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ABSTRACT

Let R be a commutative ring, let G be a group of
automorphisms OE R and denote by R the fixed
subring of R. R° = {x e R / g(x) = x for all g e G}.
This paper is concerned with the exploration of
conditions under which finiteness properties such
as Noetherianess and coherence; and related
homological properties such as "small", weak and
global dimensions (like Von Neumann regularity,
semihereditarity and hereditarity), and coherent
regularity descgnd and, to a lesser degree ascend,

between R and R".
The paper presents a survey of the literature,

some of the results proved in Glaz‘, and
several new results and open problems in the
area.

1. Introduction

In a survey paper entitled "Effective invariant
theory”, Vinberg36 points out the conditions under which
research in invariant theory becomes most effective “In the
19th century it had already become clear that an explicit
solution of the fundamental problems of invariant theory was
possible only in a comparatively few cases. Therefore, one
of the directions in modern invariant theory is to single
out, in some sense, "all" such cases and to actually solve
problems of invariant theory in these cases." The present

article is a combination of survey of literature, the



90

authors' own published results and some new results and
open problems, on topics related to some finiteness and
homological properties of fixed rings (rings of invariants),
restricted to a class of rings and groups that make the
theory effective.

We denote a commutative ring by R, G will denote a
group of automorphisms of R and R® the fixed subring of R.
The restriction on the extension R® ¢ R that makes the
investigations presented in this paper effectively solvable,
is the existence of a module retraction map from R to RS,
This map appears under various names in the literature such
as averaging map (Bergman‘), or Raynolds operator (Hochster
& Robertszﬂ and stanley3ﬁ. Under this restriction, the paper
is concerned with descent and ascent, between R and RG, of a
variety of finiteness and related homological properties.

Section 2 explores descent and ascent of Noetherianess
and coherence, as well as surveys the early, motivating,
exploration of descent of finite generation as an algebra
over a field. Section 3 explores descent of regularity,
primarily in case the ring is coherent. Related to coherent
regularity, this section also explores the behavior of the
weak dimensions of the rings involved, in particular, descent
of von Neumann regularity, semihereditarity (and
hereditarity). The section concludes with a survey of
literature on descent of Cohen Macaulayness and related
properties in the Noetherian setting, and a conjecture in

this direction for the coherent case.
2. Noetherianess and coherence
The question of descent of finiteness properties from

R to R® has its roots in the classical investigation carried

out in order to solve Hilbert's fourteenth problem.
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HILBERT'S FOURTEENTH PROBLEM : Let K be a field and let G
be a group of automorphisms of the polynomial ring in n
variables over K, K[ %, ...,X, ], fixing K. Is K[ XysooosXp ]6

a finitely generated K algebra?

Hilbert himself posed a slightly different
version of this problem in 1900 at the Paris Congress.
E. Noether, Zariski, and Nagata provided a pretty complete
answer to the problem.

In two papers, E. Noether{ in 1916 and 1926, treating
separately the cases where K has characteristic 0 or p > O,
answered the question affirmatively for a finite group G.
This result holds true for a general commutative ring K.

In 1953, 0. Zzariski®
affirmatively if tr.degl < 2, where L is the field of
quotients of K[ x1,...,xn]s.

In 1959 Nagataauprovided a family of counterexamples

for the various formulations of Hilbert's fourteenth problem.

answered the question

For the particular formulation given above he provided a
counterexample for tr.deg§.= 4.

Some of the gaps left between these results, as well
as other significant generalizations, were solved in the
intervening years. One can obtain further information from,

for example, Nagata3q Vinbergsﬂ Popov3{

More modern investigations considering descent or
ascent of finiteness revolved around the Noetherian property.
Here one can find descent results in Be::'gman"5 (1971),
Chuang & Lee® (1977), McConnell & Robson? (1977),
Montgomeryzs(lgao), Fisher & Osterburg11(1980); and ascent
results in Brewer & Rutter’ (1977), Farkas & Snider'?
(1977), Montgomeryn (1980). We will mention some of these

results later in this section.
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Let A € B be two rings, A is called a module retre

of B if there is an A module homomorphism ¢: B -
satisfying ¢(a) = a for every element a of A. If such a n
exists we will call it a module retraction map.

Note that if A is a module retract of B, then t
module retraction map ¢ splits the identity map of A, th
B contains A as an A module direct summand, in particular
is a pure submodule of B.

