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         Abstract. This article explores nine zero divisor controlling  

         conditions, their impact on the domain-like behavior of rings  

         with zero divisors, their interrelations, and their applications  

         to the extension of domain properties to rings with zero divisors.  

 

 

1. INTRODUCTION 

 

 Commutative algebraists often consider the following question: given a 

property P that holds for a domain, how best can one extend P to rings with zero 

divisors? The answer may sometimes depend completely on the particular 

property. But more often, especially when P involves all the entities of a ring R, 

where by entities we mean  elements or ideals or finitely generated ideals, etc., 

one may take one of the following three approaches: 

 

a. Require that all entities of R satisfy P, and place no other restrictions on R. 

 

b. Require that all regular entities of R satisfy P. 

 

c. Require that all entities of R satisfy P, and place some conditions on R to               

control the behavior of its zero divisors, that is,  to make R share certain                 

characteristics of a domain. 

 

 Each of these approaches have been used for various properties P with 

certain degrees of success. Which approach one uses depends on personal taste, 

and on the desired properties of the generalization. For example, if one wishes to 
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have some control and knowledge of the behavior of  non regular entities of  the  

ring, one will try to avoid approach (b), which puts no restrictions on the non 

regular entities of the ring. Approach (a) is not always feasible, as certain 

conditions cannot be imposed on non regular entities without additional 

hypotheses.  

 The aim of this article is to consider a large number of zero divisor 

controlling conditions found in the literature. Some of these conditions were used 

in generalizing a domain property to  rings with zero divisors using approach (c); 

other of these conditions have interesting and deep implications on the nature of 

the ring itself and were investigated in their own right. In each case, we will 

explore briefly the origin of the condition and its use for generalizations of 

domain properties to a ring R with zero divisors. We will point out the impact of 

each condition on sets of zero divisors, localizations by prime ideals, total ring of 

quotients, or sets of minimal prime ideals of the ring, all of which determine the 

closeness of the ring behavior to that of a domain. To the extent that it is 

possible, we will point out the relations between the various conditions, and 

provide examples and counterexamples. 

 

 Throughout the paper, all rings are commutative with identity. We will 

use the following notation and basic notions regarding a ring R:  

 

 Z(R) = {a , R | ax = 0 for some 0 … x , R} denotes the set of zero 

divisors of R.  

 Nil(R) = {a , R | a
n
 = 0 for some positive integer n} denotes the set of 

nilpotent elements of R.  

 Min(R) = {P, spec R | P is a minimal prime ideal of R} denotes the set 

of minimal primes of R.  

 Q(R) denotes the total ring of quotients of R, that is, the localization of 

R by the set of all its non zero divisors.  

 A non zero divisor of R will be called a regular element, and an ideal of 

R which contains a regular element will be called a regular ideal. 

 

 The oldest and most extensively studied zero divisor controlling 

condition is that which asks R to be a reduced ring, that is, a ring with no nonzero 

nilpotent elements. The literature pertaining to the nature of reduced rings is too 

vast to mention. For that reason, we will  consider this condition only when it 

appears in the context of the other zero divisor controlling conditions considered 

in this paper. We will explore the following zero divisor controlling conditions 

on a ring R. Several other, less used conditions will show up throughout the 

exposition. 

 

1. R is locally a domain.  
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2. Q(R) is a Von Neumann regular ring. 

3. Min(R) is a compact subspace of Spec(R) in the Zariski topology. 

4. R is a PP ring (sometimes called a weak Baer ring). 

5. R is a ring with few zero divisors. 

6. R is an additively regular ring.  

7. R is a Marot ring. 

8. R is a ZD ring. 

9. Every zero divisor of R is nilpotent.  

 

 The interrelations between these nine properties makes it hard to separate 

the exposition into independent sections. Nevertheless, for the sake of 

readability, we divided the conditions into two groups. Section 2 considers 

conditions 1 - 4, and Section 3 considers conditions 5 - 9. Thus, Sections 2 and 3 

explore the   conditions themselves and the relations between them. Section 4 is 

devoted to a representative sample of applications of the zero divisor controlling 

conditions to the extension of domain properties to rings with zero divisors. We 

cover briefly the extended notions of valuation, Prufer and Krull rings; finite 

conductor, quasi- coherent and G-GCD rings; and Going Down and related rings. 

Interested readers are provided with a bibliography for further reading on each 

topic. 

  

 

 

2. MIN(R) AND LOCALIZATIONS OF R 

 

We first consider conditions under which a commutative ring R is locally 

a domain. 

 

THEOREM 2.1 [G1], [M1], [M2] Let R be a ring. The following conditions are 
equivalent: 
1. RP is a domain for every prime ideal P of R. 
2. Rm is a domain for every maximal ideal m of R. 
3. Every principal ideal of R is flat. 
4. R is reduced and every prime ideal of R contains a unique minimal prime              
ideal. 
5. R is reduced and every maximal ideal m of R contains a unique minimal prime      
ideal P. 
 In this case, P = {r , R | there is a u , R - m such that ur = 0} and 
     RP = Q(Rm), the quotient field of Rm. 
 

