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FLAT IDEALS II

%
Sarah Glaz and Wolmer V. Vasconcelos

This paper is concerned with the relationships that
hold between finiteness and divisibility properties of
flat ideals of integral domains. Brought out often is
the role of the arithmetic of a ring in the finiteness of
its flat ideals.

INTRODUCTION

The sources for the problems discussed here arise in
two areas: i) The divisibility problem for a pair
{x,I}, where x is an element of the field of quotients of
an integral domain A and I is a flat ideal - that is,
when is x an element of I; ii) Flat ideals in polyno-
mial rings resemble certain prime ideals encountered in
the construction of Rees' rings - an useful device in the
study of integral closure of Noetherian rings. In the
first two sections we naively start our discussion of
when a flat ideal I of an integral domain A is a direct
limit of invertible ideals by looking at the ideal I.I_l.

It often results that I is a directed union of finitely
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2 GLAZ - VASCONCELOS

generated divisorial ideals. More interesting however

is that whenever I.T passes a certain threshold then
it must equal A - that is, I must be invertible. This
will always be the case in Krull domains. Section 3 dis-
cusses a class of rings--H-domains--where the analysis of
I. I is more easily dealt with. They show a resemblance
to Krull domains in that divisibility questions can be
usually determined at the primes associated to principal
ideals. In section 4 the analysis of the finiteness of
flat ideals in polynomial rings, in terms of the coeffi-
cient ideal, is carried out. The last section contains

a number of unresolved questions where the elusive com-

Pleteness of flat ideals plays a significant role.

1. FINITENESS

In the sequel A will denote an integral domain with
field of quotients K. A-submodules of K will be referred
to as ideals. Often we shall leave to the reader two
tasks: i) The translation of the results where the
timely presence of regular elements suffice, and ii) not
to be confused by the possible ambiguity of usage of the
word ideal here.

We recall that an ideal I of A is said to be
fractional if there is 0 #d € A with dIe= A. For a
fractional ideal I, HomA(I,A) may be identified with
™ s x ek | xI = A}, I will be called reflexive or

divisorial if (117! - .

(1.1) PROPOSITION. Let I be a flat ideal of A. Iis

—— e Ce——  c—— —

faithfully flat if and only if I is locally finitely
generated.
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Proof. Follows directly from [5], since a flat ideal of
a local ring A,m is principal if and only if I # mI -

the version of Nakayama's lemma valid here.

The simplest case of finiteness of flat ideals occurs
when I is projective. They are then shown to be inverti-

1

ble, that is, satisfy the equation I.I = = A, from which

the finiteness ensues. More generally,

(1.2) PROPOSITION. Let I be a flat ideal and let J be a

nonzero ideal such that I.J = L is finitely generated.

Then I is finitely generated.

Proof. Let bl,...,bn be generators for L. We may as-
sume that b, = a.,c, with a, €I, c¢. € J. We claim

i i"i i i
that I = (al,...,an). It suffices to assume A local
with maximal ideal m. If a;, eml for all a's we would

have L = mL, contradicting Nakayama's lemma.

2. SEMI-DIVISORIAL IDEALS

In this section we consider more robust estimates of
I.T0 or rather unsuitable sizes for this ideal. These
lead to partial answers to the divisibility question and
various finiteness statements.

Let J = (al,...,an) be a finitely generated ideal
of A and consider the exact sequence

¢
0—>a—3aA"s>sc—>0

where ¢J(x) = (xal, cees xan), C = Coker(¢J).
Let E be a torsionfree A-module and let a be an
element of E® AK'

(2.1) PROPOSITION. The following conditions are equiva-
lent:
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(1) If Jae=E then a € E.
(2) ¢ ®AE is a torsionfree A-module.
Proof. Suppose C ® E is torsionfree and let a€K® E
with a,a € E. Let d be a nonzero element of A such
that da € E. Let c¢ be the class of (ala, cees ana)
in C®E; then dc =0 and a € E.

