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Let C = k[x;, . . ., x,;] be the polynomial ring in n
variables over a field k, and let k C B € C be a k algebra over
which C is flat or faithfully flat. We consider several
factoriality and finiteness properties that B inherits from C
under the faithfully flat condition.

The setting k ¢ B € C, in the context of factoriality and
finiteness properties, inherited by B, was considered by many
authors under a variety of restrictions on the extension B ¢ C, or
on the nature of k and B.

The classical case goes back to Hilbert's l4th problem [20].
The task in this case was to determine whether B = C K, where K

is a field containing k, and contained in L = k(xy, « « o, x.), is
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1792 GLAZ

a finitely generated k algebra. Zariski solved the question in
the affirmative, provided tr deng <2 [20].

P. M. Cohn [7] shows that if k c B ¢ k[x;], and B is
integrally closed, then B = k[f], for some f ¢ C. More generally,
for arbitrary n, and B a Dedekind domain (necessarily of
tr deg,B < 1), Zaks [27] shows that B = k[f], for some f ¢ C.

The case n = 2, or n = 3 but tr degy B < 2, was considered
under several restrictions. Miyanishi (17],(18] shows that if
n = 2, k an algebraically closed field of characteristic 0, and C
flat and finite over B, then B is a polynomial ring in two
variables over k. Russell [24] derives the same conclusion for B,
given that n = 2, k is perfect, B and B ® .E, where k denotes
the algebraic closure of k, satisfy several finiteness and
factoriality properties, and k(x,y) is a separable extension of
the field of quotients of B. In [18], Miyanishi also considers
the case n = 3, and several heavy restrictions on k, B and the
extension B ¢ C. Miyanishi's and Russell's work described here is
representative of a school of algebraic geometers exploring the
factoriality properties of finitely generated subalgebras of
polynomial rings in two variables over fields.

In [2], [3]) and [4] Anderson considers the case n = 2 and B a
finitely generated k algebra generated by monomials, over which C
is integral. Those algebras B are characterized and their
factoriality properties exhibited in the calculations of cl(B).

Except for Miyanishi's work cited above [18], there are only

two cases known to us where tr dega > 2 is considered, [8] and
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[21]. In {[8], Evyatar and Zaks consider the case where B is a so-
called factorable subring of C containing k; that is, whenever an
element of B factors in C, then all its factors lie already in B.
Such rings are frequently called in the literature inert subrings
or inert embeddings (see, for example, [1]). They prove that if
tr degyB = n, then B = C, and provide an example that shows that
if this is not the case, then B does not have to be a polynomial
ring.

In [21], Nagata and Otsuka prove the finite generation of B,
for k a universally catenary Nagata domain with certain analytical
irreducibility properties, C a generalization of a polynomial
ring, and B an intermediate algebra satisfying several properties.
This result, which is useful to us in this paper, is discussed in
more detail in Section 1.

The setting k ¢ B ¢ C, where C is flat or faithfully flat
over B, appears in two famous problems, the Jacobian problem (see
for example Wang [25] and Wright [26]), and the coefficient ring
problem (see for example Abhyankar, Heinzer & Eakin [1] and
Hochster [13]).

Our motivation lies in the investigation carried out by Glaz,
Sally and Vasconcelos [11]. In [1l], the setting 1s
A ¢ B C A[x], for an arbitrary ring A, and A[xy] flat or
fatthfully flat over B. The case where A is a field, in
particular P. M. Cohn's result, played an important role in the
general investigation. Hence, we consider the setting

kCcB<C=k(x, ... x,], n>1 and C faithfully flat over B.
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Throughout this paper the following notation will be fixed:
k denotes a field, k CB CC(C = kl[xy, « . ., x,] the polynomial
ring in n variables over k. L = k(xy, « - ., x,), and K denotes
the field of quotients of B. B denotes the integral cioaure of B
in L (and, hence, in C).

In Section 1, we show that if C is faithfully flat over B,
then B is a Noetherian regular ring of tr degyB = dim B  n, and
KN C=B. This allows us to prove the main theorem of this
section, namely that B is a finitely generated k algebra. We
conclude the section with an example that shows that if C is
merely flat over B, B does not have to be a finitely generated k
algebra, even when their fields of quotients are equal.

