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ABSTRACT. We extend the definition of a finite conductor domain to rings
with zero divisors, and develop a theory of these rings which allows us, among
other things, to provide examples of non-coherent finite conductor domains,
and to clarify the behavior of non-coherent polynomial rings, group rings and
fixed rings over coherent rings.

1. INTRODUCTION

The finite conductor property of a domain R, that is the finite generation of the
conductor ideals (I : J) for principal ideals I and J of R, embodies both factoriality
properties and finiteness conditions. Indeed, the class of domains where (I : J)
is itself principal is precisely that of Greatest Common Divisor (GCD) domains,
while the requirement that (I : J) be finitely generated is a necessary condition for
the coherence of a domain. For that reason the finite conductor property makes
frequent appearance in the literature in investigations involving factoriality and also
in investigations concerned with finiteness, coherent-like conditions, of domains.
Both factorial domains (GCD domains, UFDs, etc.) and the variety of coherent-
like conditions have a long history of being investigated in their own right or with
an emphasis on interconnections among them.

Our interest in the relation between the finite conductor property and coherence
was aroused by a remark of Gabelli and Houston [GH] concerning a domain R: “To
our knowledge, there are no known examples which prove that these properties are
distinct”. |GH] investigates a number of coherent-like conditions in pullback rings.
The nature of the conditions necessary to ensure that pullback rings are coherent,
quasi coherent (a property falling between coherence and finite conductor defined in
[BAD]), or finite conductor domains does not yield examples differentiating between
coherence and the other two properties [GH|]. The same phenomenon, for D + M
constructions, occurs in [DP]. The original purpose of this work was to generate
examples of non-coherent finite conductor domains, and Examples B4, (2] and
F.3 do just that. In the process we got involved in a more general investigation
of the relation between the finite conductor property and coherence. In Section [2
we extend the definitions of finite conductor and quasi coherent domains to rings
with zero divisors, explore several of their basic properties, and clarify the relations
between these notions for rings of small weak dimension. In particular we show that
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a finite conductor ring R of w.dim R = 2 is quasi coherent. In Section Bl we define
G-GCD rings, a new class of finite conductor rings, which generalize GCD domains,
G-GCD domains defined in [AA], and coherent regular rings. We explore the nature
of these rings through the interplay between finiteness, flatness and projectivity of
ideals, and end the section with an example of a total ring of quotients which is
not a finite conductor ring. Section [ explores the interplay between the (quasi)
coherence of a ring R and finite conductor properties of the polynomial ring R[z].
In particular we prove that if R is an integrally closed coherent domain, then R[z]
is quasi coherent (Theorem [£1]); and if R is a coherent regular ring, then R[z] is
actually a G-GCD ring (Theorem3). In general it is difficult for a ring R to ascend
coherence to R[xz] (see [G5]). As far as we know, Theorem 1] and Theorem[£.3] are
the first results showing that for a large class of coherent rings R with non-coherent
polynomial ring, R[z] retains some coherent-like properties. We also exhibit an
example of a local domain R of w.dim R = 2 which is finite conductor (in fact
GCD) domain but not coherent. In Section [l we exhibit conditions under which a
fixed subring R® preserves the quasi coherence and finite conductor properties of
the ring R. We provide an example of a non-coherent UFD fixed ring, and utilizing
the results of Gilmer and Parker [G2] [GP], we provide a sequence of non-coherent
UFD group rings with strictly increasing Krull dimensions.

2. FLATNESS

Let R be a ring, and let Q(R) denote the total ring of quotients of R. For
(fractionary) ideals I and J of R, (I : J) denotes the conductor of J into I. If I = aR
and J = bR we write (a : b) for (I : J). u(I) denotes the cardinality of a minimal
set of generators of I. For a (fractionary) ideal I of R, ™! = {a € Q(R)|al C R}.

R is a finite conductor ring if aR N bR and (0 : ¢) are finitely generated ideals
of R for all elements a,b and ¢ of R. R is a quasi coherent ring if ey RN ---Na, R
and (0 : ¢) are finitely generated ideals of R for any finite set of elements ¢ and
ai,...,a, of R.

