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Let R be a commutative ring and let G be an abelian group. We
show that if G is either torsion free or R is uniquely divisible by
the order of every element of G , then the von Neumann regularity
of the total ring of quotients of R ascends to the total ring of
quotients of RG. Examples are given to show that the converse
does not hold. These results are applied in the group ring setting
to explore a number of zero divisor controlling conditions, such as
being a PF or a PP ring as well as a number of Prüfer conditions,
such as being an arithmetical, a Gaussian, or a Prüfer ring.
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1. Introduction

Let R be a commutative ring, let G be an abelian group, and denote by RG the group ring of G
over R . In this article we explore a number of zero divisor and Prüfer conditions in the group ring
setting.

In 1940, Higman [14] characterized when RG is a domain. A classical result in [16] addresses the
case when RG is reduced. Subsequent efforts to control zero divisors of commutative group rings
have shifted towards homological conditions that were recently linked to Prüfer conditions. Two such
notions are the PP (Principal Projective) and the PF (Principal Flat) properties of rings. Both PP and
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PF rings are locally domains [9,20]. These conditions were introduced in the 1960s by Hattori [13]
and Endo [5] primarily to develop a torsion theory for modules. They were extensively studied in
the 1970s in conjunction with another zero divisor controlling condition, namely the property of
having von Neumann regular total ring of quotients [6,15,20,23,25]. More recently, the PP, PF, and
von Neumann regular total ring of quotients conditions have been used to explore the extensions
of the notion of a Prüfer domain to rings with zero divisors [2,10–12,19]. These extensions of the
Prüfer domain notion include semihereditary rings, rings of weak global dimension one, arithmetical
rings, Gaussian rings, locally Prüfer rings, and Prüfer rings. The PP and PF conditions have also been
investigated recently in other contexts, e.g. [1,26,17]. In particular [22,26] began to address these
conditions in the group ring setting.

In Section 2 we determine conditions under which the von Neumann regularity of the total ring
of quotients of R ascends to the total ring of quotients of RG. This happens when G is either torsion
free or R is uniquely divisible by the order of every element of G (Theorem 2.3). We also provide
examples (Example 2.4) to show that descent of this property from RG to R does not necessarily hold
under either condition.

Section 3 explores the PP and PF conditions, while Section 4 explores the six Prüfer conditions
mentioned above in the group ring setting. Many of the results and examples in both of these two
sections make use of the ascent of von Neumann regularity of the total ring of quotients results
obtained in Section 2.

In Section 3 we show that if G is torsion free, then RG is a PF (respectively, PP) ring if and only
if R is a PF (respectively, a PP) ring (Theorem 3.3). In general, if RG is a PF (respectively, PP) ring then
either G is torsion free or R is uniquely divisible by the order of every element of G (Proposition 3.5).
But, in general, neither the PF nor the PP conditions ascend from R to RG (Example 3.6).

In Section 4 we show that if G is a torsion free or a mixed abelian group, then the six Prüfer
conditions are equivalent to each other and also equivalent to R being von Neumann regular and
rank G = 1 (Theorem 4.3(i)). If G is torsion and R is uniquely divisible by the order of every element
of G , the equivalence of the six Prüfer conditions, and analogous statements on R and G , require the
additional assumption of von Neumann regularity of the total ring of quotients of R (Theorem 4.3(ii)).
An example is provided (Example 4.4) that shows that this assumption is necessary.

Throughout the paper R will always denote a commutative ring with identity, G will denote
an abelian group written multiplicatively, and Q (R) will denote the total ring of quotients of R .
Also Q will denote the rational numbers, and C will denote the complex numbers.

2. Von Neumann regularity of the total ring of quotients

In this section we explore ascent and descent of the von Neumann regularity condition between
the total ring of quotients of R , Q (R), and the total ring of quotients of RG, Q (RG). The following con-
dition, which appears often in investigations involving homological properties of group rings, links R
and G via a divisibility property.

Definition 2.1. Let R be a commutative ring, and let G be an abelian group. R is said to be uniquely
divisible by the order of every element of G if for every g in G of finite order n, n divides every
element r ∈ R , and if for r ∈ R , we have r = ns = nt for some t, s ∈ R , then s = t .

This condition is equivalent to asking that every prime number p, which is the order of an ele-
ment g in G , be a unit in R . For x = ∑

xg g ∈ RG, let supp x = {g ∈ G: xg �= 0}.