In Section 2, we consider the prefactoriality of B, and the
nature of B. We prove that if L is a normal extemsion of K
satisfying that g(C) c C for every automorphism g of L over K,
then B = C and B is prefactorial. In case the extension K C L is
normal the prefactoriality of B is equivalent to its equality to
C. We conclude the section with a relation between the
prefactoriality and integral closure in L of B, and D, where D is
a finitely generated, integrally closed k algebra, satisfying
B = S(I,D) the ideal transform of an ideal I of D.

Section 3 considers the question whether B, with C faithfully
flat over B, is a polynomial ring. We prove that if C is integral
over B, the faithful flatness of C over B is equivalent to the
regularity of B. This theorem provides examples of subalgebras B

over which C is faithfully flat (and integral) but which are not
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polynomial rings. We then consider subalgebras B of k[x),x3] = C,
generated by monomials, over which C is integral. We show that,
in this case, if C is faithfully flat over B, B has to be a
polynomial ring. We conclude with examples of algebras B of this
type over which C is not faithfully flat, but which are close to
sharing many of the finiteness and factoriality properties enjoyed

by subalgebras over which C is faithfully flat.

SECTION 1. Finiteness.

LEMMA 1. Let Kk CB CC = Kk[%X, .. ., x ] be a k algebra

with tr degBC = r 2 0. Then there are r of the variables, say

Xy3 o o o5 X, which are algebraically independent over B, and an

element b ¢ B[xy, + « ., X..] such that B[Xq, « « «, x., 1/b] is a

finitely generated k algebra with integral closure in L equal to

C[1/b]. In particular, if B is a Noetherian ring, then

dim B 2 tr deg, B.

Proof: We prove our c1aim~by induction on r = tr deng.

If r = 0, then L is algebraic over K; thus, there exists an
element b ¢ B such that bxy e B for 1 €1 < n. We conclude that
C[1/b] is integral over B[1/b]. It follows from [5, p. 81] that
B[{1/b] is a finitely generated k algebra.

If tr deggC = r > 1, then for some i, x; is transcendental
over B. Say i = 1. We have k ¢ B[x;] ¢ C and
tr degB[xl]C =1t - 1., The claim now follows using the induction

hypothesis.
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Agssume that B is Noetherian, we then have:

n = dim C[1/b] = dim B[x), + . ., x., 1/b] =

r?
dim B[}, « . ., X, T]/(bT-1) < dim B + (r+l) - 1. Thus,

dimB2>n-r =tr degy B.

PROPOSITION 2. Let k € B C C = Kk[X;, « « ., x.] be such th

GLAZ

at

C is faithfully flat over B. Then:

(1) B is a Noetherian regular ring of dim B = tr deg; B < n.

(2) B=KnC.

In particular, B is integrally closed in K.

Proof:

(1) Let I be an ideal of B, and let 23), « « +, 3, ¢ I such that

IC = (ap, « « «, a, )C. then I Q@ gt = IC = (a1, « + o, a,)C =

(a1, « « o, a,) ® g C. By the faithful flatness of C over B,

we have that I = (a;, « + ., a ). Thus, B is a Noetherian
ring.

Let m be a maximal ideal of B, and let n be a maximal
ideal of C lying over m. Since C, 1s faithfully flat over
By, it follows that By is a regular ring of dim B, < n [16,
pp- 79, 155]. Thus, B is a regular ring of dim B < n.

By Lemma 1, we have that tr degyB < dim B { n. For th
reverse inequality let m be a maximal ideal of B of maximal
height, and set r = dim B = dim B,. Since B is a regular
ring there exists a regular system of parameters for Bos

¥1s ¢ + +5 ¥p such that k[yy, . . ., ¥l ¢ By, and

e
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klyys « + «, y,] 18 a polynomial ring in r variables over k
[16, p. 150]. It is now clear that
tr deg,B = tr degyB, > r = dim B.

(2) The faithful flatness of C over B implies that bCN B = bB

for every be B {16, p. 28]; thus, B =K N C.

