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Data Clustering with Actuarial Applications

Guojun Gan and Emiliano A. Valdez
Department of Mathematics, University of Connecticut, Storrs, Connecticut

Data clustering refers to the process of dividing a set of objects into homogeneous groups or clusters such that the objects in
each cluster are more similar to each other than to those of other clusters. As one of the most popular tools for exploratory data
analysis, data clustering has been applied in many scientific areas. In this article, we give a review of the basics of data clustering,
such as distance measures and cluster validity, and different types of clustering algorithms. We also demonstrate the applications
of data clustering in insurance by using two scalable clustering algorithms, the truncated fuzzy c-means (TFCM) algorithm and
the hierarchical k-means algorithm, to select representative variable annuity contracts, which are used to build predictive models.
We found that the hierarchical k-means algorithm is efficient and produces high-quality representative variable annuity contracts.

1. INTRODUCTION
Data clustering, also known as cluster analysis, refers to the process of dividing a set of objects into homogeneous groups

or clusters such that the objects in each cluster are more similar to each other than to those of other clusters (Hartigan 1975;
Jain and Dubes 1988; Kaufman and Rousseeuw 1990; Mirkin 1996; Gan, Ma, and Wu 2007; Kogan 2007; Xu and Wunsch
2008; Everitt et al. 2011; Aggarwal and Reddy 2013; Kassambara 2017). First originating in anthropology and psychology in
the 1930s (Driver and Kroeber 1932; Zubin 1938; Tryon 1939), data clustering is now one of the most popular tools for
exploratory data analysis and has been applied in many scientific areas, including engineering, computer science, life and med-
ical sciences, astronomy and earth sciences, and social sciences.

Data clustering is considered a major task of data mining (Berry and Linoff 2000; Bramer 2013). Table 1 shows four major
tasks of data mining. These tasks are divided into two categories based on the types of data: labeled and unlabeled. Labeled
data have a specially designated attribute and the aim is to use the given data to predict the value of that attribute, for new
data. Unlabeled data do not have such a designated attribute. The first two data mining tasks, association rule learning and
clustering, work with unlabeled data and are known as unsupervised learning. Association rule learning concerns finding inter-
esting relationships and correlations that exist among the values of variables (Bramer 2013; Aggarwal 2015). The last two data
mining tasks, classification and numerical prediction, work with labelled data and are called supervised learning. Classification
is one type of supervised learning where the designated attribute (i.e., the label) is categorical. Numerical prediction, also
known as regression, is another type of supervised learning where the designated attribute is numerical (Frees 2009;
Bramer 2013).

Data clustering has been applied in actuarial science. For example, Campbell (1986) applied cluster analysis to identify
groups of car models with similar technical attributes for the purpose of estimating risk premium for individual car models.
Yao (2016) explored territory clustering for ratemaking in motor insurance. In the discussion paper (Institute and Faculty of
Actuaries 2018), Pryor mentioned using the k-means clustering algorithm to find earnings progression patterns in a large pen-
sion dataset. O’Hagan and Ferrari (2017) used data clustering to compress variable annuities to make nested stochastic simula-
tions practical to run. In Gan and Valdez (2016) and Gan and Huang (2017), the authors used data clustering to select
representative policies to build predictive models for valuing large portfolios of variable annuity contracts. Figure 1 shows a
data mining framework proposed by Gan and Huang (2017) for valuing a large portfolio of variable annuity contracts. In this
data mining framework, data clustering is used to select representative variable annuity contracts from a portfolio of contracts.

Address correspondence to Guojun Gau, Department of Mathematics, University of Connecticut, 341 Mansfield Road, Storrs, CT,
06269-1009. E-mail: emiliano.valdez@uconn.edu

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uaaj.

168

North American Actuarial Journal, 24(2), 168–186, 2020
# 2019 Society of Actuaries
ISSN: 1092-0277 print / 2325-0453 online
DOI: 10.1080/10920277.2019.1575242

http://crossmark.crossref.org/dialog/?doi=10.1080/10920277.2019.1575242&domain=pdf&date_stamp=2020-05-15
http://orcid.org/0000-0003-3285-7116
http://www.tandfonline.com/uaaj
http://www.tandfonline.com


The resulting representative variable annuity contracts and their fair market values (or other quantities of interest) are used to
build a predictive model, which is used to value the whole portfolio of contracts. The data mining framework has the potential
to reduce the runtime of the valuation process significantly because the predictive model is much faster than the Monte Carlo
valuation engine.