Lemma 2.2. Let G be an abelian group. Write G = lim→ Gi where Gi are the finitely generated subgroups of G
ordered by inclusion. Then Q (RG) = lim→ Q (RGi) and w.gl.dim Q (RG) � sup{w.gl.dim Q (RGi)}.

Proof. Consider f /g ∈ Q (RGi). RGi ⊆ RG j , where i < j, is a free extension and g is not a zero
divisor in RGi . It follows that g is not a zero divisor in RG j . Therefore Q (RGi) ⊆ Q (RG j) and
lim→ Q (RGi) = ⋃

Q (RGi) exists. Since RGi ⊂ RG is a flat extention, g is also not a zero divisor in RG. This
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yields lim→ Q (RGi) ⊆ Q (RG). Conversely, let f /g ∈ Q (RG), and let Gi be the subgroup of G generated
by supp f and supp g . Then clearly f /g ∈ Q (RGi) and therefore belongs to lim→ Q (RGi), establishing
lim→ Q (RGi) = Q (RG). Now, Torn

Q (RG)(N, M) = lim→ Torn
Q (RGi)

(N, M) for any Q (RG)-modules M and N . It
follows that w.gl.dim Q (RG) � sup{w.gl.dim Q (RGi)}. �
Theorem 2.3. Let R be a ring and let G be an abelian group which is either torsion free or R is uniquely divisible
by the order of every element of G. If Q (R) is von Neumann regular, then Q (RG) is von Neumann regular.

Proof. By Lemma 2.2, we may assume that G is finitely generated. We first consider the case where G
is torsion free. If G is generated by n elements we can write RG ∼= R[x1, x−1

1 , . . . , xn, x−1
n ] [16, Proposi-

tion 2.2.6] and so

Q (R)G = Q (R)
[
x1, x−1

1 , . . . , xn, x−1
n

] = S−1(Q (R)[x1, . . . , xn]
)

where S is the multiplicatively closed set consisting of all products of powers of the xi . As Q (R) is
von Neumann regular, the polynomial ring Q (R)[x1, . . . , xn] is coherent [9, Theorem 7.3.1], there-
fore Q (R)G , as a localization of a coherent ring, is a coherent ring. By the syzygy theorem,
w.gl.dim Q (R)[x1, . . . , xn] = w.gl.dim Q (R) + n, hence w.gl.dim Q (R)[x1, . . . , xn] = n. It follows that
w.gl.dim Q (R)G � n, and therefore Q (R)G is a coherent regular ring. Since coherent regular rings
have von Neumann regular total rings of quotients [9, Corollary 6.2.4], we have that Q (Q (R)G) =
Q (RG) is von Neumann regular, completing the case where G is torsion free.

In general, write G = F × G ′ where F is a torsion free group and G ′ is the finite torsion part
of G . Then RG = (RF)G ′ [16, Proposition 2.2.16]. Since Q (RF) is von Neumann regular, we may reduce
to the case where G is a finite torsion group. As RG is flat over R , Q (RG) = Q (Q (R)G). Since R
is uniquely divisible by the order of every element of G and G is torsion, it follows that Q (R) is
also uniquely divisible by the order of every element of G . This, combined with the hypothesis that
Q (R) is von Neumann regular is equivalent to Q (R)G being von Neumann regular [8]. In particular,
Q (R)G is a total ring of quotients hence Q (R)G = Q (Q (R)G) is the von Neumann regular total ring
of quotients of RG. �

The converse of Theorem 2.3 does not hold.

Example 2.4 (A torsion free or mixed abelian group G such that the group ring RG has Q(RG) von Neumann
regular, but Q(R) is not von Neumann regular). Let K be a countable algebraically closed field. Quentel
[23,24] (see [9] for details) constructed a K -algebra R containing K that satisfies the following condi-
tions:

1. R is reduced.
2. R = Q (R).
3. Min R is compact.
4. R is not a von Neumann regular ring.

Let G be an infinite cyclic group. Then RG ∼= R[x, x−1], where x is an indeterminate over R . It follows
that Q (RG) = Q (R[x, x−1]) = Q (R[x]). Since R is reduced, Q (R[x]) being von Neumann regular is
equivalent to Min R being compact [23]. Thus Q (RG) is von Neumann regular, although R = Q (R) is
not. To obtain an example where the group G is mixed we require K to contain Q, so that every prime
number is a unit in R . Now let G = G1 ⊕ G2, where G1 is an infinite cyclic group and G2 is a torsion
group. Then RG = (RG1)G2, and Q (RG1) is von Neumann regular. Since G2 is torsion and R is uniquely
divisible by the order of every element of G we obtain that Q (RG1)G2 is a von Neumann regular
ring [8] and therefore equal to its own total ring of quotients. It follows that Q (RG) = Q (R(G1)G2) =
Q (Q (RG1)G2) = Q (RG1)G2 is von Neumann regular.

