideals.
Lemma 3.2, Let R be a ring of Krull dimension one, and

let J be a finitely generated ideel containing & regular

element. There exists a projective ideal Jo such that VI = J&O'
Proof: Let x be a regular element in J. Since B = R/(x)

has Krull dimension zero, B

red
JBred is generated by one idempotent e', e € J. We may even

is a von Neumann ring. Thus

pick e to be idempotent modulo (x). Let Jp = (x,e). It

is clear that JJ =/, \b , and an easy localization checking

ghows JO to be locally principal, hence invertible. =
Before we proceed with the proof of (3.1) we point out a

consequence where the Noetherian hypothesis is not used.
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Corollary 3.3: Let R be an integral domain of Krull
dimension one and let R —>» § be a flat epimorphism . Then
S 4is a directed union of invertible ideals i.e., 8 1s a directed
union of simple flat epimorphisms.

Proof: For each finite set Upe eoey By of elements

of 8, let I=N(R: “1)’ It 1s still the case that
R

Is=8 [L]. Let J be a finitely generated subideal of
I such that JS =S. Let J, be the invertible ideal
provided by Lemma 3.2. Then u, € Jal; it 1s also clear
that R[JJ'] CS. Since each R[J;') 1s a directed union
of invertible ideals the first assertion follows. The
remainder is immediate from Tl?eorem - 7% P ]

We now look at the prime ideals in (Y). Let then
T(P) = RPa‘]'/RP.

Lemma 3.4. L(P) = (aR;) VR 1is an invertible ideal of

Proof: Assume L(P) # R. By definition, L(P) is a
P-primary ideal, Since R has Noetherian spectrum, there
exists a finitely generated ideal J, JCL(P), V=P, It
1s now clear that L(P) = (a,J) and that it is locally
principal.

To put I together, consider two collections of
invertible submodules of I:

(X') For each P ¢ X, conatruct J(P) as in Lemma 3.2, and
formall J(P), n=1, 2, ....

(Y') Por each P € Y, let L(P) be the ideal constructed in
Lemma 3.4,

Now form the directed system of invertible ideals obtained
by considering finite propducts of ideals from (X') and (Y').
Call I' 4its directed union. Since I and I' are locally

the same, theorem 3.1 has been proved. =
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Remark. The theorem will still be true over reduced rings .
of dimension one and Noetherian prime spectrum. It is not
valid, however, for all non-reduced rings (cf. example in .
Lazard {L]), on the other hand, it is tempting to conjecture
a similar statement for all domains of dimension one without

the Noetherian hypothesis.

4, Coherent rings.

In this section we discuss several relationships among
expected properties of large classes of coherent domains.

The methods, employed in our investigation resemble tangentially,
those used to study rank one flet modules, with the interplay
between finiteness and divisoriality being a key ingredient.

(a) R is stably coherent -- that is, the polynomial rings
R['l‘l, veey Tn], n >0, are coherent.

It is known that there exist coherent rings which are not
stably coherent [S0). Although Soublin's example-- Q[x, y] m)
is not a domain, Gruson has shown that one of its localiza-
tions--they are all domainsg-~is not stably coherent.

Several instances of stably ccherent rings were uncovered
through the following feature:

Conjecture C,: Let R be a commtative ring. If R['I.‘I]
is coherent, then R 1is stably coherent.

(bn) Uppers of O are finitely generated——that is, if P 1is
a prime ideal of R(Tl, ey 'I'n], n>0, and PNR = 0, then
P 1is finitely generated (tbus(bl) refers to the case of one
indeterminate). _

Example 4.1. There are several classes on non-Noetherian
rings for which (a) and (b n) hold., Let R bhe an integral
domain that is either (i) Priifer, or (1i) of global dimension
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two. Then B = R[Tl, sesy Tn] is coherent [VA]). As for the
finiteness of uppers, one has more generally

Lemma. Let E be a finitely generated B-module which is
R-torsion free. Then E is finitely presented.

Proof: (i): R is Priifer. 1In this case E 1s R-flat
and the assertion follows from [R-G] (IL.3.4.6).

(41): R has global dimension two. Here the set U of
primes of B where E is R-flat is open (cf. [(RG]), and
covers finitely many primes of R (ef. [VA], (Chap. 8)). As
in [VA], we may reduce to the local case and then make use of

the fact that local rings of global dimension two are presentable
as pull-backs of Noetherian and Priifer rings.