Conversely, if the class c¢ of (bl, ey bn) in
C® E is a torsion element, there are ‘nonzero elements
beA, » e E, such that bib = ar for all i. Then

Jae=E, a = r/b, and we conclude that c is trivial.

(2.2) DEFINITION. A torsionfree A-module E is semi-
divisorial if the equivalent conditions of (2.1) hold for
all ideals J such that J T = A.

(2.3) COROLLARY. The following modules are semi-divi-

sorial:

(a) I = divisorial ideal of A.

(b) E = flat module.

(¢) G =F®E, where F is a flat module and E is semi-
divisorial.

(d) H = direct limit of semi-divisorial modules.

As an application of these ideas, let A be a Krull
domain [1] and let I be a flat fractional ideal.

(2.4) THEOREM. I is finitely generated.

Proof. We must show that I is invertible. Since

is a divisorial ideal, 1.1t (=I® I-l) is semi-divi-
sorial by (2.3c).
-1.-1 -1.-1
Note that (I.I ™) ~ = A: If x € (I.I 7) ~, then
xI.I-le A means that xI-lcz I-l. Since a Krull domain

is completely integrally closed, x € A. But in a Krull
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. -1 -1
domain any ideal L, viz. L = I.I 7, such that L = = A

contains a finitely generated subideal J with J-l = A.
But J.l= L = I.I_l leads by the semi-divisoriality of

L to 1€L and I is invertible as desired.

(2.5) COROLLARY. Let A be a Krull domain and let E be a
flat A-lattice. Then E is finitely generated.

Proof. Just notice that if E is a lattice of rank r,
then A?E, the rth exterior power of E, is a flat frac-

tional ideal of A. The conclusion follows as in [5].

Again let A be a Krull domain and let I be a submodule
of K.

(2.6) PROPOSITION. I is semi-divisorial if and only if

it is a directed union of divisorial ideals.
Proof. Let M,N be subideals of I. Then

M. 0,0 (™ e 1
Since ((M,I‘I).(l*i,N)-l)-1 = A, as above we get a finitely
generated ideal J = (M,N).(M,N)—l, J_l = A, We con-

clude then ((M,N) 1) 1e 1,

REMARK. For a Krull domain it is easily verified that a
submodule L of K is semi-divisorial if and only if
L = B LP’ where P runs over the height one primes of A.
Thus® two semi-divisorial ideals in a Krull domain are
equal if they agree at the height one localizations. It
is then clear that if B is a semi-divisorial overring of
a Krull domain A, then B is a Krull domain. In particu-
lar, an ideal transform of a Krull domain is semi-divi-
sorial and hence a Krull domain.

Observe also that (2.6) displays a semi-divisorial

extension as a ring of quotients with‘pespect to a
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topologizing set of ideals [1].

3. H-DOMAINS

The usefulness of the ideal I.I * in the proof of
(2.4) suggests that we look more closely at the ideals
J such that J ' = A. For Krull domains or Noetherian
rings these are quite large and contain finitely gener-
ated ideals with the same property. We shall refer to
such rings as H-domains. For a fuller discussion of
these rings let us bring in the set P(A) of primes
associated to principal ideals-that is, the primes mini-

mal over an ideal (a):b.

(3.1) PROPOSITION. Let I be a finitely generated ideal
of A, Then It =4 if and only if I is not contained

in any P € P(A).

Proof. Immediate [7].
We consider now several statements on H-domains.

(3.2a) A is an H-domain if we restrict I in the defini-
tion to prime ideals.

Proof. Let C = {I | Il = A and fails to contain a fi-
nitely generated ideal J, gl =4a) cis clearly in-
ductive. Let I be a maximal element in C. We claim

that I is prime. Suppose X,y £ I and xy € I. Let J =

(I,x) and L = (I,y). Then gt - A; let J,'=
(x,al,:i.,am.)-l and L0 = (y,bl,...,bn) with ai’bj el
and Jo = L0 = A. But then Jo.Loe I is a finitely

generated ideal that contradicts the choice of I.