Proposition 2.1. Let R be a ring. The following conditions are equivalent:
1. R is a finite conductor ring.
2. Any (fractionary) ideal I of R with u(I) < 2 is finite presented.
3. (a:b) is a finitely generated ideal of R for all elements a and b of Q(R).
If R is a domain the above three properties are equivalent to:
4. I~ is finitely generated for any (fractionary) ideal I with u(I) < 2.

In case R is a domain the quasi coherence of R is equivalent to the finite gener-
ation of =1 for any finite generated (fractionary) ideal I of R.

Recall that a ring R is a coherent ring if (0 : ¢) and I N J are finitely generated
for every ¢ € R and any two finitely generated ideals I and J of R. Coherent rings
are the classical examples of finite conductor (and quasi coherent) rings. UFDs and
GCD domains are finite conductor domains (and since in both cases aR N bR is
a principal ideal for all @ and b in R, these domains are also quasi coherent). So
are Generalized Greatest Common Divisor (G-GCD) domains, defined in [AA]. A
domain R is a G-GCD domain if the intersection of any two invertible ideals of R is
an invertible ideal of R. As this property extends to the intersection of finitely many
invertible ideals such a domain is also quasi coherent. There are finite conductor
domains R for which not all aRNbR are invertible ideals of R. One such Noetherian
domain is R = k[z?,23,y, vy|, where k is a field and = and y are indeterminates
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over k. Then m = (22,23, y,2y) is a non-invertible, in fact mm™
ideal of R, and z? RN 23R = 2%m is not invertible.

Faithfully flat ring extensions descend both the finite conductor and the quasi
coherence properties. But if A C B are rings and B is merely flat over A, the
extension does not need to descend the finite conductor property. To see this let
A = klx,yz,yw,y*w,y?w,...] C B = klx,y], where k is a field, x and y are
indeterminates over k, and w = yx + 1. Then B is flat over A [G4], but A is
not a finite conductor domain as (yz : ) = (yx, yw, y*w, y>w, ...) is not a finitely
generated ideal of A.

Let {R;} be a family of rings. Set R = [[R; and let I = [[[; and J = [[ J;
be two ideals of R. Then I NJ = [[(; N J;). Similarly, for an element ¢ = (¢;) in
R, (0:C)=T[(0: ¢). Thus I NJ is a finitely generated ideal of R if and only if
sup{u(I;NJ;)} < oo; and (0 : ¢) is finitely generated if and only if sup{u((0: ¢;))} <
oo. In particular if each R; is a finite conductor (respectively a quasi coherent) ring,
then R =[], R; is a finite conductor (respectively a quasi coherent) ring.

If S is a multiplicatively closed subset of R, and R is a finite conductor (respec-
tively a quasi coherent) ring, then clearly Rg is a finite conductor (respectively a
quasi coherent) ring. In particular every localization of a finite conductor (respec-
tively a quasi coherent) ring at a maximal ideal is a finite conductor (respectively
a quasi coherent) ring. The converse holds for a ring R with finitely many maxi-
mal ideals m;. To see this, note that in this case the ring T' = [] Ry; is a finite
conductor (respectively a quasi coherent) ring which is faithfully flat over R. But
the converse does not hold in general. [MZ, Example 2.1] exhibits a domain which
is locally factorial, but not a finite conductor domain.

We now turn our attention to rings of small weak dimension. Rings R of
w.dim R = 0 are precisely the von Neumann regular rings and as such coher-
ent. Recall that a ring R is called semihereditary if finitely generated ideals of R
are projective.

= m, maximal

Proposition 2.2. Let R be a ring of w.dim R = 1. The following conditions are
equivalent:

1. R is a semihereditary ring.

2. R is a coherent ring.

3. (0:¢) is a finitely generated ideal of R for every element ¢ of R.

In particular a domain R of w.dim R =1 is a coherent ring.

The equivalence of 1 and 2 in Proposition is well known, while 3 implies 1
follows from [G5| Theorem 4.2.10, Corollary 4.2.6, and Corollary 4.2.19]. Thus for
a ring of weak dimension 1 the finite conductor, the quasi coherence, and the coher-
ence properties coincide. If the weak dimension of R is two, this is not necessarily
true.