In this article, we give a review of data clustering and showcase its applications in actuarial science. To that end, we first
describe data clustering, the notion of clusters, data types, dissimilarity measures, and cluster validity. Then we introduce sev-
eral popular clustering algorithms. Finally, we illustrate the application of data clustering in the valuation of large portfolios of
variable annuity contracts.

The rest of this article is organized as follows. In Section 2 we introduce data clustering in detail. In Section 3, 4 and 5 we
present hierarchical, partitional, and scalable clustering algorithms. In Section 6 we apply data clustering to divide a large port-
folio of variable annuity contracts into clusters and use the results to build predictive models. Section 7 concludes with
some remarks.

2. DATA CLUSTERING
A typical clustering process consists of the following steps (Jain et al. 1999): pattern representation, dissimilarity measure

definition, clustering, data abstraction, and output assessment. The pattern representation step involves determining the number
and type of the attributes of the objects to be clustered. This step may also include feature selection and feature extraction,
which refer to the process of identifying the most effective subset of the original attributes to use in clustering and the process
of transforming the original attributes to new attributes, respectively. The dissimilarity measure definition step involves select-
ing a distance measure (distance measure and dissimilarity measure mean the same thing and are used interchangeably) that is
appropriate to the data domain. The actual clustering is performed in the clustering step, where a clustering algorithm is
applied to divide the data into a number of meaningful clusters. The data abstraction step involves extracting one or more pro-
totypes from each cluster to help comprehend the clustering results. In the final step, the clustering results are assessed through
some criteria.

2.1. Definition of Clusters
Although many clustering algorithms have been developed in the past several decades, there is no formal definition of clus-

ters. In fact, it is difficult and might be misplaced to formally define clusters (Everitt et al. 2011).
There are some operational definitions of clusters. For example, Carmichael, George, and Julius (1968) suggested that a

cluster is a set of data points whose distribution is continuous and relatively dense in the data space. Lorr (1983) suggested
that numerical data have two kinds of clusters: compact and chained. A compact cluster consists of data points that have high
mutual similarity. If any two data points in a set of data points can be connected by a path, then the set of data points forms a

TABLE 1
Major Tasks of Data Mining

Unsupervised learning Supervised learning

Data clustering Classification
Association rules Numerical prediction

FIGURE 1. Data Mining Framework for Estimating Fair Market Values of Guarantees Embedded in Variable Annuities.
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chained cluster. Figure 2 shows two datasets with different types of clusters. The first dataset has three compact clusters, while
the second dataset has two chained clusters.

Bock (1989) also suggested the following criteria for data points in a cluster:

1. Share the same or closely related properties
2. Have small mutual distances
3. Have “contacts” or “relations” with at least one other data point in the cluster and
4. Can be clearly distinguishable from the data points that are not in the cluster.

Everitt et al. (2011) also summarized some operational definitions of clusters. One definition is that a cluster is a set of data
points that are similar to each other and data points from different clusters are quite distinct.

2.2. Data Types
Data clustering algorithms typically work with standard tabular datasets that are organized as in Table 2. In the tabular data,

each column represents a variable, an attribute, or a feature. Each row denotes a record, a data point, a pattern, an observation,
an object, an individual, an item, or a tuple.

In general, a variable can be classified as discrete or continuous. A discrete variable usually takes on a limited number of
values, while a continuous variable can take on a value between any two values. In terms of measurement scales, a variable
can be categorized as nominal, ordinal, interval, and ratio. Nominal data, also called categorical data, are discrete data without
a natural ordering. For example, the gender of a person is nominal. Ordinal data are discrete data with a natural order. For
example, the rank of wine quality is ordinal. Interval data are continuous data with a specific order and equal intervals. An

FIGURE 2. Two Datasets with Different Types of Clusters.

TABLE 2
Dataset in Tabular Form

V1 V2 � � � Vd

x1 x11 x12 � � � x1d
x2 x21 x22 � � � x2d
..
. ..

. ..
. � � � ..

.

xn xn1 xn2 � � � xnd
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example of interval data is temperatures. Ratio data are interval data with a natural zero. For example, the amount of money
invested in a fund is ratio data.

Depending on the types of the variables, a dataset can be generally classified as discrete, continuous, or mixed-type. In a
discrete dataset, all variables are discrete. In a continuous dataset, all variables are continuous. If a dataset has both discrete
and continuous variables, then it is a mixed-type dataset. Clustering algorithms usually vary according to different types
of datasets.