 This theorem appears with somewhat different proofs in Matlis [M2], 

and in Glaz [G1]. (4) does not appear in either of these sources, but appears in 
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[M1], along with a few other of the conditions of this theorem, proved under the 

restriction that Q(R) is Von Neumann regular. As this assumption is  

unnecessary,  we included (4) here. Rings satisfying that every principal ideal is 

flat are sometimes called PF (or PIF) rings. 

 

EXAMPLE 2.2 The following examples are taken from several sources: [E], 

[G1], [M1], [M2], [Q1], [Q2], and [V]: 

 

1. Coherent local rings satisfying that every principal ideal has finite projective      

dimension are locally domains. 

 

2. Coherent regular rings, that is, coherent rings satisfying that every finitely 

generated ideal has finite projective dimension, are locally domains.  In 

particular, this class of rings includes all coherent rings R of finite weak global 

dimension. It is worthwhile  mentioning that the class of coherent rings of finite 

weak global dimension includes the classical non Noetherian rings such as Von 

Neumann regular, semihereditary, and hereditary rings. Von Neumann regular 

rings are rings R satisfying that for every a , R, there is a b , R such that ab
2
 = a. 

Equivalently, R is Von Neumann regular iff  w.gl.dim R = 0. Such rings are 

automatically coherent. Semihereditary rings  are rings in which every finitely 

generated ideal is projective. Equivalently, R is  semihereditary iff R is coherent 

and w.gl.dim R # 1. Hereditary rings are rings with gl.dim R = 1. They are 

always coherent. 

 

3. Rings of global dimension 2 are locally domains. 

 

4. A ring R has w.gl.dim R # 1 iff RP is a valuation domain for every prime ideal    

P of R. Therefore rings R with w.gl.dim R # 1 are always locally domains, 

regardless of their coherence status.  

 

 We next consider the condition: Min(R) is compact in the induced 

Zariski topology from Spec(R). If R is Noetherian or a domain Min(R) is finite 

and therefore compact. In general Min(R) does not have to inherit the 

compactness of Spec(R). For a reduced ring one has a way of testing the 

minimality of a prime ideal P.   

 

PROPOSITION 2.3 Let R be a reduced ring, and let P be a prime ideal of R. 
Then P is a minimal prime ideal iff for all x , P, (0 : x) ç P.  
 

 As a consequence of this proposition for a reduced ring R, Min(R) is a 

Hausdorff space in the induced Zariski topology, but it still might not inherit the 

compactness of Spec(R). 
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 We exhibit a number of conditions under which Min(R) is indeed 

compact when R is a reduced ring. 

 

THEOREM 2.4  [G1], [M2] Let R be a reduced ring, and let S be a ring 
extension of R. Then: 
1. If every prime ideal of S contracts to a minimal prime ideal of R, then Min(R)       
is compact. 
2. If S is Von Neumann regular and flat over R, then every prime ideal of S               
contracts to a minimal prime ideal of R. Hence, in this case, Min(R) is                  
compact. 
 

COROLLARY 2.5 [G1], [M2], [Q1] Let R be a reduced ring with Q(R), the total 
ring of quotients of R, Von Neumann regular. Then Min(R) is compact. 
 

EXAMPLE 2.6 Quentel [Q1] provides an example of a reduced ring with 

compact minimal spectrum, but not Von Neumann regular total ring of quotients. 

The version presented below is from [G1]: 

 

 Let K be a countable algebraically closed field, and let I be an infinite 

set. Denote by K
I
 the set of all set maps from I to K. For a map f , K

I
, let  

supp f = {a , I | f(a) … 0}, and let cosupp f = {a , I | f(a) = 0}.  A K subalgebra R 

of K
I
 is called a T algebra if it satisfies the following two conditions: 

(i) R is countable and contains all the constant maps. 

(ii) Every f , R which is not constant satisfies cosupp f … N. 
 The construction described in detail in [G1], shows the 

existence of a T algebra W, , and for every g , W there exist g1 

and g2 , W such that cosupp g = supp g1 c supp g2. Such an algebra W is a 

reduced ring equal to its own total ring of quotients, it has compact Min(W), but 

it is not Von Neumann regular. 

 

 Before presenting the exact connection between the compactness of  

Min(R), the Von Neumann regularity of Q(R), and the locally domain property of 

R, we will present several other conditions under which Min(R) is compact or 

Q(R) is Von Neumann regular when R is a reduced ring. 

 

THEOREM 2.7 [G1], [M2], [O], [Q1] Let R be a reduced ring. The following 
conditions are equivalent: 
1. Min(R) is compact. 
2. For every element b , R, there exists a finitely generated ideal J d (0:b) such         
that (0:bR + J) = 0. 

W K IxN N
⊂  
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3. ( RP , where P runs over Min(R), is a flat R module. 
4. E(R), the injective envelope of R, is a flat R module. 
5. M(R), the maximal flat epimorphic extension of R, is Von Neumann regular. 
 
 Theorem 2.7  collects a number of conditions, scattered throughout the 

mentioned sources, under which Min(R) is compact for a reduced ring R. To 

clarify the statements of this theorem, we remind the reader of the definitions of 

E(R) and M(R) mentioned in (4) and (5). 

