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A DIFFERENTIAL CHARACTERIZATION OF FLAT IDEALS IN COMMUTATIVE RINGS

Sarah Glaz*

Department of Mathematics
Case Western Reserve University
Cleveland, Ohio

A topic of interest in commutative algebra is to develop tools to determine
when an ideal in a ring is flat. The methods generally used in the litera-
ture are homological in nature. This paper concerns results found by the
author in {2] and [3], where differential methods were introduced to the
study of flatness in commutative, Noetherian rings.

RINGS OF CHARACTERISTIC O

Let A be a Noetherian commutative ring and let d: A~+ M be a derivation
from A into an A module M. For two elements f and g of an ideal I of A

let A (£, 8) = fd(g) - gd(f). Then Ad(f, g) € M and, if I is a flat ideal
of A, A (f, g) €1 M In [11], Sally and Vasconcelos asked whether for a
polynomlal r1ng A in several variable over a field, an ideal I satisfying
Ad(f g) €1 M for every derivation d and any two elements f and g in I, is
a flat ideal. This leads to a formulation of two differential cond1t1ons
for an ideal I of A.

Dl. For each A module M, every derivation d: A+ M and any two elements
f and g of I, 4,(f, ‘g) € 12,

*Current affiliation: Department of Mathematics, Wesleyan University,
Middletaun Cannacts cunt



68 GLAZ

And the weaker condition:

D2. For every derivation d: A + A and only two elements f and gof I,
84(£, ) € 12

The question is how does this type of behavior of an ideal under deri-
vations affect the properties of the ideal. More specific: In which rings
and for which ideals condition (D1) will imply the flatness of the ideal,
and for which rings condition (D2) will suffice. And, in case I is a non-
flat ideal satisfying (D1) is I "flat enough', where by "flat enough" I
mean: is a power of I flat over its endomorphism ring? ie. is I prestable?
The property was introduced by Lipman [6], and further investigated by Eakin
and Sathaye [4], and Sally and Vasconcelos (12].

One notices that if (QA/Z’ D) denote the module of Kahler differentials
of A viewed as an algebra over the integers, Z, and D: A =+ QA/Z the canon%cal
derivation, the universal property of this pair implies that Ad(f, g) € 1M,
for every module M and every derivation d: A -+ M iff Ad(f, g) € 129 Az and
the unique derivation D. Unfortunately QA/Z and D are hard to describe ex-
plicitly enough even for relatively simple rings. Other modules will be
used to obtain results as the completion of A, the completion of the integral
closure of A, and A itself. The module QA/Z and the derivation D is useful
mainly in constructing counterexamples. All properties involved are local
properties, thus we may assume (A, m) is a local ring with maximal ideal m.
In this section we will also assume that characteristic A is 0.

" The question was completely settled for regular local rings.

THEOREM 1.1 (2] Let (A, m) be a regular local ring with ch A/m = 0 and
let I be an ideal of A satisfying (D1), then I is flat.

The proof involves replacing A by its m-adic completion R = k[[xl,...,xn]],
a power series in n = dim A variables over a filed k of characteristic 0,
and looking at the derivations a/axi. One starts by settling the question
for an ideal generated by two elements and proceeds by reducing the general
case to this case. The complete proof appears in [2]. .

If (A, m) is regular of characteristic 0, but ch A/m = p > 0 condition
(D1) does note suffice to imply flatness. As an example let A = Zp[x] -
the polynomial ring in one variable over the integers localized at a prime
P. The nonflat ideal I = (p, xp) satisfies (D1). This example points out
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to the need of enough derivations of the ring, hence the need to restrict
ourselves to equal characteristic rings.
For a large subclass of the regular local rings the weaker condition

(D2) suffices to imply flatness.

THEOREM 1.2 [2] Let (A, m) be a regular local ring of analytic type over
a subfield k, let I be an ideal of A satisfying (D2), then I is flat.

S
By a regular local ring (A, m) of analytic type over a subfield k, I mean

following Matsummara [8], a regular local ring satisfying:

1. A/m is algebraic over k and ch k =

2. rank Der, (A) = dim A.

This type of rings include power series, convergent power series, localiza-
tions of polynomial rings at maximal ideals.