Theorem 2.3. Let R be a ring of w.dim R = 2. If R is a finite conductor ring,
then R is a quast coherent ring.

Proof. The proof follows from the following observations:

1. If R is a finite conductor ring, then I N J is a finitely generated ideal of R for
any finitely generated flat ideals I and J: Set I = (a1,...,a,) and J = (b1,...,by)
by [G5l Lemma 4.2.1], I and J are projective and hence free (principal) at every
localization of R by a prime ideal. Let P be a prime ideal of R. Then IRp = a;1 Rp,
JRp = bj1 Rp for some i = ¢; and j = ji. Then IRp N JRp = anRp Nbj1Rp =
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(anRNbiR)Rp C (a,RNb;R,i=1,...,n;j=1,...,m)Rp C (INJ)Rp. Thus
INJ=(a;RNb;R,i=1,...,n;j=1,...,m), and is therefore finitely generated.

2. If R is a ring of w.dim R = 2 and for an element ¢ of R, (0 : ¢) is a finitely
generated ideal, then cR is a projective ideal of R: Since w.dim R = 2, w.dimpg cR <
1 and thus (0 : ¢) is a finitely generated flat ideal of R. Let P be a prime ideal of R.
Then either (0: ¢)Rp =0or (0: ¢)Rp # 0 and so it is a projective, and hence free,
ideal of Rp. But then ¢(0 : ¢) = 0 implies that cRp = 0, therefore (0 : ¢)Rp = Rp.
We conclude that (0 : ¢) is a pure ideal of R, and so cR ~ R/(0: ¢) is a flat ideal
of R. Since cR is finitely presented it is projective.

3. If Ris aring of w.dim R = 2, then I N[ is a flat ideal of R for any flat ideals
I and J: Follows from the exact sequence 0 - INJ - I®J — (I,J) — 0, and
the fact that any ideal of R has weak dimension at most 1.

4. If R is a finite conductor ring of w. dim R = 2, any intersection of finitely many
finitely generated flat ideals of R is a finitely generated flat ideal of R: The proof
follows by induction on n, the number of finitely generated flat ideals intersected,
with the case n = 2 clear from 1 and 3.

We remark that if w.dim R = 2, the finite conductor, and hence quasi coherence,
property does not necessarily imply coherence, even in case R is a local domain.
This is shown in Example 4.

3. G-GCD RINGS

Let R be a ring, and let Q(R) be the total ring of quotients of R. A fractionary
ideal I of R is called invertible if II™' = R. It is well known that a fractionary
ideal I is invertible if and only if [ is a projective R module containing a non-zero
divisor. Motivated by the proof of Theorem [2.3] we define:

A ring R is called a G-GCD ring if the following two conditions hold:

C1. Every principal ideal of R is projective.

C2. The intersection of any two finitely generated flat ideals of R is a finitely
generated flat ideal of R.

Note that C1 is equivalent to: (0 : ¢) is a finitely generated ideal and cR is a
flat ideal for every element ¢ of R. In the presence of C1, an argument like the one
employed in the proof of Theorem 3] shows that C2 becomes equivalent to: The
intersection of any two principal (fractionary) ideals of R is a finitely generated
flat (fractionary) ideal of R. Also note that if R is a domain the above definition
coincides with the definition of a G-GCD domain. It is clear that G-GCD rings are
quasi coherent rings.

Proposition 3.1. Let R be a G-GCD ring. Then the following hold:

1. R is a reduced ring and Rp is a GCD domain for every prime ideal P of R.

2. R is integrally closed in its total ring of quotients.

3. Min R, the set of all minimal prime ideals of R, is compact in the induced
Zariski topology.

4. Q(R), the total ring of quotients of R, is a von Neumann regular ring.

Proof. 1. Rp is a domain for any prime ideal P of R [G5, Theorem 4.2.2], and hence
R is a reduced ring. Let I and J be two principal ideals of Rp. Then I = aRp and
J = bRp for some a and b in R. Since aR N bR is finitely generated and flat, so is
INJ. Thus I N.J is principal. This implies that Rp is a GCD domain.
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2. Let ¢ = a/b be an element of Q(R) integral over R, and let P be a prime ideal
of R. Since b is a non-zero divisor, b # 0 in Rp, and thus either a = 0 in Rp or ¢
is an element of the field of quotients of Rp which is integral over Rp, and so an
element of Rp. It follows that (b: a)Rp = Rp for every prime P. Thus ¢ € R.