 

 Let R be a ring and let M be an R module. An R module E is called an 

essential extension of M, if M d E , and for any nonzero submodule EN of E we 

have EN 1 M … 0. Every R module admits an essential injective extension E(M), 

which is unique up to isomorphism. This extension is called the injective 

envelope of M.  If E(M) is the injective envelope of M, there is no injective 

proper submodule between M and E(M). Matlis [M2] approaches both the 

compactness of Min(R) and the Von Neumann regularity of Q(R) via the 

exploration of E(R). 

 

 Let R be a ring. Denote by M(R), the maximal flat epimorphic 

extension of R, the unique (up to isomorphism) ring satisfying: 

1. R d M(R), and M(R) is a flat epimorphism of R. 

2. If R d S and S is a flat epimorphism of R, then S d M(R). 

The approach to the compactness of Min(R) and to the Von Neumann regularity 

of Q(R) via the investigation of M(R) is due to Quentel [Q1] and Olivier [O],  

[O1].   

 

EXAMPLES 2.8 The above theorem guarantees that if R is a reduced coherent 

ring, then Min(R) is compact. 

 

 The next theorem collects the conditions under which the total ring of 

quotients of a reduced ring is Von Neumann regular.   

 

THEOREM 2.9 [G1], [H], [M2], [O], [Q1] Let R be a reduced ring. The 
following conditions are equivalent: 
1. Q(R) is a Von Neumann regular ring. 
2. If I is an ideal of R contained in the union of the minimal prime ideals of R,          
then I is contained in one of them. 
3. If J is a finitely generated ideal of R, then there exists a b , J and an a , (0:J)       
such that a + b is a regular element of R. 
4. If b , R, then there exists a , (0:b) such that (0: aR+bR) = 0.   
5. Q(R) = M(R). 
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6. Min(R) is compact and if a finitely generated ideal is contained in the union of       
the minimal prime ideals of R, then it is contained in one of them. 
7. Min(R) is compact and each finitely generated ideal consisting entirely of zero       
divisors has a nonzero annihilator. 
 

EXAMPLE 2.10 The above theorem guarantees that if R is a coherent regular 

ring, then Q(R) is Von Neumann regular. 

 

 At this stage we are ready to present the main result connecting the zero 

divisor controlling conditions presented in this section. 

 

 A ring R is called a PP ring (or a weak Baer ring) if every principal 

ideal of R is projective.  

 

THEOREM 2.11 [G1] Let R be a ring. The following conditions are equivalent: 
1. Min(R) is compact and every principal ideal of R is flat. 
2. R is a PP ring. 
3. Q(R) is Von Neumann regular and every principal ideal of R is flat. 
 

 The ideas for the proof of this theorem also appear in [Q1] and [V], 

excellent sources, where some errors crept into the approach to this particular 

result. A correct version appears in [G1].  

 

EXAMPLES 2.12 Two examples [G1] show that the two conditions in (1), and 

the two conditions in (3) of Theorem 2.11, are independent of each other.   

 

1. [V] Let M be a countable direct sum of copies of Z/2Z with addition and       

multiplication defined componentwise. Let R = Z r M and define       

multiplication as follows: for m, n , M and a, b , Z  

(a,m)(b,n) = (ab, an + bm + mn). Every principal ideal of R is flat, but Min(R) is 

not compact. 

 

2. [M2] Let R be a Noetherian, local, reduced ring which is not a domain. Then       

Min(R) is compact (actually finite), and Q(R) is a finite direct sum of the 

domains 

RP, where P runs over Min(R). Therefore Q(R) is Von Neumann regular, but R is 

not a domain, so not every principal ideal of R is flat. 

 

 PP rings appear in the literature in expected and unexpected places. From 

Theorem 2.11, we know that such rings are locally domains and possess Von 

Neumann regular total ring of quotients. Another way of looking at such a ring is 
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observing that a principal ideal aR is projective iff (0:a) is generated by an 

idempotent. Hence PP rings have plenty of idempotents. In fact, every element  

a , R can be expressed as a = aNe, where aN is a non zero divisor in R, and e is an 

idempotent in R. Another useful property of PP rings is: 

 

THEOREM 2.13 [G3] Let R be a PP ring, and let I be a finitely generated flat 
ideal of R. Then I is projective. 
 

 There are many PP rings, for example, all coherent regular rings are 

such, and in the application section, we will exhibit a class of not necessarily 

coherent PP rings, namely G-GCD rings. 

 

 

 

3. MAROT RINGS AND RELATED CONDITIONS 

  

 The notion of a ring with few zero divisors was introduced by Davis [D].  

A maximal ideal of zero is an ideal (necessarily prime) maximal with respect to 

not containing regular elements. The set of zero divisors of R,  Z(R) = c P, as P 

runs over all maximal ideals of zero of R. A ring R is said to have few zero 

divisors if it has only finitely many maximal ideals of zero, equivalently, Z(R) is 

a union of finitely many prime ideals.  

 

 Because of the one-to-one correspondence between the prime ideals of a 

ring R which contain no regular elements and the prime ideals of Q(R), it is 

evident that R has few zero divisors iff Q(R) is semilocal.  It follows that if R has 

few zero divisors, then any overring of R, that is, any ring between R and Q(R), 

has few zero divisors. In particular, any overring of a Noetherian ring has few 

zero divisors, providing a large family of examples of rings of this kind.   