The next step was to consider domains of dimension one.

Here condltlon (D2) was too weak to imply flatness as seen in
A= k[[t » t ]] and I the ideal (t > t ) Then d(I) € I thus I satisfies
(D2) but I is not flat,

The results obtained are under certain restrictions on the one dimen-
sional r1ng. First assume A is a domain, to avoid the case where Ad(f, g)
lies in I M from reasons of zero-divisors. We also assume (A, m) is a
localization of a k-algebra, where k is an algebraically closed field of
characteristic 0, A/m =~ k, A is essentially of finite type and analytically
irreducible (i.e. the completion of A is a domain). Since the interest lies
mainly in affine domains, the only real restrictions are the requirement
that k be algebraically closed and that A be analytically irreducible. . We
pass from A to the m-adic completion of A, R, and have a finite type embed-
ding. R + k[[x]], where k[[x]] the power series ring in one variable over
k, is equal to the completion of the integral closure of A locallzed at a -
maximal ideal. Thus A has a definite structure, namely, every element of
A can be written as a k-linear combination of a fixed set of polynomials
hl""’hk plus an element in the conductor ideal x' k[[x]]), and h ’f"’hk
can be chosen such that if n, = Jn for some i and j then h hJ, and
deg hi < N. One considers an 1dea1 I of A satisfying (D1). P1ck first an
element f of I of minimal initial power n, then an element g of I of initial
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power m # n with u = m - n not an initial power of any element of A. Several

results have been obtained, the main ones being:

PROPOSITION 1.3 [2] Let (A, m) and k be as above. If all hi are monomials
and I an ideal of A satisfying (D1) then I is flat.

PROPOSITION 1.4 (2] Let (A, m) and k be as in the above discussion. Let
J be an ideal of A satisfying (D1), and I = JA. Ifu < n, or I contains

all hi for i s, fixed integer s then J is flat.
The most general result in this category is:

THEOREM 1.5 {2] Let (A, m) and k be as in the above discussion, and let
I be a prime ideal of A satisfying (D1) then I is flat.

Although no proof has been found yet that every ideal satisfying (D1)
is flat in a ring A with the above properties the question seems decidable.
In [2] we prove that it will suffice to show that for an integer u which is
not an initial power of any element of A u - 1 is not an initial power of
any element in M = Ad(A) where d: A -+ k[[x]] denotes the restriction of the
derivation 3/ax of k[[x]] to A. Every element of M can be written as a
k-linear combination of {hi, hi d(hj)}‘i"j=1 and an element in x\ k[[x]].
We note that n < N-1. Next we eliminate one of the elements of the pair
(hi’ hj) with n, +n, = N - 1. We continue this process of elimination to
obtain a finite number of possibilities for a set of ''generators" for A.

In all cases checked, u-1 cannot be an initial power of any element of M.

A different series of results obtained at this stage for affine domains
of higher dimension was based on the assumption that for a one dimensional
domain of the type described without the required restriction that k be
algebraically closed and A be analytically irreducible, condition (D1)

implies flatness. These results are:

THEOREM 1.6 [2] .Let A be a Cohen Macauley affine domain over a field of
characteristic 0, and let I be an ideal of A satisfying (D1), then I is flat.

THEOREM 1.7 Let A be an affine domain over a field of characteristic 0,
and let I be an ideal of A satisfying (D1), then all minimal prime ideals

over I have height one.
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Prestability have been obtained under heavier restrictions:

PROPOSITION 1.8 Let A be an affine domain over a field of characteristic
0, dim A = 2 and let I be an ideal of A satisfying (D1), then I is prestable.

Recently working jointly with William Brown we came up with two examples
that the conditions k algebraically closed and A analytically irreducible are
necessary to insure flatness of every ideal satisfying (D1) in one dimensional
affine domains. We also proved several results in the more general case. 1
am not going to discuss the details of this work in this presentation. In
view of those examples we can no longer conjecture that (D1) implies flatness
without the necessary two restrictions on the one dimensional domain, there-
fore the last three results are no longer valid in the generality stated
above. However, the techniques involved in proving this results may be use-
ful in proving the following, probably true, conjecture: For a local analyt-
ically irreducible affine algebra over an algebraically closed field k, con-
dition (D1) implies flatness. As a consequence of the validity of this con-

jecture we can obtain.