3. and 4. follow from [G5l, Theorem 4.2.10].

G-GCD rings are well behaved with respect to faithfully flat extensions. To
see this let A — B be a ring extension with B faithfully flat over A and assume
that B is a G-GCD ring. Since B is a faithfully flat extension of A, A is a finite
conductor ring. If [ is an ideal of A and IB =1 ® 4 B is a flat ideal of B, since B
is faithfully flat over A, I is a flat ideal of A. Thus cA is flat and finitely presented,
and therefore projective, for every c in A; and if I and J are two finitely generated
flat ideals of A, then 1B N JB being finitely generated and flat over B implies that
I N J is finitely generated and flat over A. We conclude that A is a G-GCD ring.
The example given in Section 2 shows that extensions that are merely flat may not
descend the G-GCD property.

At first glance it seems that we could define two stronger generalizations of a
G-GCD domain by requiring that principal ideals of R are projective and replacing
C2 by either of the following:

C2’. The intersection of two finitely generated projective ideals of R is a finitely
generated projective ideal of R.

C2"”. The intersection of two invertible ideals of R is an invertible ideal of R.

We will show that neither of these requirements generates a new class of rings.

We first cite a theorem of Gruson [V2| which will be used several times in this
paper:
Theorem 3.2 ([V2]). Let R be a ring and let S be an R algebra of finite presenta-
tion. Let M be a finitely generated S module and let T be a ring containing R. If
M®RT is a finitely presented SQrT module, then the set U of all points P € Spec S
for which Mp is Rpnr flat is open in Spec S and M is of finite presentation over
U.

Theorem 3.3.

1. Let R be a ring whose principal ideals are projective and let I be a finitely
generated flat ideal of R. Then I is a projective ideal. In particular, R is a G-GCD
ring if and only if C1 and C2' are satisfied.

2. Let R be a ring whose principal ideals are projective. If aR N bR is finitely
generated projective for any two non-zero divisors a and b of R, then aR N bR is
finitely generated projective for any two elements a and b of R. In particular, R is
a G-GCD ring if and only if C1 and C2" are satisfied.

Proof. 1. Since principal ideals of R are projective, Q(R), the total ring of quotients
of R, is a von Neumann regular ring. Let I be a finitely generated flat ideal of
R. In the setting of Theorem B2 take S = R, T = Q(R) and M = I. T is
coherent and thus IT = I ®r T is a finitely presented ideal of T'. It follows that
I is finitely presented over Spec R in the Zariski topology. We conclude that I is
finitely presented and therefore a projective ideal.

2. Let a and b be elements of R. Since principal ideals of R are projective we
can write a = a’e and b = V' f, where o’ and b’ are non-zero divisors and e and f
are idempotents [J]. We claim that aR N bR = ef(a’R N V' R). Clearly the right
hand side is contained in the left hand side. For the converse let x € aRNbR. A
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computation shows that x = ze = zf = xef € ef(a’R NV R). By the hypothesis
I = d’RNVR is finitely generated and projective, and I = efI & (1 — ef)I. Thus
aRNbR = efI is finitely generated and projective.

As benefits a generalization of GCD domains, not all coherent rings are G-GCD
rings (see the example following Proposition B.T)). Neither are all G-GCD rings
coherent (Examples[44], 5.2, and [5.3)), but there is an important class of coherent
rings which are G-GCD rings. Recall that a ring R is called regular if every finitely
generated ideal of R has finite projective dimension. This notion, which agrees
with the classical definition of regularity in case the ring is Noetherian, has been
extensively studied for coherent rings as well (see [GH] for an extensive treatment
and bibliography). Coherent rings of finite weak dimension are regular rings, though
the converse does not necessarily hold. Using [VII Theorem 3.17] we obtain:

Proposition 3.4. Let R be a coherent regular ring. Then R is a G-GCD ring.