2.3. Dissimilarity Measures
Dissimilarity measures, also referred to as distance measures, play an important role in data clustering because almost all

clustering algorithms rely on some distance measures to define clustering criteria. Mathematically, a distance measure D is a
binary function that satisfies the following conditions (Anderberg 1973):

1. Dðx; xÞ � 0 (Nonnegativity)
2. Dðx; yÞ ¼ Dðy; xÞ (Symmetry)
3. Dðx; yÞ ¼ 0 if and only if x ¼ y (Reflexivity)
4. Dðx; zÞ � Dðx; yÞ þ Dðy; zÞ (Triangle inequality),

where x; y; and z are arbitrary data points. The smaller the distance between two data points, the greater the similarity.
For continuous data, a widely used distance measure is the Minkowski distance defined by

Dmin x; yð Þ ¼
Xd
j¼1

jxj � yjjp
0
@

1
A

1
p

; (1)

where d is the dimensionality of the dataset and p � 1: The Euclidean distance is a special case of the Minkowski distance
when p¼ 2. For discrete data, a commonly used distance measure is the simple matching distance defined by

Dsim x; yð Þ ¼
Xd
j¼1

d xj; yjð Þ; (2)

where dð�; �Þ is defined as

d xj; yjð Þ ¼ 0; if xj ¼ yj;
1; if xj 6¼ yj:

�
(3)

For mixed-type data, Gower (1971) proposed the following general distance measure:

Dgower x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Xd
j¼1

d2 xj; yjð Þ

vuut ; (4)

where dðxj; yjÞ is a distance measure for the jth variable that is defined differently for different types of variables. For ordinal
and continuous attributes, dðxj; yjÞ is defined as

d xj; yjð Þ ¼ jxj�yjj
Rj

;

where Rj is the range of the jth attribute. For nominal attributes, dðxj; yjÞ ¼ dðxj; yjÞ; where dð�; �Þ is defined in Equation (3).
All three measures defined above satisfy the conditions for distance measures.
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2.4. Taxonomy of Clustering Algorithms
Over the past several decades, many clustering algorithms have been proposed. These clustering algorithms can be divided

into two categories: partitional and hierarchical clustering algorithms. A partitional clustering algorithm divides a dataset into
a single partition. By contrast, a hierarchical clustering algorithm divides a dataset into a sequence of nested partitions. Figure
3 shows a diagram of different categories of clustering algorithms.

Partitional clustering algorithms can be further divided into two categories: hard and soft clustering algorithms. Hard clus-
tering algorithms are also referred to as crisp clustering algorithms. In hard clustering, each data point belongs to exactly one
cluster. Soft clustering algorithms are also referred to as fuzzy clustering algorithms. In soft clustering, a data point can belong
to multiple clusters with some weights that specify the degrees of membership.

Hierarchical clustering algorithms can also be further divided into two categories: agglomerative hierarchical clustering
algorithms and divisive hierarchical clustering algorithms. An agglomerative hierarchical clustering algorithm uses a bottom-
up approach by starting with every data point as a cluster and repeating merging the closest pair of clusters based on some cri-
terion until only one cluster is left. By contrast, a divisive hierarchical clustering algorithm uses a top-down approach by start-
ing with the whole dataset as a single cluster and repeating splitting large clusters into small ones until every cluster contains
only one data point.

2.5. Cluster Validity
Cluster validity refers to a collection of quantitative and qualitative measures or indices used to evaluate and assess the clus-

tering results (Jain and Dubes 1988). There are three types of cluster validity indices (Jain and Dubes 1988; Theodoridis and
Koutroubas 1999; Halkidi, Batistakis, and Vazirgiannis 2002a,b): internal, external, and relative. Internal validity indices
evaluate the clustering results based only on quantities and features inherited from the underlying dataset. External validity
indices evaluate the clustering results based on a prespecified structure imposed on the underlying dataset. Both internal and
external validity indices are related to statistical testing. In addition, external validity indices are usually time-consuming to
calculate because the Monte Carlo simulation is involved (Halkidi, Batistakis, and Vazirgiannis 2002b).