3. The PF and PP conditions

In this section we explore the ascent and descent of the PF and PP conditions between R and RG.
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Definition 3.1. A commutative ring R is called a PP ring, or a weak Baer ring, if every principal ideal
of R is projective. R is called a PF ring if every principal ideal of R is flat.

The first step is to consider the case where G is a torsion free group. For this purpose we start by
proving the following lemma:

Lemma 3.2. Let R → S be a ring homomorphism making S a faithfully flat R-module.

(i) If S is a PF ring, then R is a PF ring.
(ii) If S is a PP ring, then R is a PP ring.

Proof. (i) Let a ∈ R . We aim to show that aR is a flat ideal of R . Since S is a flat R-module we
have aS ∼= aR ⊗R S . Since S is a PF ring, aS is a flat S-module and by [21, Exercise 7.1] aR is a flat
R-module.

(ii) Let a ∈ R . We aim to show that aR is a projective ideal of R . Since S is a PP ring, by (i), aR is
flat. It therefore suffices to show that aR is finitely presented, that is, (0 :R a) is a finitely generated
ideal of R . Since S is a flat R-module we have (0 :R a)S ∼= (0 :R a) ⊗ S ∼= (0 :S a). S is a PP ring and
therefore aS is projective, implying that (0 :S a) is a finitely generated ideal of S . The faithful flatness
of S over R implies that (0 :R a) is a finitely generated ideal of R [21, Exercise 7.3]. �

The next result pertains to the ascent and descent of the PF and PP properties between R and
RG in the case where G is torsion free. Theorem 3.3(ii) makes use of Theorem 2.3, but, contrary to
the situation for the von Neumann regularity of the total ring of quotients, both the PF and the PP
properties ascend as well as descend between R and RG.

Theorem 3.3. Let R be a commutative ring and let G be a torsion free abelian group. Then:

(i) RG is a PF ring if and only if R is a PF ring.
(ii) RG is a PP ring if and only if R is a PP ring.

Proof. (i) Lemma 3.2(i) yields the forward implication since RG is faithfully flat (actually free) over R .
Conversely, assume R is a PF ring. Then R is locally a domain [9, Theorem 4.2.2]. Let p ∈ Spec R .
Since R p is a domain and G is torsion free, it follows that R p G is a domain [16, Proposition 2.2.21].
Let P ∈ Spec RG. Then p = P ∩ R ∈ Spec R , and (RG)P = (R p G)P R p G . Consequently, (RG)P is a domain
for all P ∈ Spec RG and therefore RG is a PF ring.

(ii) The forward implication follows from Lemma 3.2(ii). Conversely, assume that R is a PP ring.
Then R is a PF ring and Q (R) is von Neumann regular [9, Theorem 4.2.10]. Theorem 2.3 yields Q (RG)

von Neumann regular, while the first part of this theorem implies that RG is a PF ring. This implies
that RG is a PP ring [9, Theorem 4.2.10]. �

It is worth noting the following reformulation of Theorem 3.3(i):

Corollary 3.4. Let R be a commutative ring and let G be a torsion free abelian group. Then RG is locally
a domain if and only if R is locally a domain.

Extending the ascent and descent results for the PF and PP conditions from the torsion free setting
to a more general group setting can be partially achieved using the unique divisibility condition.

Proposition 3.5. Let R be a commutative ring and let G be an abelian group. Assume that RG is a PF ring
(respectively, PP ring). Then R is a PF ring (respectively, PP ring), and either G is torsion free or R is uniquely
divisible by the order of every element of G.
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Proof. Assume that RG is a PF ring. Then by Lemma 3.2(i), R is a PF ring. To show the second claim,
assume that G is not torsion free and let H = 〈g〉 be a cyclic subgroup of order p of the group G .
Then RG is a free extension of RH and we may employ Lemma 3.2(i) to conclude that RH is a PF ring.
We may therefore assume that G is a cyclic group generated by g , which has prime order p. Consider
the short exact sequence