For a ring R, its total ring of quotients Q(R) is, in many ways, simpler than R
itself. In particular if R is a, not necessarily coherent, G-GCD ring, then Q(R) is a
von Neumann regular ring, and thus coherent. Hence it seems interesting to note
that a ring R which is a total ring of quotients, that is, every element of R is either
a unit or a zero divisor, does not necessarily have to be a finite conductor ring. The
construction of the following example originates in Quentel’s paper [Q1]. Because
of errors in this, otherwise excellent, paper (some of which were corrected in [Q2]),
we refer the reader to the fully corrected version in [G5, Chapter 4, Section 2].

Example 3.5. Let K be a countable, algebraically closed field, let I be an arbitrary
finite set, and let N be the natural numbers. For two sets A and B denote by AZ
the set of all set maps from B to A. Let S = W(R) C KI*N" be the algebra
constructed in [G5] page 118]. S satisfies the following properties [G5]:

1. S is a reduced ring.

2. 5=0Q(9).

3. Min S is compact.

4. S is not von Neumann regular.

We will show that a ring S satisfying these four properties has an element ¢ in S
such that (0 : ¢) is not a finitely generated ideal of S. Since Min S is compact but
Q(S) is not von Neumann regular there is an element ¢ in S such that ¢S is not
a flat ideal of S |GH, Theorem 4.2.10]. Assume that (0 : ¢) is a finitely generated
ideal of S, and let I = ¢S+ (0 : ¢). Since the ring is reduced I = ¢S @ (0: ¢), and
I ¢ P for any prime ideal P of Min S [G5} Lemma 3.3.4]. Since Min S is compact
and I is finitely generated I ¢ |JP, as P runs over all the minimal primes of S
IM]. Thus I contains a non-zero divisor. Since S = Q(S), I = S and therefore ¢S
is a projective ideal. We conclude that (0 : ¢) is not a finitely generated ideal of
S. (We remark in passing that since R is reduced, but not a von Neumann regular
ring, Krull dim R > 0.)

4. POLYNOMIAL RINGS

It is well known that if R is a UFD (respectively a GCD domain), then R[x] is
a UFD (respectively a GCD domain) (see [G1]). In [AA], the Andersons proved
that if R is a G-GCD domain, then so is R[x]. Regarding coherence the situation
is more complicated. Recall that a coherent ring R is called stably coherent if
the polynomial rings R[z1,...,x,] are coherent for every n. It is known that von
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Neumann regular rings, semihereditary rings, hereditary rings, and coherent rings of
global dimension two are stably coherent rings (see [G5l Chapter 7] for an extensive
treatment and bibliography on this topic). Soublin [S| provided an example of a
coherent ring R (not a domain) of w.dim R = 2, for which R[z] is not coherent.
Alfonsi [A] refined Soublin’s example to the case where R is a domain. All the rings
mentioned are coherent regular rings. As mentioned in the introduction, Theorem
H1 and Theorem below show that for a large class of coherent rings R, over
which polynomial rings may not be coherent, the polynomial rings retain some
coherent-like properties.

Theorem 4.1. Let R be an integrally closed coherent domain. Then R[z] is a quasi
coherent domain.

Proof. Let fi,..., fn be elements of R[z|, and let I = f1R[z]N---N f,R[x].

Case 1. INR = J # 0. Then a direct computation shows that I = JR[z]. Degree
considerations force f1,..., fn to belong to R. It follows that J, and therefore I, is
finitely generated.

Case 2. INR = 0. Let K denote the field of quotients of R. In this case
IK[x] # Klz], thus IK[x] = fK]z] for a polynomial f € I. Denote by c(f), the
so called content of f, the ideal of R generated by the coefficients of f. Let d € R
be such that de(f)~! C R, and consider the divisorial ideal of R[z], I; = df ~'I.
LK[z] = K[z] and so 1 N R = J; # 0. By |Q3l Lemma 2], I, = J;R[z]. Since
I = d='fJ1R[x], to show that I is finitely generated it suffices to show that .J; is
finitely generated. Clearly J; =1 "R = {r € R|rfR C df1R[z] N ---Ndf, R[z]}.