Note that if S i3 a finite type integral domain over
8 Priifer or a global dimension two ring (a) and (bn) are
still valid, so is the case if S = R/Q, where R is a
ring of global dimension two and @ 1s a prime ideal of
R, as a closer look into the structure of a ring of global
dimention two will reveal.

Example 4.2, Some uppersof O are finitely generated,
because of the inherent presence of flatness and regardless
of the coherence of the ring.

Thus, if m is a maximal ideal which is an upper of
0, m can be generated by n+l elements. To prove this,
note that in this case R[T,, ..., 'rn]/g i a flat R-algebra
of finite type and hence m 1is finitely generated [R-G].
Using the Nullstellensatz it follows that m/;g2 is generated
by n elements and therefore, m can be generated by n+l
elements.

In case n=1 and R 1is integrally closed we can improve

the result and state that m 1is indeed principal.
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Note that ¢(m) - the content of m = R and therefore we
have a polynomial f in m satisfying &(f) = R. Let g be a
nonzero polynomial in m of least degree, then there exist
an element a in R and a polynomial h € R{T] such that
af = h.g. Using the content formula (G], and the integrality
condition of R, we obtain the invertibility of the ideal
J = ¢(g), and the equality m J'lg R(T). let a, be the
constent term of g, we claim that J'lao = R, Suppose
otherwise, and let P be a prime ideal of R containing
7%, Then (a,T)C(P,T), contradicting the maximality
of m. It follows that J, and hence m, are principal
ideals.

Conjecture C,: (a) = (bn)'

Here one can focus on the case of a single indeterminate.
We will show that it is the case that many uppers of O--:
regardless of the stably coherent hypothesls--are finitely
generated, Unfortunately those are not the uppers that come
in later in connection to integral closure questions.

Theorem 4.3. iIet R be a coherent domain and let P be -
an upper of zero in R[T] = C containirg a polynomial f with
e(f)'l = R. Then P is finitely generated.

Before actually proving theorem 4.3, we will embark in a
brief discussion and a series of Lemmas that are interesting
for their own sake.

We denote by (3u the R-submodule of C conalsting of
all polynomials of degree at most n, For an ideal I of C
denote by I, = TN C,, by £(I) the ideal of leading
coefficients of I, by LO(I) the ideal of tail (constant)
coefficients of 1. A class of uppers of O that plays

an important role throughout our investigation 1is

[ —
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pR(gi) - p(g-) = {f € c[7], f(g-) = 0) for elements a and b
in R. Note that !,(P(%)) = I,O(PG;-)) end conversely.

We start by exhibiting a relation between a general
upper of O, P and uppers of the type P(%).

let g=a T + s +a; bea polynomial of minimal
degree in P and R[T)/P = R[u]. We can view P in R[u](T)
as the ideal consisting of all polynomials f € R(T], satisfying
f(u) =0, let v= a,u, then v is integral over R and
B = R[v] € R[u] 1s a finite free R-module generated by
1, ¥, eee, ¥ Land hence a coherent ring along with R.
Consider the map R[T) —> B[T] 2> R[u] where o(T) = u.
and let Q = kere. Since a T-v 1lies in Q we have:

v

R[u)(T] Q= (b € B(T)/b(u) = O}, end Q MR[T} = P. u= ;=
n

lies in the quotient field of B hence Q is PB(;V-).
n

Lemma 4.4, With the notation above we have that
P = @ N (R(T]) for every k >0 and £(Q) N R = 4(P).
In particular Pk is a finite R-module for every k.

Proof: If P = P(g-), Py 1s the module of relations of
the finitely generated, and hence finitely presented, ideal
(a, b)k. Since clearly P =Q N (R[T] )k' the last assertion
is clear.

We have £(P) = £(Q) N R. To prove the converse let
a € £(Q) N R, then there is a polynomial h in Q ;rith
leeding coefficient equal to a, which can be assumed to
have degree s > n., Write:

n-1 n-l

8 s=1 i
b= ar® + (ifobi,s_lv*)r + et (20 o )s by 5 € R
Then h(u) = O implies:
0= an’® + (n;:l b ' at ui) W s n;lb al ui) and
420 i,s-1 "n a0 1,0°n " J*
0= e L I e p-1y

bn-l,s-l n n-2,s8-1 % n-l,s8-2 %
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“n+.a-3 eoe (8 + bl,s-lan + bz,s-z aﬁ + ...)

by subtracting suitable multiplas - of g(u) = O from the
above equality we obtain an element of the form a + ea,
e€R in #4P) and hence a € £(P). ®»

Note that if ¢(g) is invertible P = e.‘(g)-lg RI[T], as
c(g)'lg R[T) €P by the torsion freemess of R(T]/P and the
other inclusion can be verified locally and follows from the
fact that PK = gK[T], where K 1is the field of quotients
of R. This equality does not depeni on the coherence of
R or the number of variables T e (T, -««) 'rn].