THEOREM 1.9 [3] Let A be an affine domain over an algebraically closed
field of characteristic 0, and let I be an ideal of A satisfying (D1), then
I is prestable.

RINGS OF CHARACTERISTIC p > 0

Another aspect of the same problem arises in rings of characteristic p > 0.
Here condition (D1) fails to ensure flatness even in regular rings. For
example, let k be a field of characteristic p > 0, let A = k[x, Y](x,y) and
I= (xp, yp), then d(I) ¢ IM for every derivation d: A - M, thus I satisfies
(D1) but is not flat.

To study the problem in this case a generalized form of Hasse-Schmidt
differentials is introduced. For a ring B containing A and an indeterminate
t over B, we define a differential E: A - B[[t]] to be a ring homomorphism
satisfying E(a) = a(mod t) for every element a in A. There is a one to one
correspondence between differentials E and sequences D = {Do, Dl"" } where
D.: A+ B are additive homomorphisms with D, = inclusion and Dn(a b) =

1

Zi+j=nDi(a)Dj(b) for every a and b in A and every n, given by



72 GLAZ

E(a) = Zn>00n(a)tn € B[[t]]. If B=A, D =E is called a differential of A

which is said to be iterative if Di ° Dj = (1 ; J) Di+j for every i and j.

Note that the term D1 of D is a derivation of A into B. For a differential
- R N < R

E(-) = znzODn( )t~ denote by S(-) = Z Dn( )t , and by S the set

{S(a)/a € A} < B[[t]].

For an ideal I of A we introduce the following conditions:

n=1

(D1)_ For every ring B containing A, every differential E: A - B[[t]],
P and for any two elements f and g of I, AE(f, g) = f E(g) - gE(f)
lies in I E(I) AS, where E(I) denotes the image of I under E.

(D2)_ For every iterative differential E: A -+ A[[t]], and for any two
P elements f and g of I, A (f, g) lies in TE(I) AS.

These conditions [3], are a natural extension of conditions (D1) and
(D2) imposed in case the cahracteristic of the ring is 0. A flat ideal of
A satisfies (D1) . We ask similar questions as asked for rings character-
istic 0, and surprisingly obtain a more complete answer.

For regular local rings the following results had been proved:

THEOREM 2.1 [3] Let (A, m) be a regular local ring of characteristic
0<p# 2. Let I be an ideal of A satisfying (Dl)pthen I is a flat ideal..

THEOREM 2.2 [3] Let (A, m) be a regular local ring of characteristic

0 < p # 2, satisfying that the canonical derivations Ei of the completion
-of A map A into A[[t]], and let I be an ideal of A satisfying (DZ)p, then
I is flat. ,

The canoeical derivations E; of the completion of A are constructed
as follows. A = k[[xl,...,xn]] a power series in n = dim A variables over
a field of characteristic 0 < p # 2. The canonical derivations a/axi of A
admit an extension to differentials Ei: A+ A[[t]], [9], satisfying:
Ei(xj) = xj + taij'

The next natural case to investigate is one dimensional domains. Let
(A, m) be a one dimensional analytically irreducible domain which is a
localization of a k-algebra, k being an algebraically closed field of charac-
teristic p > 0, which is essentially of finite type. We then prove the

following result.
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THEOREM 2.3 [3} Let (A, m) and k be as above and let I be an ideal of A
satisfying (Dl)p then I is flat.

The techniques employed in proving the above result do not work for one
dimensional domains which are not analytically irreducible. For example the
ring A = k[[x, y]]/(xy), k a field of characteristic p > 0 is a completion
of a domain. I = (xz, yz) is a nonflat ideal of A satisfying (D1) .

By analogy with the case where the characteristic of the ring is 0, if
we extend result 2.3 to a conjecture for higher dimensional affine algebras
over algebraically closed fields of characteristic 0 < p # 2 which are
analytically irreducible, we obtain that an ideal satisfying (D1) , in an
affine domain over an algebraically closed field of characteristic 0 < P¥#2,

is a prestable ideal.
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