Let deg f = m and deg f; = n;, write m — n; = m; and denote by S the R
submodule of R[z] consisting of all polynomials of degree less or equal to k. If,
for an element r in R, rf = f;g for some ¢ in R[z], then g necessarily belongs to
Smi- Thus J; = {r € R|rfR C df1Sm1 N -+ Ndf,Smn}. Now df;Spmi = Sy and is,
therefore, a coherent submodule of the coherent (finitely generated free) R module
Sim. Thus M = df1Sm1 N+ NdfnSmn is a coherent submodule of S,,. N = fR is
also a coherent submodule of S,,,. J; = (M :g N) = (0 :g N + M/M). To show
that (0 :g M 4+ N/M) is a finitely generated ideal of R it suffices to show that
M + N/M is a coherent R module [G5], Corollary 4.1.7]. Consider the following
exact sequences of R modules:

0O—-NNM-—->M-—-M/MNN — 0,
0-NNM-—->N+M-—->N+M/NNM — 0,
0—-M/NNnM—-N+M/M—N+M/NNM — 0.

Since R is a coherent ring and M and N are coherent submodules of a coherent
R module both NN M and N + M are coherent modules. Repeated use of [G5]
Theorem 2.5.1] yields the coherence of the R module N 4+ M /M. We conclude that
J1, and thus I, is indeed finitely generated.

It is not clear if the result of Theorem BTl can be extended to rings R with zero
divisors. As Querre’s result [Q3] seems to play a major role in our proof, a step
toward answering this question, and a question of interest in its own right, will be
to obtain an extension of Querre’s result to rings with zero divisors. This seems for
the moment intractable, nevertheless in case R is a coherent regular ring we can
bypass the difficulty, and ascend the G-GCD property to R|x].
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Lemma 4.2. Let R be a ring whose principal ideals are projective. Then R|x]
satisfies the same property. In addition, if f € Rlx], then (0 : f) = eR]z] for an
idempotent e in R.

Proof. We first prove the following: Let R be a reduced ring and let f and g be two
elements of R[x]. Write f = apa™ +---+ag and g = b, z™ + -+ + bo. If fg =0,
then a;b; =0foralli=1,...,nand j=1,...,m.

Proof. We first show by induction on j that apb; = 0 for j =1,...,m. Clearly
aobp = 0. Assume that agbg = --- = agby = 0. As fg = 0 the k + 1 coefficient of
fg equals 0, thus ao(D_;, _4; @ibj) = 0. It follows that (apbr+1)? = 0. Since R
is a reduced ring agbg+1 = 0. We now use induction on i to finish the argument,
carrying on the induction step by replacing f with [f — (arpa® + - - + ag)]/z**1.

Now, since principal ideals of R are projective, R is a reduced ring. Let f =
ana"+- - -+ag be an element of R[z]. By the above we have that (0 :r, f) = JR[z],
where J = ();(0 : a;). Since a;R is a projective ideal of R, (0 : a;) is generated by
an idempotent of R, say e;. It follows that J itself is generated by the idempotent
e=-e1---e,. Thus (0:gp f) = eR[z], and fR[z] is projective.

Theorem 4.3. Let R be a coherent regular ring. Then R[z] is a G-GCD ring.

Proof. By Lemma B2, R[z] is a ring whose principal ideals are projective. By
Theorem [3.3] it suffices to show that if f and g are two non-zero-divisors in R[z],
then I = fR[x] N gR[z] is an invertible ideal of R[z]. Since I contains a non-zero-
divisor, fg, it suffices to show that I is a projective ideal of R|x].

We first show that I is a flat ideal of R[z]. Let @ be a prime ideal of R[z],
and let P = @ N R. Then Rp is a GCD domain, thus Rp[z] is a GCD domain.
R[z]qg = Rp[z]QRrp[z- Thus I is locally flat and therefore flat.