0 → I(G) → RG → R → 0 (�)

where I(G) is the augmentation ideal associated with the augmentation map
∑

xg g → ∑
xg . Then

I(G) = (g − 1)RG. Since RG is a PF ring, I(G) is a flat ideal of RG, and the exact sequence (�) implies
that w.dimRG R � 1. This means that Tork

RG(R, N) = 0 for all RG-modules N and for all k � 2. Choosing
N = R and setting k = 2n for n � 1, we have Tor2n

RG(R, R) = 0. By [9, Theorem 8.2.2], Tor2n
RG(R, R) ∼=

R/pR . It follows that R/pR = 0 and hence R = pR , which implies that R is uniquely divisible by p.
The proof of the proposition for the PP condition is similar. �
The converse of the previous proposition does not hold for either the PF or the PP condition.

Example 3.6 (An abelian group G and a ring R which is PP and is uniquely divisible by the order of every
element of G, but whose group ring RG is neither a PP ring nor a PF ring). Zan and Chen [26, Example 2.5]
constructed a subring, R , of the complex numbers C in which 2 is a unit. Being a domain, R is a PP
ring and a PF ring. It is shown in [26] that RG, where G is a cyclic group of order 4, is not a PP ring.
We show that R is not a PF ring either. Since R is a PP ring, Q (R) is von Neumann regular. It follows
from Theorem 2.3 that Q (RG) is also von Neumann regular. If RG is a PF ring, then RG is a PP ring [9,
Theorem 4.2.10].

4. Prüfer conditions

In this section we consider the following six extensions of the Prüfer domain notion to rings with
zero divisors:

(1) R is a semihereditary ring.
(2) w.gl.dim R � 1.
(3) R is an arithmetical ring.
(4) R is a Gaussian ring.
(5) R is a locally Prüfer ring.
(6) R is a Prüfer ring.

These six Prüfer conditions have been extensively studied for the last 5 to 7 years. For a compre-
hensive survey and an extensive list of references on the subject see [12]. In particular, the classes
of rings described above are contained in each other in the order of their numbering, and the con-
tainments are strict [10]. Glaz [8] and Bazzoni and Glaz [2] found conditions that allow for reversals
of containments for properties (1)–(4) and (6), while Boynton [3] covered the same ground for prop-
erty (5). In particular, the three zero divisor controlling conditions described in Sections 2 and 3 allow
several reversals of containment, and if Q (R) is a von Neumann regular ring, then conditions (1)–(6)
are equivalent for the ring R .

Lemma 4.1. Let R → S be a ring homomorphism making S a faithfully flat R-module. If S is a Prüfer ring, then
so is R.

Proof. Let I be a finitely generated regular ideal of R . We aim to show that I is invertible. Since I
contains a nonzero divisor, IS is a regular ideal of S . Also, S is Prüfer and therefore IS is invertible and
hence a projective ideal of S . It follows that ISP is flat for all P ∈ Spec S . Let p ∈ Spec R . Since S is
faithfully flat over R there is a prime P ∈ Spec S such that P ∩ R = p and S P is faithfully flat over R p .



Author's personal copy

292 R. Schwarz, S. Glaz / Journal of Algebra 388 (2013) 287–293

It follows that IRp is a flat ideal of R p . Thus IRp �= 0 is projective [9, Lemma 4.2.1] and therefore free.
We conclude that IRp is principal, and I is invertible, as desired. �

Before exploring the relations among these Prüfer conditions in the group ring setting we record
the following characterizations of group rings RG with w.gl.dim RG = 1.

Proposition 4.2. Let R be a commutative ring and let G be an abelian group. Then RG is a semihereditary ring
(respectively, w.gl.dim RG = 1) if and only if exactly one of the following two conditions hold:

(i) R is a semihereditary ring (respectively, w.gl.dim R = 1), G is a torsion group, and R is uniquely divisible
by the order of every element of G.

(ii) R is a von Neumann regular ring, rank G = 1, and R is uniquely divisible by the order of every element
of G.

Proof. The semihereditary case is proved in [8]. For the case where w.gl.dim RG = 1, we note that in
[4] it is proved that w.gl.dim RG < ∞ if and only if R is uniquely divisible by the order of every ele-
ment of G and both rank G and w.gl.dim R are finite. Moreover, when the unique divisibility condition
holds, w.gl.dim RG = w.gl.dim R + rank G . The conclusion now follows. �

The next theorem characterizes the conditions under which the group ring RG satisfies any of the
Prüfer conditions (1)–(6), provided that R is uniquely divisible by the order of every element of G .