(3.2b) A is an H-domain if and only if P(A) is compact
as a subset of Spec(A) and pt # A for each P € P(A).
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(3.2¢) A[LT] is an H-domain along with A.
Proof. Let P be a prime ideal of A[T] such that P T
A[T]. Let I be the ideal of A generated by the coeffi-

cients of the polynomials in P. If 1t # A we would
have I 1p = A[T], contradicting Pl = ALT]. Thus I°
A and we can find a polynomial f in P such that the

1

ideal J = c(f) = ideal of A generated by the coefficents
of fis such that J ' =A. If O#aePnA, then a,f
form a regular sequence of two elements in P and the
ideal (a,f) works. If PNA =0 then P=Qn A[T],
where Q is a prime ideal of K[T]. In K[T] let Ql""’Qn
be the other prime ideals containing the element f. Let
f = upe.pil...pﬁn be a primary decomposition of £, u =
unit of K[T]. Write Qi n A[T] = Pi; it is clear that
the P's are the only prime ideals of A[T] of height one
that contain f. Let now g € Pil. .o Pﬁn \P. We claim
that P° = (f):g. Indeed, if F € P°there is a nonzero
constant r such that rFg € (f). Since also f£fFg € (f)
we get gF € (f), since (f) is semi-divisorial! It is

also clear that P° 1 g (f):g. Thus gf-lPe-l= PL and

gt 1%L & arT].

What are the H-domains? Clearly Noetherian rings, and
as remarked earlier, Krull domains. We shall consider

other examples soon, but before we point out

(3.2d) A completely integrally closed H-domain is a Krull
domain.

Proof. We use the following characterization of Krull
domains: (Kl) For P e P(a), AP is a discrete valuation
domain, and (K2) each nonzero element of A is contained

in only finitely many elements of P(A).
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(1) To prove (Kl), let P € P(A) and let I be a nonzero
ideal I=P. If I.I *e P we would have (r.r™hH1s
P_l # A. This contradicts the complete closure hypothe-
sis. Thus I is invertible at P.

(2) First note that the directed union I = UI, of divi-

sorial ideals in A is a divisorial ideal: Indeed, if

X € (I'l)‘l, xIle A and thus x(I.I™Y) = I. Since
(I.I_l)—1 = A, by the H-condition we have a finitely gen-
erated ideal J = I.I_l, Jl=A. Ths zie I, for

some &. Taking inverses twice we get x € Ia, =T,
Before proving (K2) we record the following useful

observation:

(3.2e) If I is a semi-divisorial module and P(A) is

compact, then I = PQP( A) IP.

(3) Let us now show (K2). Let a be an element of A and
denote by {P a} the subset of primes in P(A) that con-
tain a. For each such P let n = ordP(a). Form the di-

rected set of divisorial ideals

n. .-l

n
I =a(Pl,.. P
Gysennsl o a

and denote its union by I. Let x € I ~; for each P as

r)

above we have xa(Pn)-lc A and consequently x € AP
Thus, since A = nAP, P € P(A), we get x € A. Since
I is a divisorial ideal we have I = A. The desired

conclusion now follows easily.

EXAMPLE. A locally Noetherian domain A with Noetherian
prime spectrum Spec(A) is an H-domain.

Proof. According to (3.2b) it suffices to show that if
P € P(A) then pL # A. Suppose P € P(A), Pl =a

and is maximal with respect to these properties. Then P
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is maximal in P(A). Let I be a finitely generated
ideal with radical P; let J be a finitely generated
ideal such that Jp = P,. Put L =1 +J. Since 1L
A, by the maximality of P we can write

Le=(a):be P
We claim (a):b = P, that will contradict Pl = A since
b/a € ((a):b)-l. If x € P, there is t ¢ P so that
tx € (a):b. Thus ((a):b,t)x = (a):b. But ((a):b,t)
is not contained in any element of P(A) and thus get from
the compactness of P(A) a finitely generated ideal N,
N = ((a):b,t), avoiding all elements of P(A). Thus

R A and since (a):b is divisorial, x € (a):b.