Two known cases where R® is a module retract of R a
pointed out in Bergman‘:

1. G is a finite group and o(G), the order of G,

a unit in R. In this case for every x in R
¢({x) = (1/0(G))I g(x), where the sum is taken ov
all g e G.

2. G is a locally finite group (that is for every
x ¢ R the orbit of x, Gx has finite cardinalit:
n{x) < o), and n(x) is a unit in R for every x
in R. In this case for every x in R
¢(x) = (1/n(x))L vy, where the sum is taken ove:
all v in Gx.

The map ¢ is called in Bergman‘

an averaging map, ai
in Hochster & Roberts?® or Stanley3‘, a Raynolds operator. ]
seems that the existence of such a map is a necessa:
condition for any significant descent of properties from

to RG to occur.

THEOREM 1 (Bergman‘). Let R be a Noetherian ring. i
RS is a module retract of R then R® is a Noetherian ring.

That this result cannot be improved much one can se
by considering the example of a finite group G and
Noetherian ring R with no o(G)~torsion which fails to descen
Noetherianess to RG, given by Nagarajan30 and sharpened b
Chuang & Lee® ({Example 1), and the example of an infinite
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cyclic group G and a P.I.D. R which fails to descend
Noetherianess to RS given by Bergman‘ (Example 3).

9, Chuang & Lees) .

EXAMPLE 1 (Nagarajan®
Let F = Zz(a‘.,bi, i 2 1), where 2, is the prime field of

characteristic 2, and an, b, , i 2 1 are infinitely many

i
indeterminates. Set p; = ax + by and R = F[[x,y]]. Define an
automorphism of R, g, by: g(x) = x, g(y) = v,

g(a;) = a; + ypjy 9(by) = by + xpyyy, 1 2 1. Let G = <g>, then
o(G) = 2, but 2, of course, is not a unit in R. Nagarajan had
shown that Rs is not a Noetherian ring.

Chuang & Lee sharpened the example as follows:

Let A = Z[ai,b;., i 2 1], where a‘.,bi are indeterminates over
Z, and let F = A,. A is a U.F.D. and 2A is a prime ideal of

height 1, hence F is a discrete valuation ring. Set

R = F{[x,y]], which is a Noetherian domain since F is a
P.I.D. An automorphism of R is given by g(x) = -x, g(y) = v,
g(a;) = -a; + ypjuqe g(by) = by + Xpiy. Then G = <g> and

o(G) = 2, R has no 2-torsion. As R/2R is isomorphic to the
ring in Nagarajan's example, R® is not a Noetherian ring.

In case R is a coherent ring we obtain the following

descent results:

THEOREM 2 (Glaz’g). Let R be a coherent ring and let
G be a group of automorphisms of R, then RS is a coherent
ring in the following cases:
1. R® is a module retract of R, G is a locally finite group
and R is a flat RS module.
2. RS is a module retract of R and R is a finitely generated
R® module.

This is the best result one is able to obtain for

descent of coherence except of some odd cases ( Glazlg). A
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series of examples were constructed in Glaz'!’ to show 1
the conditions of Theorem 2 cannot be relaxed.

EXAMPLE 2. Finite Groups
Let K be a field of characteristic not equal to 2,

R = K([(x, v, z;, i 2 1], where x, v, z, i 2 1
indeterminates. Construct an automorphism of R fixing K,
by setting g(x) = -x, g(y) = -y, g(z;) = -z;. Let G = <
then o(G) = 2 is a unit in R, so that RS is a module retr
of R. RS = K{xz, yz, ziz, XY, XZ, Y2 ]. R is a coherent rij
but the ideal (xy : xz) = (yz, Xy, yvz;) is not finit
generated in RG, and so R® is not a coherent ring.
Nagarajan's example provides a weaker example of
same phenomena in rings of characteristic equal to 2, si:
in this case 2 is not a unit in R. R® of Nagarajan's exam)
is also not a coherent ring. The proof of this fact is «

to Heinzer (see Glaz'%.