Theorem 4.3. Let R be a commutative ring and let G be an abelian group. If G is not torsion free, assume
that R is uniquely divisible by the order of every element of G. Then:

(i) If G is either a torsion free or a mixed group, each one of the Prüfer conditions (1)–(6) is equivalent to: R is
a von Neumann regular ring and rank G = 1.

(ii) If G is a torsion group and, in addition, Q (R) is von Neumann regular, each one of the Prüfer conditions
(1)–(6) is equivalent to: R is a semihereditary ring.

Proof. The implications of the Prüfer conditions (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) hold for any
ring [10]. To prove (i) we first note that by Proposition 4.2 we only need to show that if RG is a Prüfer
ring then R is a von Neumann regular ring and rank G = 1. We first note that it suffices to show that if
RG is a Prüfer ring, then R is a von Neumann regular ring. For if this is indeed true, Theorem 2.3 will
imply that Q (RG) is a von Neumann regular ring. According to [2] properties (1)–(6) are equivalent
for a ring with von Neumann regular total ring of quotients. Therefore using Proposition 4.2 we can
conclude that rank G = 1. Now let H = 〈g〉 be an infinite cyclic subgroup of G . Then RG is free over
RH ∼= R[x, x−1], for an indeterminate x, and this ring, in turn, is free over a polynomial ring in one
variable over R [8]. By Lemma 4.1 we can therefore reduce to the case where the polynomial ring R[x]
is a Prüfer ring. Let a �= 0 be a non unit element of R . Since R[x] is a Prüfer ring, we have equality
of the following two ideals: (a, x)2 = (a2, x2) [18]. It follows that ax = f a2 + gx2 for some f and g
in R[x]. Therefore f = xf ′ for some f ′ in R[x]. Since x is a nonzero divisor, a = f ′a2 + gx. If g �= 0,
then x divides (1 − f ′a), and (a, x) = R[x]. We conclude that g = 0, and therefore a ∈ a2 R . It follows
that R is von Neumann regular as desired.

To prove (ii) we note that by Theorem 2.3 the total ring of quotients of RG is von Neumann
regular. It follows that Prüfer conditions (1) through (6) are equivalent for RG [2], and therefore, by
Proposition 4.2, each one is also equivalent to: R is a semihereditary ring. �

We remark that if G is torsion free, the equivalence of “R is von Neumann regular and rank G = 1”
to Prüfer conditions (3) and (6) can also be deduced by different methods from the results proved
in [7]. If G is a torsion group, Example 4.4 below shows that the result of Theorem 4.3(ii) need not
hold without the additional assumption that Q (R) is von Neumann regular.
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Example 4.4 (A ring R which is not semihereditary and a torsion group G such that R is uniquely divisible
by the order of every element of G with w.gl.dim RG = 1). Let R be any non coherent ring containing Q
which satisfies w.gl.dim R = 1. Such a ring is not semihereditary and, equivalently, does not have a
von Neumann regular total ring of quotients [9, Corollary 4.2.19]. Any prime p is invertible in R and
thus the unique divisibility condition holds regardless of G . By Proposition 4.2, w.gl.dim RG = 1. Such
a ring R appears in a number of sources. For example, see the ring T on page 51 of [9], where the
field K is chosen to be Q and for all λ the rings Rλ = Q[x](x) , for an indeterminate x over Q.

At this point the exact conditions under which a group ring RG satisfies any of the Prüfer condi-
tions (3) through (6) for a general group G are not clear. There are several results appearing in the
literature, for example [7], pointing out cases when RG is arithmetical. Those seem to be ad hoc and
do not generalize. Some examples of group rings satisfying some of these conditions but not others
also muddy the waters. We conclude this section with one such example, a locally Prüfer group ring
which is not Gaussian.

Example 4.5 (A ring R of characteristic 2 and a group G of order 4 such that RG is locally Prüfer but not Gaus-
sian). Let R be a field of characteristic 2, and let G be a non-cyclic group of order 4. Let g and h
generate G . Then RG ∼= R[x, y]/(x2, y2), where x and y are indeterminates over R (via the isomor-
phism g �→ x − 1, h �→ y − 1). The group ring RG is local with maximal ideal (x, y) = m satisfying
m3 = 0. Thus RG is a total ring of quotients, and as such is locally Prüfer. To see that RG is not
Gaussian consider f = xT + y and g = xT − y in RG[T ]. Now, f g = 0 but c( f )c(g) = m2 �= 0.
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