Leoma 4.5. Let R be a coherent domain, P an upper of
0 in C = R[T] containing a polynomiat f with c(f) = R.
If degf =n, then P= (f, pn). In particular P is
finitely generated.

Proof: We may assume R is local with maximal ideal m.
By considering a faithfully flat change of rings R —> R(Y) =
R[Y]

WR[Y) which is compatible with P and P, , for every

k
k, we can assume the residue  class field R/m 1is infinite.
In this case, we consider an automorphism of R[T], T —> T +a
for an element a in R, and assume the constant term b of f
is invertible, Let F be a polymomial in P of degree higher

lrf = G for

than n and constant term r. We have F - b~
G e R[(T). If Py (T) then G 1iles in P and we proceed by
induction on degree. ®

Lemma 4.6, Let R be an integrally closed domain, P
an upper of O 4in C = R[T]_, veey T n] containing a polynomial
£ with o(f) =R, then P is invertible.

Proof: Let g be a nonzero polynomial of least degree in

P, PK= gK[Tl, ooy Tn] » thus there exist a nonzero element a

in R and a polynomial h in R[Tl,...a'n] such tha: af = gh,
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Thus (a) = ¢(gh). Using the content formula [G] we obtain:
c(ng)c(e)” = [c(g)e(h)le()”, vwhere m = degh, hence
le(g)e(b)la™l =R end e(g)e(h) = (a). We conclude that
¢(g) 1s invertible and P = ¢(g)”3 RIT,...T ).

The existence of & polynomial f in P having
¢(f) = R is critical to the finiteness of P in the
general case. As an example, let R = k + xk[x,y]), where
kK 4s a field of characteristic O, and let P = ker(R[T] 2%
R{1/y}), where o(T) = 1/y. P is generated by elements of
the form aT -b, a and b in R[N]. Note that
a€ (y):x= (xy,xy%, ...), hence P 1s not finitely
generated although R 4s integrally closed ([G]. Note
that R 15 not coherent.

Following [GL) [G-V] we dencte by &(R) = {p ¢ Spec(R),
p rinimal over (a):b for some a,b € R}.

lemma 4.7. let R be a ccherent domain, P an upper
of 0, and g a nonzero polynomial in P of least degree
n. If e(g) 4s invertidle at each p € &R), then
P = ¢(g) g riT) .

Proof: We have that ¢(g)  gR[T} € P. Let F bea
polynomial in P of degree r >n. Define L = {a € R,
aF ec__ c(g)lg). L 1is a finitely generated ideal of R,
and by hypothesis L, = np for every p € 5(R). Thus
L™} = R[G-V]. On the other hand Cr_nc(g)'lg is R-isomorphic
to r -n+1 copies of ¢'(3)'1 and thus a reflexive R
module. Taking double duals in LF C Cr.nc(g)_'lg we obtain
rec, e z=e@ Ygrln). =

Corollary 4.8. let R be a coherent integrally closed
domain and let P . be an upper of O, then P 1ia finitely

generated.
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Proof: Note that P satisfies the hypothesis of lemma
4.7, since if g 1s a polynomial of least degree in P then
(cl@ete)™) =R »

We now prove Theorem 4.3:

Proof: First note that Pk are reflexive, finitely
generated, R-modules for every k, V since (Pk'l) = ¢ -
let P be a polynomial in P of degree s >n, where
n=deg?, andput L={a €RGFEC,  fOP} L isa
finitely generated ideal of R and by Lemma 4.5 LP = Rp for
every p € @(R). Thus vl =R, and since Copf ®F, 152
reflexive R module we conclude that F € (f, Pn). n

We remark that if R 1s a coherent domain with &(R)
compact and P 1s an upper of O in R[T] such that
c(P) ¢ p for any p € &(R), then P is finitely generated.
An example of a ring satisfying the above condition is a coherent
H-domain [G-V].