EXAMPLE 3. Infinite Groups.
The ideas behind the construction of this family

examples go back to Gilmer‘{ and Bergmanﬂ

Let A be an integrally closed domain with field
quotients K. For a valuation v of K, let K, be the valuatij
ring of v. Since A is integrally closed A = nKv over a
valuations v such that A ¢ K,. Let t be an indeterminate ov
A, then v extends to a valuation of A[t] via
via " +...+4a,) = min v(a;), and hence v extends to
valuation of K(t). Let R = nK(t)w where K(t)v is t
valuation ring of the extension of v to K(t). R is a Bezo
domain, (Bergman‘), and hence, a coherent ring. Let B be
subring of A. For an element b in B, define a map
Ty Alt] - A[t] by Ty(t) = t + b. T, can be extended to :
automorphism of R. Set G = {T,), where b runs over all ti
elements of B. If B is infinite, then K(t)e = K, and thus
R® = a.
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Depending on our choice for A and B we can obtain
variety of examples. Let k be a field and let x, y be
rdeterminates over k. Set A = kly, xiy]. A is not a coherent
ing as the ideal xyA n x%(A = (x2y2, xayz, x‘yz,...) is not
initely generated. A is integrally closed.

If k is an infinite field of characteristic p > 0, and

= k then every element of G has order p, and, thus we
btain an example where R is coherent of characteristic

> 0, G is an infinite group whose elements are of finite
rder and R® = A is not coherent.

If we pick B = k and the characteristic of k is zero
hen no element of G has finite order.

We can modify this construction to obtain even sharper
xamples. Let A be a non coherent Krull domain of
sharacteristic zero. Such a ring is constructed in
;akin & Heinzerg. We follow the above construction utilizing
s, t, s'u t'ﬁ for indeterminates s and t, instead of A(t].
tn this case R is actually a P.I.D. and G may be chosen to
e infinite cyclic. We therefore obtain an example of a
Joetherian (P.I.D.) ring R, an infinite cyclic group G and

3% = A is not a coherent ring.

Regarding ascent of finiteness conditions Brewer &

10

Ruttert and Farkas & Snider proved independently the

following result:

THEOREM 3 (Brewer & Rutter!, Farkas & Snider').
Let R be a reduced ring and let G be a finite group of
automorphisms of R. If R® is a Noetherian ring then so is R.

There are a number of examples showing the necessity
of the condition that R be reduced. The following is from
Montgomeryzﬁ



EXAMPLE 4. Let K be a field of characteristic
different from 2. Set R = K[x,, X, . ..]/(xixj) = K[xy, X, eesl,

where x,, X, ... are indeterminates, i ¢ j. Let g be the
automorphism of R fixing K satisfying g(x;) = -x;. Set
G = <g>, then o(G) = 2 and R® = K, but R is not Noetherian.

Regarding ascent of coherence one obtains the

following result:

THEOREM 4. Let R be a reduced ring, let G be a group
of automorphisms of R and assume that R is a finitely
generated R® module. If R® is a coherent ring then so is R in
the following cases:

1. G is a finite group and R is o(G)-torsion free.

2. G is a locally finite group and R® is a domain.

3. G is a locally finite group, R is semilocal and principal
ideals of R® are flat.

As this result has not been published elsewhere we
sketch the proof here:

1. Let a,,...,a be a set of generators for R over R®. Define
amap T: R - @ RG, one copy of R® for each generator, by

T(a) = (tr(aa;),..., tr(aag))., for each a in R, (for a in R
tr(a) = I g(a), where the sum is taken over all g in G). T

is a 1:1 R® homomorphism and, via T, R becomes a finitely
generated submodule of a coherent R® module. It follows that
R is a coherent module and thus a coherent ring.

2. For a in R denote by oﬁa) = L YVieoos oéa) = [l y, where
y runs over the elements of the orbit of a,the elementary

symmetric functions of a. Let x be a nonzero element of R

and assume that xa = 0, then xo;(a) = 0 for all i. Since RG
is a domain o;{(a) = 0 for all i, and therefore
a" = c::1(a)a“'l +...+c (a) = 0. Since R is a reduced ring it is

a torsion free R9 module. It follows that R can be embedded
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in a finitely generated RS module, and is therefore a
coherent ring.

3. Let P ¢ Spec(R) and set p =P n Rs. Since principal ideals
of R® are flat RGp is a coherent domain, and by an argument
similar to that in 2., Rp is a coherent ring. Since R is

semilocal R is a coherent ring.

It is not clear yet if one can relax any of the
conditions of this theorem and maintain the conclusion. The
following example, inspired by Brewer & Ruttert shows that
the condition that R be reduced cannot be relaxed even in
the case that R is a finitely generated Rr® module and R® is

a domain.