 

 A ring R with total ring of quotients Q(R) is said to be additively 

regular if for each z , Q(R), there exists a u , R such that z + u is a regular 

element in Q(R). This condition appears first in [M1], and is named in [GH]. 

 

PROPOSITION 3.1 [GH] Let R be a ring. The following conditions are 
equivalent: 
1. R is additively regular. 
2. For each z , Q(R) and each regular element b of R, there exists a u , R such         
that z + bu is a regular element of Q(R). 
3. For each a , R and each regular element b of R, there exists a u , R such that  
    a + ub is regular in R. 
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 Additively regular rings have the following useful property: 

 

THEOREM 3.2 [M3] Let R be an additively regular ring. Let I1, ...,In and I be 
regular ideals of R. Denote by Reg(I) the set of regular elements of I. Then  
Reg(I) d c {Ii | 1# i # n}  iff I d c {Ii | 1# i # n}. 
 

THEOREM 3.3 [H1], [M1] Let R be a ring with total ring of quotients Q(R). If 
Q(R)/Nil(Q(R)) is Von Neumann regular, then R is additively regular. In 
particular, if Q(R) is Von Neumann regular, then R is additively regular. 
 

EXAMPLES 3.4  

 

1. [PS] It follows from Theorem 3.3 that any ring whose total ring of quotients 

has Krull dimension zero is additively regular. 

 

2. [M1] For any ring R, the polynomial ring in any number of variables is an 

additively regular ring. 

 

3. [GH] Let R = ( R" for an arbitrary set {"}. Then R is an additively regular 

ring iff R" is an additively regular ring for every ".   

 

 A ring R is called a Marot ring if every regular ideal can be generated 

by a set of regular elements. This property was defined by Marot [M1].   

 

THEOREM 3.5 [M1] Let R be a ring with total ring of quotients Q(R). The 
following conditions are equivalent: 
1. R is a Marot ring. 
2. Any two-generated ideal (a, b) with b regular can be generated by a finite set        
of regular elements. 
3. Every regular fractional ideal of R, that is, every regular R module contained       
in Q(R), can be generated by a set of regular elements. 

 

 The next result connects the zero divisor controlling conditions 

exhibited, so far, in this section. 

 

THEOREM 3.6 [D], [H], [M1] Let R be a ring. Consider the following 
conditions: 
1. R has few zero divisors. 
2. R is an additively regular ring. 
3. R is a Marot ring. 
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Then (1) | (2) | (3). 
 

 None of the implications of Theorem 3.6 is reversible, as the two 

examples below show.   

 

 

 

 

EXAMPLE 3.7 [H] There are additively regular rings which do not have few 

zero divisors.  

 

 Let {R"} be an infinite family of rings with few zero divisors. The 

product ring R = A R" is an additively regular ring which is not a ring with few 

zero divisors.  

 

EXAMPLE 3.8 [H], [M3] There are Marot rings which are not additively regular.  

 

 The following example was constructed by Matsuda [M3]. Let k be a 

finite field of characteristic p > 0. Let A be the subring of the polynomial ring 

k[x],  A = k[x
p
, x

p+1
, x

p+2
, ...].  Let {F0, F1, ... , Fn, G1, G2, ...} be a set of 

irreducible polynomials in k[x] such that: 

1. F0 = x, and F1 = 1 + x. 

2. deg Fi < 2p for all i. 

3. deg Gj $2p for all j. 

4. No two elements of the set are associated. 

5. Each irreducible element of k[x] is associated with an element of the set. 

 Let Kj = k[x]/(Gj). Then Kj is naturally an A module. Let M be the direct 

sum of the modules Kj, and let R = A " M be the trivial ring extension of A by 

M (sometimes called the idealization of M in A [H]), that is, R is the set A r M 

with addition defined componentwise and multiplication defined by  

(a, m)(aN, mN) = (aaN, amN + aNm) for all a, aN , A and m, mN , M.   Then R is a 

Marot ring for any p. For p = 2, for example, R is not an additively regular ring.  

 

 It is interesting to note that Matsuda’s exploration of the additively 

regular and Marot properties of trivial ring extensions also yielded an example of 

a ring satisfying the condition of Theorem 3.2, but which is not additively 

regular. 

 

EXAMPLE 3.9 [H], [M1], [SP] In addition to Noetherian rings, domains, and all 

additively regular rings, Marot rings can be generated in several other ways: 
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1. Any overring of a Marot ring is a Marot ring. 

 

2. R = R1 r ... r Rn is a Marot ring iff Ri is a Marot ring for every i.       

 

3. If every regular finitely generated ideal of a ring R is principal, then R is a 

Marot ring. 

     

 We now present a few other properties of Marot rings which makes this 

condition particularly useful when generalizing domain properties to rings with 

zero divisors. 

 

 An ideal P of a ring R is prime (respectively, primary) for its regular 

elements if whenever a and b are regular elements of R such that ab , P, then  

a , P or b , P (respectively, then a , P or b
n
 , P for some positive integer n).   

 

THEOREM 3.10 [H], [SP] Let R be a Marot ring. Then a regular ideal P of R is 
prime (respectively, primary) iff P is prime (respectively, primary) for its regular 
elements. 
 