We now begin a discussion of finiteness of flat ideals
in H-domains. To help in focusing we consider special

cases of the following question.

CONJECTURE. A faithfully flat ideal in an H-domain is

finitely generated.
Under this light a closer analysis of (2.4) is

(3.3) PROPOSITION. Let A be a domain with the property
that each nonzero element is contained in only finitely

many elements of P(A). Let I be a flat ideal that is

finitely generated at each P € P(A). Then I is finitely

generated.

Proof. It is clear that P(A) is compact. It suffices
then to show that I.I_l is not contained in any element
of P(A). Let Pis...,P  Dbe the primes of P(A) that
contain I, let a be an element of I generating I at
1200 ’Pm’Ql’ . e ’Q.n be the
elements of P(A) containing (a). Let be I\ uQ; . Then

these primes, and let P
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I.(a,b)—l== A, since it is clear that the inclusion holds
at each localization AP, P € P(A). Thus (a,b)‘-l = I“1

and I.I T is not contained in any such prime.

(3.4) PROPOSITION. Let I be a faithfully flat prime

ideal. Then I is finitely generated.

Proof. Let J = I.I-l; we must show that J is not con-
tained in any P € P(A). Assume .1l e I; then, since
I is locally finitely generated (actually only need that
it be finitely generated at the primes of P(A)), we con-
clude I L = A. But then I = A, against the hypothesis.
Suppose J is contained in a larger prime Q of P(aA). Lo-
calize at Q; then QQ
{a,b}, where a is the generator of the prime ideal I
lies in P(AQ),

will contain a regular sequence

and b is an element of Q \NI. Since Q

Q

again we get a contradiction.

REMARK. To prove the conjecture sufficed to show that
faithfully flat ideals of H-domains are divisorial: If
I.T = P e P(A) then (1.IH)™'= P'@ A. Thus for

x e PT\ A we have xI.I Y= A and I re 11 or
X(I-l)-l‘= (I—l)—l. Since I =,(I_l)_l, and I is faith-

fully flat, x € A, a contradiction.

4. 'CONTENT

Let A be a ring and denote by B the polynomial ring
in the set T = {Tl,... ,Tn} of independent indeterminates
over A. We write B = A[T]. Given an ideal I of B con-
siderable information is contained in the ideal c(I) gen-
erated by the coefficients of the polynomials in I3 c(I)
will be called the A-content of I. Flat ideals of B are

particularly amenable to this kind of examination. The
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analysis of the content ideal is also useful in several
questions occurring in the theory of stably coherent do-
mains (i.e. A[T] is coherent). For instance, if J =
(al,...,an) is a finitely generated ideal of A, form the
ring homomorphism
ALT ... oT 1 —Ala;t,...,a tleo ALt]

that sends Ti———ait. A[alt,...,ant] is the so-called
Rees's ring of J and its finiteness properties are quite
useful about obtaining information on integral closure
properties of J. A key to this is the nature of the ker-
nel of the homomorphism, especially whether it is finite-
ly generated when A[T] is coherent. More generally,
there is the question of extending to coherent schemes
certain results on the cohomology groups of projective
morphisms [2,Th 2.2.1]. Although we shall not elaborate
upon here, there are general features shared by these
kernels and flat B-ideals. )

We begin by disposiﬂg of the simplest case of flat

ideals.

(4.1) PROPOSITION. Let I be a projective ideal of B.
Then I is finitely generated if and only if c(I) is fi-

nitely generated.

Proof. Here A does not have to be a domain. Assume I
projective and let L be the trace ideal of I, that is,

L = Zf(I), where f runs over HomB(I,B). Since L is a
pure ideal of B [6], we have L = Lo[T], where L0 =LNA
is a pure ideal of A, Since I = L.I = LO'I’ we have

J = L..J, where J is the content ideal of I. By the so-

0

called determinantal trick, there is e € L0 so that

(1-e)J = 0. But (1-e)J = 0 implies (1-e)I = 0 and thus

3
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(1-e)L =0 = (l—e)L0 and Lo = (e). Thus L is finitely

generated, and by [6], I is also such.