EXAMPLE 5. Let S be a coherent domain and let M be an
S module satisfying:
1. M has no 2-torsion
2. M is a finitely generated but not finitely presented S
module. )
Let R = SaM, the trivial ring extension of S by M, that is
the set SxM with usual addition and with multiplication
defined by (s,m)(s',m') = (ss',sm' + s'm). S embeds in R via
s =+ (s,0) and becomes a finitely generated R module with
generators (1,0), (O,my},...,(0,m)), where my,...,m, generate
M over S. R is not a reduced ring as (O,m)2 = (0,0). Define
an automorphism g of R by g(s,m) = (s,-m) for all s in S and
m in M, and let G = <g>. Then o(G) = 2 and RG = 8 is a
coherent domain, but R itself is not a coherent ring since
M is not a coherent S module (Glaz‘%.
For a specific example one can use S = Q[x1n<r...], where
Xy, X9 ... are indeterminates over Q, and M = S/(xgﬁ), i< j.
Note that with this choice of S and M we even have that
0(G) = 2 is a unit in R.
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3. Regularity and finite weak dimension

We now consider the property of coherent regularity
and related behavior of homological dimensions.

A ring R is called regular if every finitely generated
ideal of R has finite projective dimension.

If R is a Noetherian ring this formulation of
regularity coincides with the classical definition. The
extension of the notion of regularity from Noetherian to
coherent rings went through several stages. In 1971 Bertin®
defined regularity for local coherent rings, Vasconcelosaa
in 1976, dropped the "local" condition from the definition,
Glaz‘{ in 1987, separated the finiteness condition of
coherence from the homological condition on the ideals of the
ring. Bertin, Quentel, Vasconcelos, Glaz and others proved
a variety of interesting results for coherent regular rings.
A detailed descriptions of many of these results can be found
in Glaz'ﬂ and Glaz 'S,

Every coherent ring of finite weak dimension is a
regular ring. In particular all the classical non Noetherian

rings are coherent regular rings. To summarize the situation:

1. R is Von Neumann regular < (coherent) of w.dim R = 0
2. R is semihereditary «» R is coherent and w.dim R < 1
3. R is hereditary ¢ (coherent) of gl.dim R < 1

The set up R® ¢ R considered in this paper falls under

the following, more general, framework of investigation:

Let A & B be two rings. Under what conditions does
this extension descend or ascend coherent regularity? How
do the weak (or global) dimensions of A and B compare? In
particular, when does this extension descend or ascend Von

Neumann regularity, semihereditarity or hereditarity?
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My work in the last couple of years revolved around
‘his general set up for a variety of rings A and B,
see Glaz‘a'z%. With A = RG and B = R, the previous section
yf this paper describes the results obtained in the first
step of the investigation into descent or ascent of
soherence regularity, namely the step concerned with descent
and ascent of coherence. We will now introduce into the

»icture the homological property of regularity.

We start by considering descent of coherent regularity
in cases of “small" homological dimensions, that is descent
of Von Neumann regularity, semihereditarity and hereditarity.
These cases were settled by Bergman‘ in 1971 and by Jondrupu
in 1974. The following is a minor generalization of their

results:

THEOREM 5 (Bergman‘, Jondrupu). Let R be a ring and
let G be a group of automorphisms of R then:
1. If R is Von Neumann regular, so is RS.
2. If R is semihereditary (respectively hereditary) and G is
either a locally finite group or RS is a module retract of

R , then R® is semihereditary (respectively hereditary).

We remark that if R is a faithfully flat R® module
then one can easily check that R® inherits from R Von Neumann
regularity, semihereditarity, hereditarity and almost
everything else. In Glaz!’ it is shown that the underlying
reason for the ease of descent in the cases described in
Theorem 5 is the faithful flatness of R over R®. This can be

summarized as follows:
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THEOREM 6 (Glaz'l). Let R be a ring and let G be a

group of automorphisms of R:

1. 1f R® is von Neumann regular, then R is a faithfully flat
Rsmodule.

2. 1f R® is semihereditary, G is a locally finite group and
R is reduced, then R is a faithfully flat R® module.

3. 1f RS is semihereditary and principal ideals of R are
flat, then R is a flat RS module. If, in addition, R® is
a module retract of R, then R is a faithfully flat R
module.

Given the prevailing faithful flatness in cases
where R® has small weak dimension one is tempted to ask
whether R is not, in fact, projective over R® in all these
cases, Jondrup25provides an example showing that this might
not be the case even if R® is Von Neumann regular. This is,
nevertheless, true for many cases (Jondrupza Glaz‘%. Other
works computing projective dimensions in the set up rR® ¢ R

% and Popovst

are Lorenz

Ascent of Von Neumann regularity, semihereditarity and
hereditarity have not yet been considered for our set up.
That this will not easily occur, even in case of Von Neumann

regularity, one can see by considering Example 4.