Unlike internal and external validity indices, relative validity indices evaluate the results of a clustering algorithm against
the results of a different clustering algorithm or the results of the same algorithm but with different parameters. For example,
the corrected Rand index (Hubert and Arabie 1985), also called the adjusted Rand index, is a popular relative validity index
used to compare two partitions. The corrected Rand index between two partitions C ¼ fC1; C2, :::;Ck1g and B ¼
fB1;B2; :::;Bk2g is defined as follows (Hubert and Arabie 1985):

R ¼
n
2

� �Pk1
i¼1

Pk2
j¼1

nij
2

� �
�Pk1

i¼1
ni�
2

� �Pk2
j¼1

n�j
2

� �
1
2

n
2

� � Pk1
i¼1

ni�
2

� �
þPk2

j¼1
n�j
2

� �� �
�Pk1

i¼1
ni�
2

� �Pk2
j¼1

n�j
2

� � ; (5)

FIGURE 3. Taxonomy of Clustering Algorithms.
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where nij ¼ jCi \ Bjj; ni� ¼ jCij; n�j ¼ jBjj; and n is the total number of data points. The value of R ranges from –1 to 1. If
R¼ 1, then the two partitions are the same. If R is negative, then the two partitions agree by chance.

For a list of relative validity indices, readers are referred to Halkidi, Batistakis, and Vazirgiannis (2002a,b) and Gan, Ma,
and Wu (2007).

3. PARTITIONAL CLUSTERING ALGORITHMS
In this section, we introduce two popular partitional clustering algorithms: the k-means algorithm and the fuzzy c-

means algorithm.

3.1. k-Means
Among many clustering algorithms that have been developed in the past several decades, the k-means algorithm is perhaps

the most widely used clustering algorithm due to its simplicity and efficiency. The k-means algorithm was independently
developed by Sebestyen (1962) and Macqueen (1967) as a strategy that attempts to minimize within-group variation
(Thorndike 1953; Cox 1957; Fisher 1958).

Given a set of n data points X ¼ fx1; x2; :::; xng; the k-means algorithm aims to divide the dataset into k clusters by mini-
mizing the following objective function:

P U;Zð Þ ¼
Xk
l¼1

Xn
i¼1

uilkxi�zlk2; (6)

where k is the desired number of cluster specified by the user, U ¼ ðuilÞn�k is an n � k partition matrix, Z ¼ fz1; z2; :::; zkg is a
set of cluster centers, and k � k is the L2 norm or Euclidean distance. The partition matrix U satisfies the following conditions:

uil 2 0; 1f g; i ¼ 1; 2; :::; n; l ¼ 1; 2; :::; k; (7a)

Xk
l¼1

uil ¼ 1; i ¼ 1; 2; :::; n: (7b)

The partition matrix U contains the information about the cluster memberships of the individual data points.
The k-means algorithm is an approximate algorithm that aims to minimize the objective function (Selim and Ismail 1984;

Bobrowski and Bezdek 1991). It consists of two phases: the initialization phase and the iteration phase. In the initialization
phase, k initial cluster centers are selected randomly. In the iteration phase, the algorithm repeats updating the partition matrix
U and the cluster centers Z until some criterion is met. The pseudo-code of the k-means algorithm is shown in Algorithm 1.
From the pseudo-code, we see that the k-means algorithm alternatively updates the partition matrix and the cluster centers in
the iteration phase. Note that there are other criteria to terminate the algorithm. For example, the algorithm can be stopped if
the objective function value does not change much or a maximum number of iterations is reached.

Algorithm 1: Pseudo-code of the k-means algorithm.

Input: A dataset X, k
Output: k clusters

1 Initialize z1; z2; :::; zk by randomly selecting k points from X;
2 repeat
3 Calculate the distance between xi and zj for all 1 � i � n and 1 � j � k;
4 Update the partition matrix U according to Theorem 3.1;
5 Update cluster centers Z according to Theorem 3.2;
6 until No further changes of the partition matrix;
7 Return the partition matrix U and the cluster centers Z;

Theorem 3.1 Let the cluster centers Z ¼ fz1; z2; :::; zkg be fixed. Then the objective function given in Equation (6) is mini-
mized if and only if
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uil ¼ 1; if kxi�zlk ¼ min1�j�kkxi�zjk;
0; if otherwise;

�

for i ¼ 1; 2; :::; n and l ¼ 1; 2; :::; k:

Theorem 3.2 Let the partition matrix U be fixed. Then the objective function given in Equation (6) is minimized if and
only if

zlj ¼
Pn

i¼1 uilxijPn
i¼1 uil

; l ¼ 1; 2; :::; k; j ¼ 1; 2; :::; d;

where zlj is the jth component of zl, xij is the jth component of xi, and d is the dimensionality of the dataset.