Let k <B €C = Kk[xy, . . ., x;] with C faithfully flat over
B. Since B = KN C, there is an integrally closed k algebra D,
and an ideal I of D such that B = S(I,D) = UOI-n ~the so-called
ideal transform of I [20, p. 45]. Note that/D and B have the same
field of quotients. Thus, either B = D[I™®] for some n, and

therefore it is a finitely generated k algebra, or we can define a

strictly increasing sequence of integrally closed k algebras By,

with By = D, and By, equal to the integral closure of
B;[(IB;)"!], such that B =U B; (20, p- 48]. Using this fact,

Nagata and Otsuka [21, Theorem 1] proved the following theorem:

THEOREM 3 (Nagata, Otsuka). Let k be a universally catenary,

Nagata domain, satisfying that any local, integrally closed domain

which is a localization of a finitely generated k algebra, is

analytically irreducible. Let C;; C», - . ., C_ be integrally

closed domains which are finitely generated k algebraé; and set

C=C &®. .. @©C_. Let k<€ BC C be a domain with field of

quotients K, satisfying:

(1) K is contained in the total ring of quotients of C.

(2) B=KnN C.
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(3) The canonical map Spec C -+ Spec B is surjective.

(4) For any maximal ideal m of B, mB. is finitely generated.

Then B is a finitely generated k algebra.

We note here that our formulation of the Nagata—Otsuka
theorem uses the terminology developed in [16]. A discussion
about the properties of k can be found in [16, pp. 86, 231, 237].
In particular, any field, or any Nagata, local, integrally closed
domain which is a localization of a finitely generated algebra
over a field, satisfies the properties of k required in this
theorem [16, Chapter 12] and [22, pp. 139, 140]. We can therefore

conclude:

THEOREM 4. Let k€ Bc € =kl[x;, . « ., X, ], with k a field

and C faithfully flat over B. Then B is a finitely generated k

algebra.

Proof: Set C = C; in Theorem 3. Proposition 2 and the faithful

flatness of C over B guarantee the requirements (1)-(4).

It should be noted that in the particular case that
dim B £ 2, we have tr degyL < 2 and, therefore, Zariski's theorem

[gg, P 52] yields the finite generation of B over k as well.

If C is merely flat over B, then B does not have to be a
finitely generated k algebra, even if their field of quotients
coincide. We present here an example of this kind. This example

is based on a three-dimensional construction shown to us by J.
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Sally in a different context, and the refinement to the two-

dimensional case due to W. Heinzer.

Example:

Let k denote the complex field. Let
E = k[x, xy2 +y] €c=k[x, yJ. C is faithfully flat over E
LLL]. C is quasifinite over E, that is, every prime ideal P of C
is a maximal as well as a minimal prime over P fl E. It follows
by Zariski's Main Theorem [31, p. 41] that C is flat over any ring
containing E and contained in C. E is isomorphic to C and,
therefore, a U.F.D.

We claim that E = E[xy] = k[x, xy2 + y, xy]. To see this,
first note that (xy)2 + xy - x(xy2 +y) = 0; thus, E[xy] is
integral over E. Now write Elxy] = k[x][u, v]/(u2 + u - xv). For
any maximal ideal m of k[x][u, v], one can check locally that
ul +u - xv ¢ m2; therefore, E[xy] is a regular ring, and as such,
integrally closed; thus; E= E[xy]. Let w=xy + 1, and let
B = E[yzw, y3w, .. .). IfB # C we have that C is flat, but
not faithfully flat, over B, and B is not a finitely gemerated k
algebra.

To see that B # C we eaploy [ﬂ, Appendix 21].

Note that k[x, w](,y is a discrete valuation ring of the form
k(x) + wk[x, w](w), and that V = k[x](x) + wk[x, w](w) is a rank
two valuation domain with x a generator of the maximal ideal of V,
and w contained in the height one prime ideal of V. Hence,

w/x™ € V for each positive integer n. Since y = (w - 1)/x and
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w -1 is a unit of V, we have y ¢ V, and therefore C € V. On the

other hand, y™ = ((w - 1)%/x") « w € V for each positive integer
n. Therefore B €V, and B # C.

Along the same lines, the following three-dimensional example
can be constructed: E = k[x, Y, xz2 + z] cCc= k[x, Y, z] and

B = k[x, y, xzZ + Z, Xz, yZ, yzz, + « .). Then C is flat over B,

and B is not a finitely generated k algebra.

SECTION 2. Prefactoriality and Integral Closure

Let k © B € C = k[xy, . . ., x) with C faithfully flat over
B. In Proposition 2, we proved that B is a regular ring. Under
certain restrictions on the extension K C L we can obtain that B

is prefactorial with B = C.