The similar statement for flat ideals of B is not
always true as pointed out in [3]. It is known [5] that
for the case of one indeterminate flat ideals of finite
content are locally finitely generated and, if A is a do-
main, they are finitely generated. Since the hypothesis
on the A-content of a flat B-ideal is not amenable to
induction on the number of indeterminates we give an ar-

gument to extend [5] to any number of indeterminates.

(4.2) THEOREM. Let I be a flat ideal of B. If c(I) is

— — ——— ———— ——

finitely generated, then I is locally finitely generated.

If moreover A is a domain, then I is finitely generated.

Proof. According to the appropriate version of Nakayama's
lemma, it suffices to show that for a maximal ideal P of
B with IP #0 I #P.I holds. We may assume that A is
a local ring of maximal ideal m. Construct a finitely
generated (free) extension C of A such that there is a
prime ideal Q of C[T] 1lying above P, with

Q= (m', Tl-cl,...,Tn—cn)
where m' is a maximal ideal of C lying above m. Push I
over to C[T] and consider the equation CI = Q.I. Change
the notation back to B and consider an A-automorphism of
B defined by Ti —oTi+ci. We may assume that we have
I=P.I, P=(mT,...,T ).

Let now J = ¢(I) and let h be a polynomial in I such
that c(h) = J. Reduce the coefficients of all polyno-
mials modulo mJ. If degree(h) =s and I = P.I = p2.1=
eee = (m + (Tl,...,Tn))r.I we would have-where '#' de-

notes reduction modulo mJ- h* € (Tl,...,Tn)r.I* and would
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GLAZ - VASCONCELOS 13

get a contradiction when »r > s.

The remainder of the proof proceeds as in [5].

The following is an application to chain conditions on
A. It answers, in the case of a domain, a question of
C. Faith.

(4.3) COROLLARY. Let A be a domain with the property

that projective ideals satisfy the ascending chain con-

dition. Then A[T] inherits this property.

Proof. Here T may stand for a single indeterminate. Let
Il¢= 12 = 13 = ... be an ascending chain of invertible

ideals of A[T]. We may assume that the I's are not con-
tained in (T). Then the ideal I( o)

constant terms of the poly'nomlals in I. is a projective

generated by the

ideal of A, being isomorphic to I, /TIl Since the chain

(o) ;o) g°)=... is stationary UI(O) is a finitely
genera‘ted ideal. But if fl" .o ’fm are polynomials in

(o)

I-= UIi such that their constant terms generate UI
it is clear that the contents of these polynomials gene-
rate the content of the flat ideal I. By the preceding

I is finitely generated and the statement follows.

(4.4) PROPOSITION. Let I be a flat :Ldeal of A[T] that

contains an element f such that c(f) = A. Then I is

finitely generated.
Proof. It suffices to show that the ideal I.I—l con-

tains a nonzero constant r: then {r,f} is a regular se-
quence and (2.1) applies.
- ¢ = ofe1) (ep)
Let IK-IK_Ql n...nQn

presentation of IK in K[T] and put

be the primary re-
Péel)‘ A[T]nQ(el)
It follows from the presence of £ in I that the primary
representation of I is given by I = Piél) n... nPI(len)‘
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(e) (etl)

n
= = \
Put P =P, e = e U P UP

1
Then G =g + Trf2, r > deg(g), is an element such as

, and pick g €P

g with c(G)_l = A besides. As for I, we conclude that
(G) has a primary decomposition (G) = P(e)n Midl)n...n

Méds), where none of the Pi's is among the Mj's. Now

pick F enugdj)
any h € I, G and a nonzero constant ¢, send F¢ lh  into
A[T]--a divisorial ideal. Thus re e 10 and it is
clear that I.I . ¢ P.

Consider (I-l)K = (I_l)K; since I ' o A[T]1,
(I-l)K = (til...t;m), where the t;'s are prime elements
of K[T] and ¢, < 0. The argument above shows that if

N P; then FG-lI c A[T], since given

tl corresponds to P, then e + ¢, = 0. It follows now
that (I.I-l)K = K[T], and I.I = contains the nonzero

constant as desired.