 If a ring contains zero divisors, one may define invertibility of nonzero 

(fractional) ideals I of R, that is of R submodules of Q(R), in a way that 

resembles the definition for the case R is a domain.  Let  I
-1

 = {x , Q(R) | xI d R} 

denote the inverse of I. Then I is invertible if  II
-1

 = R.  The relation between 

invertibility, projectivity, and the property of being locally principal of an ideal 

can be summarized as follows: 

 

PROPOSITION 3.11 Let R be a ring and let I be an ideal of R. Then: 
1. If I is invertible, then I is  projective.   
2. If I is projective, then I is locally principal. 
3. If I is a finitely generated regular ideal, then I is invertible iff I is projective,      
iff I is locally principal. (In particular, if R is a domain, 3 holds for every      
nonzero finitely generated ideal I of R.) 
 

 A (fractional) ideal I of R is divisorial if (I
-1

)
-1

 = I.  

 Let I be a regular (fractional) ideal of R satisfying that dI d R for some 

regular element d , R. Then  I f (I
-1

)
-1 
f 1 {Ra | I f Ra}. Note that since I is 

regular, the ideals Ra are necessarily regular. Hence, if  I = 1 {Ra / I f Ra}, then 

I is divisorial. If I is generated by regular elements, say I = G Ra", then  

I
-1

 = 1 Ra"
-1

 . It follows that:   
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PROPOSITION 3.12 [AM1] Let R be a ring. Then (I
-1

)
-1

 = 1 {Ra | I f Ra} for 
every regular (fractional) ideal I of R satisfying dI d R for some regular element 
d , R iff for every regular (fractional) ideal I of R satisfying dI d R for some 
regular element d , R, there exists a (fractional) ideal J generated by regular 
elements and satisfying dJ d R for some regular element d , R, such that   
(I

-1
)
-1

 = (J
-1

)
-1

. 
 

COROLLARY 3.13 [AM1] Let R be a Marot ring, and let I be a regular 
(fractional) ideal of R satisfying dI d R for some regular element d , R. Then I  
satisfies (I

-1
)
-1

 = 1 {Ra | I f Ra}. 
 

 D. D. Anderson and Markanda provide an example in [AM1] that shows 

that if R is not a Marot ring, then the conclusion of Corollary 3.13 does not need 

to hold. 

 

 A related zero divisor controlling condition was defined by Evans [E1]. 

A ring R is called a ZD ring, if R/I is a ring with few zero divisors for every 

ideal I of R. Examples of ZD rings abound. Below is a sample found in the 

literature.  

 

EXAMPLES 3.14  

 

1.Noetherian rings are ZD rings.    

 

2. [E1] A ring is called Laskerian if every ideal is the intersection of a finite 

number of primary ideals. Laskerian rings are ZD rings. 

 

3. [E1] Localizations of ZD rings are ZD rings. 

 

4. [HO] A ring R is Noetherian iff the polynomial ring R[x] is a ZD ring. 

 

 It is interesting to note that if the power series ring R[[x]] is a ZD ring, R 

may not be Noetherian, but has Noetherian prime spectrum [GH]. 

 

 We conclude this section with a different zero divisor controlling 

condition defined by Dobbs [D1]. Let R be a ring. In general, Nil(R) f Z(R). On 

one end of the spectrum Nil(R) = 0, that is, R is reduced. The other extreme is to 

ask that every zero divisor of R be nilpotent, that is Nil(R) = Z(R). This condition 

is equivalent to 0 being a primary ideal of R.   

 

 Let R be a ring in which 0 is a primary ideal. Then R has a unique 

minimal prime ideal P, and RP = Q(R), the total ring of quotients of R. On the 
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other hand, if R is a ring with a unique prime ideal, then 0 is a primary ideal of R.  

This observation [D1] lead to a number of examples of rings in which 0 is a 

primary ideal.  

    

EXAMPLES 3.15 [D1] Examples of rings R satisfying Nil(R) = Z(R): 

 

1. Artinian local rings.  

 

2. Let A be a domain, and let a be a nonzero prime element of A. Then the ring  

R = A/(a
2
) has 0 primary ideal.     

 

 

 

 

4. APPLICATIONS 
 

 In this section, we will exhibit applications of the zero divisor controlling 

conditions discussed in Sections 2 and 3 to extension of domain properties to 

rings with zero divisors. The literature in this direction is vast. The main scope of 

this article is the exploration of the zero divisor controlling conditions 

themselves. We therefore restrict ourselves to a representative sample of 

applications which we describe without going into too many details. 

  

 

4.1 Valuation Rings, Prufer Rings, and Krull Rings  

 

 Valuation rings with zero divisors were defined by Manis [M]. A 

valuation is a map < from a ring K onto a totally ordered group G and a symbol 

4, such that for all x and y in K: 

1. <(xy) = <(x) + <(y). 

2. <(x + y) $ min {<(x), <(y)}. 

3. <(1) = 0 and <(0) = 4.  

 The ring  A = A< = {x , K | <(x) $ 0}, together with the ideal  

P = P< = {x , K | <(x) > 0}, denoted (A, P), is called a valuation pair (of K). A 

is called a  valuation ring (of K). G is called the value group of A. 