THEOREM 5. Let k €B € C = k[xy, . . ., x ] with C

faithfully flat over B, Assume that L is a normal extension of

K. Denote by G = Aut(L/K) the group of all automorphisms of L

over K, and assume that E(C) € C for every £ € G. Then E = C and

B is prefactorial.

Proof: We will first show that under these assumptioms
B =C. Since L is algebraic over K, we have dim B = dim B = n,
and L is the field of quotients of B.

Since B and C are Noetherian rings, tr deggC = 0, and C is a

faithfully flat finitely generated B algebra, we have that for

every prime ideal P of C, ht(P) = ht(P N B) [16, pp. 79, 851.
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Thus, C is quasifinite over B. It follows by Zariski's Main
Theorem {22, p. 41] that E} ne - S np for every prime ideal

P of C and, thus, C is a flat epimorphism of B [15, p. 112].

Since a faithfully flat epimorphism is an isomorphism, in order to
show that B = C, it suffices to show that no prime ideal of B
blows up in C.

Let P be a prime ideal of E, set p = PN B, and let Q be a
prime ideal of C lying over p. Then P' = QN B is a prime ideal
of B lying over p, which does not blow up in C. Since any two
prime ideals of B lying over the same prime ideal of B are
conjugate to each other by some automorphism of L over K [lﬁv
p. 34], and £(C) € C for any such automorphism £, we conclude that
PC # C.

We will now show that B is prefactorial. Let K' be the fixed
field of G, then either K = K' (if L is separable over K), or L is
normal and separable over K', and K' is a purely inseparable
extension of K. This last case may happen for some fields k, with
ch(k) = p > 0.

Let p be a prime ideal of B of ht(p) = 1. Since B is a Krull
domain, p is a divisorial ideal. Since B is a regular ring, p is
an invertible and, therefore, projective ideal of B. It follows
that pC = p@ g C is a projective ideal of C and, therefore,
principal. Let pC = fC for some £ & pC.

For £ € G we have pC = £(pC) = E(£C) = E(f)C; therefore, f
and £(f) generate the same ideal of C and £(f) = uf for some

u € k.
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Since f is algebraic over K, the number of distinct
conjugates of f is finite, say
£=61(f), upyf = £5(6), . . ., u f = E.(£). Let
g = (iilii(f))q = u f¥9, where u = (up . o cu )% ek andqs=1
if K' = K, q = pY for large v if K' # K and ch(k) = p > 0. Then
ge KN C = B; therefore, there exists a positive integer s such
that 5 ¢ B. But £5¢ pCN B = p. We claim that p = Y£5B. To
see this, let h e p c pC, then h = fc for some ¢ & C, hS = £3¢8

and, therefore c® € B. Therefore, pCI/fsB, and we have equality.

REMARK. The referee pointed out that various parts of
Theorem 5 can be proved by other methods as well. For example:
(1) To deduce that C = B one can proceed as follows: since

G = Aut(L/R) is a finite group,

cc ={f ec/ &f) = f for every £ € G} ¢ C is an integral

extension [2, p. 68]. Since L is a normal extension of K, a

computation similar to the one carried out in the last

paragraph of the proof of Theorem 5 shows that B < ¢C is a

purely inseparable extension. Thus, C = B.

(2) Once the equality C = B is established we can conclude the

prefactoriality of B using [l, Corollary 2.14].

It is interesting to note that in the set up k ¢ B ¢ C with C
faithfully flat over B, and L, a normal extension of K, the

prefactoriality of B is equivalent to its equality to C.
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PROPOSITION 6. Let k € B C C = k[xy, . . ., x ] with C

faithfully flat over B. Assume that L is a normal extension of

K, and that B is prefactorial. Then B = C.

Proof: Let P be a prime ideal of B with ht P = 1 and set
P = /gf for some g € B. Let Q be a prime ideal of C minimal
over gC, then ht Q = 1. We claim that QN B = P. To see this

let ' = QN B >gB; thus, P € Q'. Since ht (Q N B) = 1 and

Q' NB=QNB, we have ht Q' =1 and P = Q'.