(c) cCoherent Rees algebras - that is, for any finitely
generated ideal I, the corresponding Rees algebra AT) =% Intn
is coherent.

The usefulness of this property lies in the fact that
some versions of the Artin-Rees lemma become available. If
the ideal I 1is generated by the elements CTRRRTL e we
have a presentation R[T, +.., Tn] —> (1), T, —>a;t. The
kernel, P, is an upper of O. Thus

Propositon 4.9. (a) + (bn) > (c).

(c) Finite O-th cohomology - that is, for each finitely
gensrated ideal I the ring R' =U(I": I") is a finitely
generated R-module. " “

The reason for the terminology comes from the fact that
it X = Proj(e(1)), then H(X,0,) = R'.



FLAT IDEALS III 221

Proposition 4.10. (c) = (d).
Proof: Let I be a finitely generated ideal of the

integral domain R and let L be the irrelevant ideal R(I),
of the Rees ring RQ(I). The ring C = Home(I)(L, L) consists
of all polynomials f = zaiti, 8, £ K = field of fractions of

R, such that a,1°c 18" for all & >0.

If suffices to show that if C is a finitely generated

R(1)-module, then R sUE” ) = 18:1% for s 3>0. For
T n

that, suppose ait 1, i=1, ..., m are homogeneous generators

of C as a ®(I)-module, and denote r = sup[ril. We show

8+l .8+l

that it is enough to take 8 >r. Pick we I 1° and

let x € I°. Note that wxt® ¢ C since
wxr® = x(xp)1%t e Bt o 12

for u > 0. We may thus write

8-r
wx=Zaw, wflI i,

But then aw ¢ IB, and wx € Is, as desired. ®

Denote by R}l = (" :1"). We will connect the finite
generation of uppers of O of the type P(%) and the finite-
ness of RI.

Proposition 4,11. ILet R be & coherent domain. I = (a,b)

I I

an deal of R, then Rl = K. for some n iff p(g-) is

finitely generated.

I

Proof: Assume R = Rg with n >0 minimal such that

equality holds. Sine P(%)’.k is finite for every k, a
Hilbert basis theorem argument ensures the finite

generation of P(g-) provided !,(P(%'-)) is finitely

generated. We claim (R!It%) ARD z(P(%)x) b} (Ri-]_% N R
for every k and thus z(y(g-)) s :,(r(g-)h ) is finite. To
prove the claim consider a polynomial f = ak'.l'k+ ser By € P(g-).

Then a.kak + oo + aobk = 0 and thus ak% (a,b)kc (a,b)k
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I b I b
and o € (R, %) n R conversely 1et o, € (Rk-l?) n R

then a , = u% with u e Rllt-l' Thus ua® ! ajg riai‘nk'i'l
1>0
and ak_lak @ ug- o=z riaibk'i thus a , € L(P(%)k).
i>0

For the converse we note that since ‘O(P(%)) = 5(1’(%))

we have P(E) finitely generated along with P(g-'-). Iet n
be an integer greater than the degrees of all polynomials in

a generating set for P(% and P(:i). Then L(P(g-)) =
() e (E3) 08w s(e) = () 0 m - (F8)

et x € Rfﬁl' We will show that xadb?™d e 1® using

induction on n-j, and thus conclude that RI = Ri.
For J = O, we have xIMl c Iml and xanﬂ =
n+l
Zory alo™l gng K2 a™la g opal Rttt rogbnﬂ .
i=0 8 1>0
Thus ro-:-bml =xba’ - ¢ ria.i'lbmz'i and rog 4 ¢ ¥,
1>0

I a Ia\ ., a
We have Ty € (Rnug) AR= (Rn 17) N R and write Ty = ¥y
I b I b, .n n
vith y € K. Then r>=y€R. amd (ro;!) )b €10, Ve

conclude that xa™ € I"> and xa”€ I". Assume xalbp"™d ¢ 17
but xad"WHd g 1B Bt o B ate™! oo

i=0
J=L n+l-§ i-1, n+l-i b.n b.n4.on
xad~o = £ ra b +ryg b and thus =b £1.
i>0
and rog ¢ R‘,[‘- On the other hand r, gbnﬂ e ™1, 1t rollows

that roe (R, H)nr=(Rlg) nr =

Corollary 4.12, lLet R be a coherent domain with Priifer
integral closure, then all uppers of O over R are finitely
generated, ’ .