 

 In the presence of the Marot property, valuation rings share some 

properties of valuation domains: 

 

PROPOSITION 4.1 [H], [PS] Let A be a Marot ring. Assume that A … Q(A). 
Then the following conditions are equivalent: 
1.  A is a valuation ring. 
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2.  For each regular element x , Q(A), either x , A or x
-1

 , A.      
3.  A has only one regular maximal ideal and each of its finitely generated                
regular ideals is principal. 
 

 Let R be a ring with total ring of quotients Q(R). The ideal  

C(R) = {x , R | xQ(R) d R} is called the core of R.  Note that C(R) can be 

obtained as the intersection of all regular ideals of R, or as the intersection of all 

regular principal ideals of R. A valuation ring (R, P) is said to be discrete if each 

primary ideal Q of R such that C(R) f Q f P, is a power of its radical. A 

valuation ring (R, P) has rank n if the rank of the value group G is n.  

 

 A few other pertinent results concerning valuation rings will appear as 

we discuss generalizations of Prufer domains and Krull domains. For further 

results regarding valuation theory in rings with zero divisors, see, for example, 

[D], [H], [G5], and [PS].  

 

 Next, we briefly examine a few possible generalization of the property 

“R is a Prufer Domain” to rings with zero divisors. There are at least fourteen 

different characterizations of Prufer domains (see [G] and [FHP]) which may be 

generalized to rings with zero divisors; some of them may be generalized in 

several ways. There is an extensive literature exploring all generalizations 

available to date. We will bring up here three of the most popular generalizations. 

These happen to coincide with the three types of approaches  mentioned in the 

introduction (to clarify this interpretation consider “all entities” to be “all finitely 

generated ideals”, and see Proposition 3.11). It is instructive to see the three 

approaches “in action”, and see how some of the zero divisor controlling 

conditions described in the previous sections bridge between the three 

generalizations. In all the three cases,  we will generalize the following 

characterization of Prufer domains: 

 

  A domain D is a Prufer domain if every nonzero finitely generated 

ideal of D is invertible. 

 

Generalizing Prufer domains using approach (a): A ring R is called an 

arithmetical ring if every finitely generated ideal of R is locally principal. 

 

 This kind of generalization satisfies some, but not all,  of the equivalent 

conditions defining a Prufer domain. 

 

PROPOSITION 4.2 [G5], [J] Let R be a ring. The following conditions are 
equivalent: 
1. R is an arithmetical ring. 
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2. The ideals of Rm are totally ordered by inclusion for each maximal ideal m.  
3. The ideals of R form a distributive lattice, that is, for all ideals I, J and L of R,        
we have  I + J 1 L = (I + J) 1 (I + L). 
4. For all ideals I and J, and any finitely generated ideal L of R, we have  
    ((I + J) : L) = (I : L) + (J : L).  
 

 Other interesting Prufer-like properties of arithmetical rings may be 

found in [J]. 

 

Generalizing Prufer domains using approach (b): A ring is called a 

Prufer ring if every finitely generated regular ideal is invertible.  

 

 This definition is due to Griffin [G5], and he prefers this generalization 

of a Prufer domain to other generalizations, as it seems to be the one whose 

relation with its total ring of quotients is similar to that of a Prufer domain to its 

field of quotients. In [G5], Griffin exhibits 15 equivalent conditions to the 

property of being a Prufer ring, among them the conditions in Proposition 4.2 

restricted (at least partially) to regular ideals. I find this generalization of a Prufer 

domain to be somewhat unsatisfactory as the similarity with a Prufer domain 

breaks down on an important point. A valuation ring need not be a Prufer ring 

[BL], [H]. 

 A Prufer valuation pair is closer to what one would expect a valuation 

pair to be, namely: 

 

PROPOSITION 4.3 [H] Let R be a ring, and let P be a prime ideal of R. The 
following conditions are equivalent: 
1. (R, P) is a Prufer valuation pair. 
2. R is a Prufer ring and P is the unique regular maximal ideal of R. 
3. R is a valuation ring and P is the unique regular maximal ideal of R. 
 

 If we add the Marot condition to the definition of a Prufer ring, we 

eliminate most difficulties. 

 

THEOREM 4.4 [G5], [H] Let R be a Marot ring. Then R is a valuation ring iff R 
is a Prufer valuation ring. 
 

 Griffin [G5] showed that an arithmetical ring can be obtained from a 

Prufer ring R by imposing some zero divisor restricting conditions on Q(R). 
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PROPOSITION 4.5 [G5] A ring R is arithmetical iff R is a Prufer ring and Q(R) 
satisfies that ideals of Q(R)P are totally ordered by inclusion for all maximal 
prime ideals of zero P in Q(R).      
 

 Additional information about Prufer rings can be found in, for example, 

[H], [G5], [BL]. 

  

Generalizing Prufer domains using approach (c): R is a semihereditary 

ring, that is, every finitely generated ideal of R is projective.  

 

 Given that this condition implies, in particular, that principal ideals are 

projective, the zero divisor controlling condition imposed with this generalization 

is the PP condition. We will actually see that the zero divisor controlling 

condition of this generalization can be viewed in a different way.   