L is a finitely generated algebraic, and hence finite,
extension of Kj therefore, E is a Krull domain [lﬁ, P- 296].
Thus, E} c CQ are two discrete valuation rings with the same
field of quotients L and, hence, S} ='CQ. It follows that
c=Ncye= NBp = B.

QeSpec(C) P €Spec(§)

he(Q) =1 he(P) = 1.

Returning to the representation of B as an ideal transform
S(1,D) for an ideal I of a finitely generated integrally closed k
algebra D, we can relate the factoriality of D and that of B and,
in certain cases, between B and D. the integral closure of D in

L. This is done in Propositions 7 and 8.

PROPOSITION 7. Let k €B € C = k{xy, « « ., x ] with C

faithfully flat over B. If D is prefactorial (respectively, a

U.F.D.), then so is B, and B = D.
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Proof: Assume that D is either prefactorial or a U.F.D. Let
d € D with IS ¢ dD for some s > 1. Then (1/d)I® ¢ D; therefore,
1/d e Bc C. It follows that d € k and ht T > 1. Since D is
Noetherian and integrally closed, this implies that

B = s(I, p) = p[20, p. 41].

PROPOSITION 8. Let k c B c C = k[x;, . . ., x ] with C

faithfully flat over B. If L is a finite separable extension of

K, then B = S(IB, 5), where D denotes the integral closure of

D in L.

Proof: Since L is a finite separable extemsion of K, B is a
finite B module [2, p. 64], and, hence, a Noetherian Krull domain.
Let x ¢ S(IE, 3), then x(IB)" ¢ B for some positive integer n.

If B # D, then ht IB > 1 [gg, p. 50]; therefore, (1B™~1 = B,
It follows that x € B {11, p. 5]. on the other hand, if x ¢ B,

then x5 + bs_lxs'1

L bo = 0 for some bO’ o o ey bs-l € B.
Pick z € IF such that bth €D for 0 <j<s-1. Then
(x2)3 + (bs_IZ)(xz)s—l L (boz)zs-l =0 and xz € D. Thus,

xIT ¢ D and x € S(IB, D).

SECTION 3. Polynomial Rings.

Let k € B< ¢ =k[x;, . . ., x ], with ¢ faithfully flat over
B. In [£§J, Miyanishi proves that for n = 2, C integral over B,
and k algebraically closed of ch(k) = 0, B is a polynomial ring in

two variables over k. This is not true in general, even if C is
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integral over B. The following theorem will generate the required

counterexample.

THEOREM 9. Let kc Bc C = klxy, . . ., x_] with C integral

over B. Then C is faithfully flat over B if and only if B is a

Noetherian regular finitely generated k algebra.

Proof: Note first that since C is integral over B, C is
faithfully flat over B if and only if C is flat over B. By
Proposition 2, and Theorem 4, if C is faithfully flat over B then
B is a Noetherian regular finitely generated k algebra. The
integrality of C over B is not necessary for this implication.

For the converse, let m be a maximal ideal of B, then B, is a
regular ring. To see that C, is flat over B we either employ
[lg, pP. 140], or prove directly that for a regular system of
parameters
£1» « + « 5 £, of By, Tor},m(nm/(fl, ey £5) By, Cy) =
Tor%m(Bm/mBm, Cy) = 0. It follows that C, is a flat B, ~p
module for every maximal ideal n of C, and, therefore, C is a

faithfully flat B module.

Example. Let k be an algebraically closed field of

ch(k) = p > 0. Let B = k[xP, yP, (xPyP+1)x + yP*13 c ¢ = k[x,yl.
Then B = k[Ty, T,, T3] /(1§ - (TPTB + L)1y - TB*1). One

can check locally that £ = T§ - (TPTB + 1)T) - T8*! ¢ o2 for

any maximal ideal m of k[Tl, Tys T3] such that f ¢ m and, thus, B

is a regular ring.
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Since C is integral over B, we have that C is faithfully flat
over B. That B is not isomorphic to a polynomial ring was proved
by Miyanishi and Russell in [19, p. 286]. 1In fact, Miyanishi and
Russell [19], proved by a different method that B is regular, and
that B is a U.F.D. The case where p = 2, was proved, yet by a

different method by Lang [lﬁJ.

We now turn our attention to a special type of subalgebras B
of C = klx,y], where faithful flatness implies that B is a
polynomial ring, regardless of the field k.