Considering descent of coherence regularity for rings
of larger - finite or infinite - homological dimensions one
first notices that RS might not inherit regularity from R
even if R and R® are both Noetherian, R is a finitely
generated R® module and R® is a module retract of R.

EXAMPLE 6. Let K be a field of characteristic 0 and
let R = K[x,y] for indeterminates x and y. Let g be the
automorphism of R fixing K and satisfying g(x) = -x,

g(y) = -y. Set G = <g>, then o(G)}) = 2 which is a unit in R
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so that R® is a module retract of R. RG = K[xz, XY, y2] which

is a non regular Noetherian ring. Moreover one can show
(Glaz‘g), that the projective dimension of R over rR® is
infinite

This extension fails to descend regularity precisely

because the projective dimension of R over RS is infinite.

THEOREM 7 (Glazw). Let R be a ring and let G be a
group of automorphisms of R. Assume that R® is a module
retract of R and that the projective dimension of R over RS
is finite. If R is a regular ring then so is RS, If, in
addition, R is a coherent ring then

w.dim R® ¢ w.dim R + proj.dim RS8R

COROLLARY 8 (Glaz'’). Let R be a ring and let G be a
group of automorphisms of R. If either R is a faithfully flat
Rsmodule, or Rsié a module retract of R and R is a finitely
generated R® module of finite projective dimension, then the
coherence regularity of R implies that of R® and

w.dim R® ¢ w.dim R + proj.dimRs R

The finiteness condition on the projective dimension
of R over R® can be slightly relaxed in case R is a Nj

Noetherian ring, that is ideals of R are countably generated.

COROLLARY 9 (Glaz'®). Let R be an N, Noetherian
coherent regular ring and let G be a group of automorphisms
of R. Assume that R® is a module retract of R and that R is
a finitely generated R® module of finite weak dimension, then
RS is a coherent regular ring and

w.dim R® ¢ w.dim R + w.dim_6 R + 1
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What is known on descent of regularity in th
Noetherian case? Classically this problem was posed in mor
concrete terms, namely, R was assumed to be a polynomial rin
in n variables over a field K, G a finite group o
automorphisms of R fixing K whose order o(G) is not zero i
K - so that R® is a module retract of R - the guestion the
was under what additional conditions will R® be a polynomia
ring over K. In 1967, Serre33found necessary and sufficien
conditions for this to occur (namely that G be generated b
pseudo-reflections}.

With this case settled, the guestion becomes with :
and G as above, under what additional conditions will R® b
regular. In view of Example 6, one is not 1likely to be abli
to improve on the answer found in Theorem 7 . What ons
notices in Example 6 is that since RS is an integrally close«
domain of Krull dimension two, R® is a Cohen Macaulay ring
The question that can then be asked is to what extent is R
likely to inherit Cohen Macaulayness or related properties
from the regularity of R. This is the direction taken by :
number of investigations carried out under the Noetheriar
assumption. Several deep and interesting results in this
direction, some of which involve derivations rather ther
automorphisms, appear in Hochster & Eagon22(1971), Hochste:
& Roberts® (1974), Watanabe’¥® (1974), stanley® (1979),
Aramova & Avramov' (19886), Aramova2 (1987).

Hochster & Roberts point out that if R is a Noetheriar
regular (Cohen Macaulay) ring and G is a finite group of
automorphisms of R whose order is a unit in RG, then R® is
Cohen Macaulay. This raises an interesting question which 1
would like to pose as a conjecture.
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CONJECTURE. Let R be a coherent regular ring and let
G be a group of automorphisms of R. Assume that RS is a
module retract of R and that R is a finitely generated R®

module, then R® is a cohen Macaulay ring.

I will conclude this paper by saying that the
first step toward solving this conjecture is finding the
right definition of non Noetherian Cohen Macaulayness.
Although non Noetherian depth can be effectively defined (see
for example Glaz'%, the obvious condition equating, locally,
depth and Krull dimension might not be the right
generalization, since it is not yet known (and it seems
difficult to determine) if this equality hold even for a

coherent regular ring.

The author wishes to thank the referee for
valuable comments which improved the presentation of this

paper.
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