 

 

 

 

 

THEOREM 4.6 [G1], [G5], [M1] Let R be a ring. The following conditions are 
equivalent: 
1. R is semihereditary. 
2. R is coherent and w.gl.dim R # 1. 
3. Q(R) is Von Neumann regular and Rm is a valuation domain for every                   
maximal ideal m of R. 
4. R is a Prufer ring and Q(R) is Von Neumann regular.  
 
 A semihereditary ring R shares  the following property with a Prufer 

domain: RP is a valuation domain for all prime ideals P of R.   
 

 Marot’s investigation [M1] into the zero divisor controlling condition 

“Q(R) is Von Neumann regular” not only yielded the rich characterization of 

semihereditary rings of Theorem 4.6 (3), but also added an equally useful and 

interesting characterization of hereditary rings. 

 

Theorem 4.7 [G1], [M1], [V] Let R be a ring. Then R is hereditary iff Q(R) is 
hereditary and any ideal of R that is not contained in any minimal prime ideal of 
R is projective. 
 
 Additional results about semihereditary rings and related homological 

conditions can be found in [G1] and [V]. 
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 We next examine some aspects of the generalization of the concept of 

being a Krull domain to rings with zero divisors. Let R be a ring and let Q(R) be 

the total ring of quotients of R. Assume R … Q(R). (This is a technical condition 

making the statements of some theorems cleaner and the statements of other 

theorems messier. Some authors prefer to make this distinction, other prefer not 

to.) R is called a Krull ring if there exists a family {(V", P") | " , I} of discrete 

rank one valuation pairs of Q(R) with associated valuations {<" | " , I} such that: 

1. R = 1 {V" | " , I}. 

2. <"(a) = 0 for almost all " for each regular element a , Q(R), and each P" is a 

regular ideal of V".  

 

 There are three definitions of a Krull ring with zero divisors in the 

literature. Our definition is by Kennedy [K4], and was also adopted by Kang [K], 

[K1], [K2]. Another definition is by Huckaba [H]. Huckaba’s definition is 

identical with a Marot Krull ring in the Kennedy sense. The third definition is by 

Portelli and Spangler [PS]. Portelli and Spangler’s definition can be shown to be 

equivalent to Huckaba’s definition. 

 Perhaps here is the place to say that adding the Marot condition to the 

definition of a Krull ring brings this generalization closer to sharing many of a 

Krull domain properties. For example, even the definition itself becomes 

smoother as the notion of a rank 1 discrete valuation ring is more manageable: A 

Marot valuation ring (V, P) with associated valuation < and value group G is a 

discrete rank one valuation ring (respectively, < is a discrete rank one valuation) 

if G is isomorphic to the group of integers. In this case, P is the unique regular 

prime ideal of V and there exists a regular element x of P such that P = (x). Marot 

Krull rings share many properties of Krull domains. [H] provides a particularly 

clear and detailed exposition of these results. [K], [AM], and [AM1] take up the 

notion of a UFD and extend it (in a number of ways) to rings with zero divisors. 

It is the Marot property that allows for the conclusion of Corollary 3.13. As a 

consequence, only under the additional assumption that a ring is both Marot and 

Krull do the authors get a relation between factoriality properties and Krull ring 

behavior reminiscent of the domain case. A good survey article on the extension 

of the UFD notion to rings with zero divisors is [A]. 

 

It is possible to define Krull rings without resorting to valuation rings.   

 

 Recall that a ring R is completely integrally closed if, for 0 … a and u in 

Q(R), au
n
 , R for all n implies u , R.  

 

 Let I be a nonzero fractional ideal of R. It is defined to be E (I0
-1

)
-1

, 
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where I0 runs over the nonzero finitely generated R submodules contained in I. 

We say that I is t invertible if (II
-1

)t = R.  

 

THEOREM 4.8 [H], [K2], [M4] The following conditions are equivalent for a 
ring R: 
1. R is a Krull ring. 
2. [M4] R is completely integrally closed and satisfies the ascending chain               
condition on divisorial ideals.  
3. [K2] Every regular ideal of R is t-invertible. 
4. [K2] Every regular prime ideal of R is t invertible. 
5. [K2] Every regular prime ideal of R contains a t invertible regular prime              
ideal. 
  
 All references mentioned above contain additional information on Krull 

rings.  

 A related topic is the investigation into the behavior of the integral 

closure of a ring with zero divisors. Tom Lucas and others have done 

fundamental work in this direction. Interested readers are referred to [L] for a 

good survey and additional references on this topic.   

 

 

4.2 Finite Conductor Rings and G-GCD Rings  
 

 The next application of the zero divisor controlling conditions described 

in the previous sections involves the use of the PP condition in a recent 

generalization by Glaz [G3], [G4] of finite conductor  properties to rings with 

zero divisors. 

 

  Let R be a ring. R is a finite conductor ring if (a) 1 (b) and (0:c) are 

finitely generated ideals of R for all elements a, b, and c of R. R is a quasi- 

coherent ring if (a1) 1 ... 1 (an) and (0:c) are finitely generated for all elements  

a1, ..., an and c of R.  