Let k be a field, and let k€ Bc C = k[x,y], be a subalgebra
of C generated by monomials, with C integral over B. We have that
B is a finitely generated k algebra. B is a graded ring with the
natural grading; in fact, B is bihomogeneous; that is, if
z aijxiyj € B, then each aijxiyj € B. These algebras were studied
by Anderson in [2], [3] and [4].

We first determine which of those algebras satisfying C is

faithfully flat over B.

PROPOSITION 10. Let k€ Bc C = klx,y], with C integral over

B and B generated by monomials, then C is faithfully flat over B

if and only if B is isomorphic to a polynomial ring in two

variables over k.

Proof: 1If B is isomorphic to a polynomial ring, then by

Theorem 9, C is faithfully flat over B.
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If C is faithfully flat over B, then B is integrally closed,
it follows from [3, p. 217], that via a change of variables which
does not change the origin, B is either isomorphic to C or
B = k[x", xyJ, xzyzg, . e ey x“—ly(;:ISE, y®] where
0 <j <n, goc.d (j, n) =1, and overscoring denotes mod n. We
will show that if B is not isomorphic to C, then for

m = (x,y) N B, B_ is not a regular ring and, thus, by Theorem 9,

m
arrive at the desired conclusion.

Let B = kix", xyJ, xzyEE, N xn-lyz;:fgj, y°1.
From the set {x7, xyj, e « +» Y" pick a minimal generating set
for B as a k algebra. B = k[x%, y", xyj, xilyj1 . e e xiryjr].
Now map the polynomial ring k[T;, . . . T ,3] to B by o,
¢(T1) = xN, o(Ty) = o, w(Tg) = xyj, ¢(Ts+3) = xisst. Let
P = ker ¢. Clearly P € (T, . . Tr43) = 0 and
B, = k[Tl, e e ey Tr+3]n/Pn is regular if and only if P, can be
generated by a subset of a regular system of parameters for
nk[Tl, . o ey Tr+3]n’ We will show that this cannot happen by
proving that P c nZ. Let f = E(Tl, e o oy Tpy3) € P and write
ijTiTj + + e« . o+ Then
£(x", y®, xyj, « « «) = 0. By the minimality of the generating

£f= QlTl + e e . ’l‘ﬁr+3Tr+3 + IB

set for B, clearly a; = 0, 1 <i < r+3. (In fact, we suspect that
P cC mj+1, since it seems that the polynomial Tg - TlTé e P has
minimal initial power in P.)

This proposition provides us with many algebras generated by
monomials over which C is faithfully flat. Any B = k[xn, ym] for

positive integers n, m will do.
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On the other hand, algebras of the kind
B = k[x®, xyd, . . ., x“'lym’ y?] 0 < j< nand
g.c.d. (j, n) =1, which never satisfy C faithfully flat over B,
are close to sharing several finiteness and factoriality
properties enjoyed by algebras B over which C is faithfully flat.

Let B = k[x", xyj, e ey x"—lyz;:ry, y®], and let K be
the quotient field of B. Clearly tr degyB = dim B = 2 and
KN c=8,

Anderson [2, p. 9] proved that any localization of B by a
maximal ideal other than m = (x,y) N B is regular. Moreover, in
[g, p. 222], he proved that cl(B) =~ Z/nZ; therefore, if P is a
prime ideal of B of height 1 then ((P®)~1)~l jg principal and,
thus, P is contained in the radical of a principal ideal. Let
P, = (x", xyd, . . s x“'lyz;:rij) and
Py = (xyj, e ey x“'lyz;:TYj, ym. ht(P;) = he(P,y) = 1 and
(Py), (Py) generate the free abelian subgroup of all bihomogeneous
Prime divisorial ideals of B, denoted BDiv(B). 1In [2, p. 222], it
is proved that c1(B) =~ BDiv(B)/BPrin(B). These two prime ideals

satisfy (P71 = x%8 and ((pH71)-1

n

y™B. Since

x" e P and y" ¢ Py we actually have P; /x"B and P, = /;EE.
Thus, B is close to being prefactorial.

The author wishes to thank the editor, Prof. William Heinzer,
and the referee for valuable suggestions that improved the
presentation of this paper. 1In particular, thanks are due for

pointing out Nagata Otsuka's theorem that led to the strengthening

of the results in Section 1.
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