Next we show that I is finitely generated. Consider the exact sequence of R][x]
modules: 0 — I — fR[z] ® gR[z] — (f,9) — 0. If P is a prime ideal of R,
since Rp[z] is a GCD domain, Ip is principal and non-zero, thus a free Rplx]
module. Let Ip = hRplx] for h in I. Then h = h'e, where b’ is a non-zero-
divisor in R[z] and e is an idempotent in R, where (0 : h) = (1 — e)R[z] [J]. Let
Fy = fR[z] @ gR[z], and Fy = W' R[z]. The map Fy — hR[z] (which takes h' to h)
and the inclusion map hR[z] — I compose to yield the complex of R[z] modules:
0— Fy — Fy — (f,g) — 0, with Fy and F} finitely generated and free.

As hRplz] = h'Rp[z], localizing this complex at P we obtain an exact sequence.
Let @ be a prime ideal of R[z] with QN R = P. Then localizing the complex at @) we
obtain an exact sequence. By [Al, Proposition 4.2] there is a neighborhood of @ in
Spec R]x], such that localizing the complex at any prime ideal in this neighborhood
we obtain an exact sequence. We conclude that (f,g) is finitely presented over
Spec R[x] in the Zariski topology, and therefore finitely presented. We conclude
that I is finitely generated.

Next we show that I is finitely presented. Since T' = Q(R) is a von Neumann
regular ring, T[z] is a coherent (semihereditary) ring. In the setting of Theorem
B2, let S = R[z],T = Q(R) and M = I to obtain that I is a finitely presented
ideal of R[z].

Thus [ is a projective ideal of R[z].

We now exhibit an example of a local non-coherent GCD domain R of w.dim R =
2.
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Example 4.4. We first consider Soublin’s example [S]. Let S; = Q[[t, u]] be count-
able many copies of the power series in two variables ¢t and u over the rational
numbers @, and let S = [[S;. It is shown in [S] that S is a coherent ring of
w.dim S = 2 and that the polynomial ring S[z] is not a coherent ring. Since S is
a coherent regular ring, S[x] is a G-GCD ring, but S[z] is neither a domain, nor a
local ring and w. dim S[x] = 3. According to [Al Corollary 4.4], there is a localiza-
tion Sp of S, such that Sp[z] is not a coherent ring. As a localization of a regular
coherent ring, Sp is a domain. Since Sp[z] is not coherent w.dim Sp = 2. Thus
w.dim Sp[z] = 3. To knock down the weak dimension by one and obtain a local
ring we consider the ring R = Sp(x) = Sp[x|pg,[»]. Since Sp[r] is not a coherent
ring, R is not a coherent ring by |G6l Theorem 1]. w.dim R = w.dim Sp = 2 by
[G6l, Theorem 2]. Clearly R is a GCD domain.

5. FIXED RINGS

Let R be a ring, let G be a group of automorphisms of R, and denote by R“
the fixed ring of R. RY = {a € R|g(a) = a for all g € G}. The conditions under
which a coherent ring R descends coherence to R® were explored in [G7]. A crucial
restriction involves the existence of a module retraction map o : R — R, that
is, @ is an RY module homomorphism satisfying a(a) = a for all a in RY. If a
module retraction map from R to R exists we say that R is a module retract of
R. Bergman [B] pointed out the existence of such a map in two cases:

1. G is a finite group and o(G), the order of G, is a unit in R.
2. G is a locally finite group, that is, for every a € R the orbit of a, Ga, has finite
cardinality n(a), and n(a) is a unit in R for every a € R.

Along the same lines as [G7] we can show:

Proposition 5.1. Let R be a finite conductor (respectively a quasi coherent) ring.
Then RC is a finite conductor (respectively a quasi coherent) ring in the following
cases:

1. G is a locally finite group and R is a flat RC module.

2. RY is a module retract of R and R is a flat RS module.

3. RY is a module retract of R and R is a finitely generated R module.

The conditions exhibited in Proposition [5.1] under which the finite conductor,
quasi coherence and coherence properties descend from R to R® are shown to be a
pretty tight fit by the multitude of examples provided in [G7] of coherent rings R
which do not descend coherence to R because R is not a finite conductor ring.
Nevertheless there is an example where neither of the conditions of Proposition
B0 hold but R descends UFDness to RY, without descending coherence. This is a
variation on the famous example of Nagarajan [N].