 

 This definition [G3] extends the notion of finite conductor and quasi- 

coherence of domains by adding the zero divisor controlling condition: “(0:c) is a 

finitely generated ideal for all c”. Though this is a much weaker condition than 

the PP condition, it does affect the domain-like behavior of some rings. For 

example: 

 

PROPOSITION 4.9 [G3] Let R be a ring with weak global dimension one. The 
following conditions are equivalent: 
1. R is a semihereditary ring. 
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2. R is a coherent ring. 
3. (0:c) is a finitely generated ideal of R for every element c of R. 
 

 With these definitions finite conductor and quasi-coherent rings accept 

several equivalent domain-like characterizations [G3], [G4]. 

 

 A particular case of a finite conductor ring is the recently defined G-

GCD ring. A G-GCD domain is defined by the condition that intersections of 

two invertible ideals is an invertible ideal [AA]. Glaz [G3], [G4] generalized this 

condition to rings with zero divisors as follows: 

 

 A ring R is called a G-GCD ring if the following two conditions hold: 

1. R is a PP ring.  

2. The intersection of any two finitely generated flat ideals of R is a finitely 

generated flat ideal of R. 

 

 At first glance, it seems that one may replace condition 2 by other, 

similar conditions and obtain different generalizations of the G-GCD domain 

notion. But in fact the PP condition is powerful enough to make all these 

generalizations coincide: 

 

 

 

THEOREM 4.10 [G3], [G4] Let R be a ring. The following conditions are 
equivalent: 
1. R is a G-GCD ring. 
2. R is a PP ring and the intersection of any two principal (fractional) ideals of        
R is a finitely generated flat (fractional) ideal of R. 
3. R is a PP ring and the intersection of any two finitely generated projective            
ideals of R is a finitely generated projective ideal of R. 
4. R is a PP ring and the intersection of two invertible ideals of R is an invertible     
ideal of R. 
  

 G-GCD rings are reduced rings which are locally GCD domains, they are 

integrally closed in their total ring of quotients, and they possess compact Min(R) 

and Von Neumann regular total ring of quotients. Coherent regular rings are  

G-GCD rings, but not all G-GCD rings are coherent [G3]. On the other hand, it 

was through this definition that coherent-like and regularity-like properties of 

polynomial rings over coherent rings were discovered. Namely:     

 

THEOREM 4.11 [G3], [G4]  
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1. Let R be an integrally closed coherent domain. Then the polynomial ring R[x]       
is a quasi-coherent domain. 
2. Let R be a coherent regular ring. Then the polynomial ring R[x] is a G-GCD        
ring. 
 

 For additional properties of finite conductor, quasi-coherent, and G-GCD 

rings see [G3], [G4]. A different definition of a G-GCD ring, and a study of this 

class of G-GCD rings, appear in Ali and Smith [AS].   

 

 

4.3 Going Down and Related Rings 

 

 Another application of the zero divisor controlling conditions described 

in the previous sections is the use of the condition Nil(R) =  Z(R) for the 

extension of several related domain conditions to rings with zero divisors. 

 

 A ring extension R f T satisfies Going Down (GD) if given prime ideals  

P d P1 in R, and Q1 in T satisfying Q1 1 R = P1, there is a prime ideal Q in T such 

that Q d Q1 and Q 1 R = P. A domain R is called a Going Down domain in case 

the extension R f T satisfies GD for each overring T of R. Dobbs [D1] extended 

the Going Down notion to rings with zero divisors as follows: A ring R is a 

Going Down ring if R/P is a Going Down domain for every prime ideal P of R.  

 

 Under the zero divisor controlling condition Nil(R) = Z(R), this notion 

becomes a natural generalization of the Going Down property for domains.   

 

PROPOSITION 4.12 [D1] Let R be a ring in which 0 is a primary ideal. Then R 
is a Going Down ring iff R f T satisfies GD for each overring T of R. 
 

 Examples are provided in [D1] that show that the assumption  

Nil(R) = Z(R) is necessary.  

 

 Two related notions in which the condition Nil(R) = Z(R) played a role 

are the notions of divided and locally divided rings introduced in [B] and [BD]. 

A ring R is a divided ring (respectively, a locally divided ring) if each prime 

ideal is comparable under inclusion with each ideal of R (respectively, if RP is a 

divided ring for every prime ideal P of R). Divided rings are Going Down rings, 

though the converse is false even for domains [D1]. David Anderson, Badawi 

and Dobbs [BAD], [ABD] extended another domain notion to rings with zero 

divisors, namely the PVD notion. PVDs were first defined by Hedstrom and 

Houston in [HH] as those domains for which every prime ideal is strongly prime. 
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In a domain D a prime ideal P is strongly prime if xy , P, for x and y in the field 

of quotients of D, implies x , P or y , P. This notion was extended to rings with 

zero divisors as follows: Let R be a ring. A prime ideal P of R is said to be 

strongly prime if aP and (b) are comparable for all a, b , R. A ring is called a 

pseudo valuation ring (PVR) if each prime ideal is strongly prime. It is 

interesting to note that if (R, m) is a local PVR, then Z(R) can be Nil(R), m, or 

any prime ideal properly in between [ABD]. A detailed analysis of these rings 

can be found in [B], [BD], [BAD], and [ABD].   
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