This result will be useful in the study of the 'new'
flat ideals of A[T]. By this we mean a flat ideal such
that A[T]/I is A-torsionfree. These are the ideals less
likely to be isomorphic to extended ideals from A. Let
I be one such finitely generated ideal. Then I is inver-
tible and we have an equation I.L = (f), where f is a
nonzero element of A[T]. Let J be ¢(I); then, since
golier and LI eAT], weget JLI=I. In
the equation above we then have (f) = J-l(f) and thus

J—l = A, We use this remark in the sequel.

(4.5) PROPOSITION. Let I be a faithfully flat ideal of
A[T]. If A is a local ring then I is finitely generated.

Proof. We may assume that I is not contained in (T).
Note that I/TI is faithfully flat over A. This implies
that the ideal generated by the constant terms of poly-
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nomials in I is principal, generated by the constant term
of, say, f. But then it is clear that c(f) = ¢(I) and
(4.2) applies.

(4.6) THEOREM. Let I be a faithfully flat ideal of A[TI.
Assume that A[T]/I is A-torsionfree. Then I is finitely

generated in the following cases: i) A is an H-domain;

ii) A is a coherent ring.

Proof. When (i) applies, the remark above says that c(I)
is not contained in any P € P(A). There is then an ele-
ment £ of content c(f) such that c(f)"l = A,

In case of (ii), for each prime ideal m of A there
is a finite set of elements CIERERTLN in c(I) such that

((al,...,an)-l) = Am. There is then a neighborhood of

m
m in Spec(A) where this equation holds. From the compact-
ness of Spec(A) we get then a finite set of elements in

c(I) so that the ideal J they generate is such that JLa.

In both cases one finishes the proof with (4.4).

(4.7) COROLLARY. Let A be an integrally closed coherent

A[T]/T is torsionfree. Then I is finitely generated.

Proof. Let g be a nonzero element of I of least degree.
Note c(g)-lg =I. But (c‘:(g).c(g)"l)—l = A and thus the
finitely generated ideal c(c(g)_lg) is not contained in
any P € P(A). By (4.4) I is finitely generated.

5. COMPLETENESS

Let A be an integrally closed domain and let I be an
ideal of A. The completion of I is the ideal, I' = ﬂIVa,
where the intersection is taken over all valuation rings
between A and K [8].
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16 GLAZ - VASCONCELOS

CONJECTURE. Every flat ideal of an integrally closed do-

main is complete.

An affirmative answer would provide a valuative test
of divisibility. Unfortunately, other than the few cases
of [5] not much seems known. The following result allows
concentrating on a rather large rings--e.g., the integral

closure B of A in the algebraic closure of K.

(5.1) PROPOSITION. Let A be an integrally closed domain,

— — —— ———— —

integral extension of A. Then I = IBA A.

Proof. Consider the sequence
0—>A—>B—>B/A—0

Note that B/A is a torsionfree A-module. Tensor this se-
quence by A/I to get the exact sequence

Tor?_(A/I,B/A) —> A/I —> B/IB
Since B/A embeds in a vector space V over K, we get
Torﬁ(A/I,B/A) = Torg(A/I,C) = 0, where C is the cokernel
of the embedding.

For a simple application let I be an idempotent flat
ideal of the integrally closed domain A. It would be a
consequence of the completeness that such ideals are ra-
dical ideals, since idempotent ideals in valuation do-
mains are prime. This fact can however be resolved when
A is of characteristic 2. It was shown in [5] that 12 is
generated by the squares of the elements in I (the similar

fact for higher powers is still unasnwered). Let then x

be an element of A with x2e1 = 12, We then have an
equation x2 = Er.a?, r. € A, a. € I. Pass now to
ii i i

B (=integral closure of A in the algebraic closure of K)

where we may write r, = si. Using that A has character-
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istic 2, we conclude x € IB. Now use (5.1).
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