Example 5.2. Example of a local non-coherent UFD of Krull dimension 2.

Let F be the field F' = Zs({a;},{b;}), where Z5 is the prime field of characteristic
2, and {a;} and {b;} are infinitely many variables over Zs. Let S = F[x,y](.y),
where = and y are indeterminates over F'. Set p; = a;xz + b;y, and define an
automorphism g of S by g(z) =z, g(y) =y, g(ai) = a; + ypi+1, 9(bi) = b; + Tpiy1,
for all i. Let G = (g), then o(G) = 2, but 2, of course, is not a unit in S. Let
Ry = SY. (The original example of Nagarajan defines S to be F[[z,y]].) Ro is
a local Krull domain of Krull dimension 2. The proof of [N] that shows that Ry
is not Noetherian for the power series case translates verbatim to show that Ry is
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not Noetherian in our case. The proof in [HL2, page 272] that shows that Ry is
strongly Laskerian in the power series case translates verbatim to show that Ry is
strongly Laskerian in our case. We made use of this fact to show that Ry is not a
coherent ring in the power series case [G7, page 2639], and the same proof applies
to our case. Finally, it is shown in [HLI), page 111], that Ry is a UFD. (We remark
that in the power series case it is not known whether Ry is a UFD. What one can
say in this case is that Ry satisfies ACC for principal ideals [HL2, Corollary 3.6],
therefore if Ry is a GCD domain, then it is a UFD. It is not known if this ring is
even a finite conductor domain.)

If Krull dim R = n, and z is an indeterminate over R, then n+1 < Krull dim R]x]
< 2n 4+ 1 [GI], thus Rolz1] C Rolz1,22] C -+, for Ry the ring in Example
and {z;} infinitely many indeterminates over Ry, provides a chain of non-coherent
UFDs of strictly increasing Krull dimensions. A more interesting example of the
same phenomenon can be constructed by using group rings.

Let G be an abelian group. G is said to be cyclically Noetherian if G satisfies
the ascending chain condition for cyclic subgroups. Let R be a ring, let G be an
abelian group and denote by RG the group ring of G over R. Gilmer and Parker
[GP] showed that for a domain R and a torsion free abelian group G, RG is a UFD
if and only if R is a UFD and G is cyclically Noetherian. This characterization
is used in [G2] to construct non-Noetherian (but coherent—by [G3, Theorem 1])
UFDs of arbitrary Krull dimensions. In Example we utilize the idea behind
Gilmer’s construction to exhibit a collection of non-coherent UFD group rings with
strictly increasing Krull dimensions.

Example 5.3. Let p be a fixed rational prime, and let Q) be the additive group
of rationals whose denominators are non-negative powers of p. Let o be a p-adic
integer which is not rational, and let ¢,, be a sequence of rational integers with
on = o(mod p™) for all n. Choose independent elements a, b in Q®» ¢ Q™ and put
an =p~"(a+ opb) for all n. Let H be the group generated by b and the sequence
{a,}. For every integer m > 2, let H,, = H if m = 2 and H,, = H x F,,,_o if
m > 2, where Fy,,_o is a free group of rank m — 2. It is shown in [G2 [GP] that
H,, are torsion free cyclically Noetherian groups with rank H = 2 and, thus, rank
H,, = m for m > 2. Let Ry be the fixed ring of Example 5.2. By the above
discussion the rings R,, = RoH,, are UFDs. It is shown in [G2| that for a group
G with rank G =t > 0, Krulldim RG > Krulldim R 4+ 1. Thus Krulldim Ry > 3.
For m > 2, R,, = RoFp_ o = Rg[xl,xfl,...,xm,g,x;£2] is integral over the
polynomial ring in m — 2 variables A, o = Ro[zy + 27, ..., 2m_o + " ] [G3]
Lemma 1]. Therefore Krulldim Ry +m — 2 < Krulldim 4,,,_» = Krulldim R,,,, and
so the Krull dimensions of R, are strictly increasing. It follows from [G3| Theorem
1] that if for a ring R and an abelian group G, RG is a coherent ring, then so is R.
We conclude that the rings R,, are not coherent rings.

The author wishes to thank the referee for helpful comments.
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