Proof: We have that Rl = R:i for some n, for every
finitely generated ideal I of RY [C-V]. 1t follows that
uppers of O of the type P(%) are finitely generated. Let
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g= an'tp +osee 4o be a nonzero polynomial of minimal degree
of an upper P of 0. With the'notation of lemma b.h we
construct the ring B = R{v]. B is a coherent domain with
Prifer integral closure, hence Q 4s finitely generated and
by lemma 4.4 so i3 P. =

The last of the properties of coherent rings to be
considered is:

(e) The integral closure of R 1is a Priifer domain,

Conjecture 03: Each coherent ring of Krull dimension

one satisfies (e).

Proposition 4,13, For an integral domain R the
following conditions are equivelent:

(1) The integral closure R' of R ig a Priifer
ring.

(11) For a, b € R the upper P( %) has unit content.

(111) For a, b € R there exists an integer n >0 such
that with I = (a,b), I" is an invertible ideal of
Homp (17, 1").

Proof: The equivalence (1) <=> (i1i) is proved in [C-V],
vhile (1) <=> (1i) follows from [C-V], [G) and [E-S]). =

There are not many cases where (03) has been established.
One amusing one was pointed out to us by Gruson 3everal years
ago. We use the following temiinology. Given a coherent domain
R, K 1s called a canonical module if the functor HomR(' sK) s
a self-dualizing functor on the category of finitely generated
torsion-free R-modules.

Proposition 4,14, ILet R be a coherent domain admitting
a canonical module K. If uppers of 0 in R[T]) are finitely
generated, then the integral closure of R 1is Priifer.

Proof: We show that the condition (41) of Proposition
(4.13) holds, Let a,b be elements of R. From Proposition
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{4.11) we know that there is an integer n >0 such that

n

RF = 1% : 17, It is clear that HomR(RI, K) 1is a canonical

module for RI. We may thuz assume, changing the notation,
that R admits a canonical module and 1°:1" = R, for
all n. Assume also that R is local and m 4s the
minimal number of generators of K. Put z = a/b; it
follows easily that R = (R + Rz™Y) n (R + R2™%). my

duality, we have K= (KN Kz'm'l) + (K N Kz). Take a

~-m-1
generating set of KX, Uyy eeey Upy with Upy ooy U € Kz

and Upg? ceer Vg € Kz. We have the system of equations:

o+l
2w B oappu . Fay U

.
.
.

m+l

z = + .. *
Yp ey ’ & r’m
-1

s a + s00 + 8

T+l, 1) r+1’m°m

zuy = oapUy b vapu,

which implies the relation

o+l . .
611-2 eceresversosescsvesenans alm

m+l
ceee B2 tessssssscesss B

a
rl T

T,m
-1 =0
81,10 Ypal,r Spal,ral™® c Brad®

. -0

aml ercecrsesssseessresceroreterey am-z

that is, p(z) = 0 where p 4s a polynomial in R(T, T']‘].
But the coefficient of T(r+1)m+2r in p s (-1)%
Multiplying p by a high power of T we obtain an element
in the upper P( %) ; of unit content. The assertion now

follows from Proposition 4,13, ®

v

[

. e



FLAT IDEALS III

Remark. It is not known whether the existence of the
canonical module itself suffices to derive the f:lniter;ess of
the uppers P( %) .

Remark. It should be noted that the "slightest" finite-
ness condition imposed on R (in addition to coherence and
dimension one) makes R a Noetherian ring. For example:
ascending chain "condition on divisorial ideals, or the
property of being an H-domain.

We would like to conclude with the interesting evample
given by M. Hochester of a nontrivial One' dimensional
coherent domain with Priifer integral closure,

Let k be a field end L) yli, zy indeterminates
over k.

Let A, = k[[xi ’ xi]] ~ x[{z,, vlll!@i - zg)

° n
2 2
a, = W02, 20 e, 9, )/0E - 2)
0 (A —>A . defined by o _ . (Z)=2
nyn+l ° An n+l n,n+l'"n n+l’
'°n,n+1(yn) = Ypepe For n<m o A —> A, 18

“-’n,m = '”n,n+1° see wm-l,m H ,n = jdentity. Then

each A, is a one dimentional Noetherian local domain,
with Ay flat over An for n <m. Infact A, is

free over A on three generators. A = lim A, is a-
n-l -

one dimensional, coherent domain [B]. It is not

Noetherian, but A = lim ‘T\n 1s Priifer.
—-
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