3.2. Fuzzy c-Means
The fuzzy c-means (FCM) algorithm (Dunn 1973; Bezdek, Ehricle, and Full 1984) is a popular fuzzy clustering algorithm.

The FCM algorithm has some advantages over the k-means algorithm. For example, the FCM algorithm can reduce the number
of local minima of the objective function (Klawonn 2004).

The FCM algorithm is formulated to minimize the following objective function:

Q U;Zð Þ ¼
Xk
l¼1

Xn
i¼1

uailkxi�zlk2; (8)

where U ¼ ðuilÞn�k is a n � k fuzzy k partition matrix, a>1 is the fuzzifier, Z ¼ fz1; z2; :::; zkg is a set of k centers, and k � k is
the L2-norm or Euclidean distance. Here a fuzzy k partition of a dataset of n points is a n � k matrix that satisfies the following
conditions:

uil 2 0; 1½ �; i ¼ 1; 2; :::; n; l ¼ 1; 2; :::; k; (9a)

Xk
l¼1

uil ¼ 1; i ¼ 1; 2; :::; n; (9b)

Xn
i¼1

uil>0; l ¼ 1; 2; :::; k: (9c)

Similar to the k-means algorithm, the FCM algorithm employs an iterative process to minimize the objective function.
Algorithm 2 shows the pseudo-code of the FCM algorithm. In addition to the parameter k, the FCM algorithm requires the par-
ameter a, which is called the fuzzifier. When a ! 1; we will have uil ! 1

k : In this case, a data point belongs to all clusters
with equal memberships. When a ! 1; one of ui1; ui2; :::; uik will approach 1 and all others will approach 0. In this case, the
FCM algorithm degenerates to the k-means algorithm.

Algorithm 2: Pseudo-code of the fuzzy c-means algorithm.

Input: A dataset X, k, a, �
Output: The fuzzy partition matrix, k cluster centers

1 Initialize z1; z2; :::; zk by randomly selecting k points from X;
2 repeat
3 Calculate the distance between xi and zj for all 1 � i � n and 1 � j � k;
4 Update the fuzzy partition matrix U according to Theorem 3.3;
5 Update cluster centers Z according to Theorem 3.4;
6 until The maximum change of the elements of U is less than �;
7 Return the fuzzy partition matrix U and the cluster centers Z;
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Theorem 3.3 Let the cluster centers Z ¼ fz1; z2; :::; zkg be fixed. Then the objective function given in Equation (8) is mini-
mized if and only if

uil ¼ kxi�zlk�
2

a�1Pk
s¼1 kxi � zsk�

2
a�1

for i ¼ 1; 2; :::; n and l ¼ 1; 2; :::; k:

Theorem 3.4 Let the partition matrix U be fixed. Then the objective function given in Equation (6) is minimized if and only if

zlj ¼
Pn

i¼1 u
a
ilxijPn

i¼1 u
a
il

; l ¼ 1; 2; :::; k; j ¼ 1; 2; :::; d;

where zlj is the jth component of zl, xij is the jth component of xi, and d is the dimensionality of the dataset.

4. HIERARCHICAL CLUSTERING ALGORITHMS
In this section, we introduce some hierarchical clustering algorithms. Broadly speaking, this class of algorithms subdivide

the dataset into a sequence of nested partitions.

4.1. Agglomerative Hierarchical Algorithms
Agglomerative hierarchical clustering algorithms are bottom-up algorithms that start with every single data point as a clus-

ter and repeat merging clusters until only one cluster is left. Algorithm 3 shows the pseudo-code of an agglomerative hierarch-
ical algorithm. From the pseudo-code, we see that agglomerative hierarchical clustering algorithms require a way to measure
the distance between clusters to decide which two clusters to merge at each step.

Algorithm 3: Pseudo-code of an agglomerative hierarchical algorithm.

Input: A dataset X
Output: Nested partitions

1 Let Ci be the cluster containing only xi for i ¼ 1; 2; :::; n;
2 Calculate the distance between Ci and Cj for all 1 � i � n and 1 � j � n;
3 repeat
4 Merge two clusters that have the minimum distance to form a new cluster;
5 Calculate the distances between the new cluster and the remaining clusters
6 until Only one cluster is left;
7 Return the nested partitions;

Lance and Williams (1967) proposed a recurrence formula that calculates the distance between a cluster and another cluster
formed by the fusion of two clusters. Let Ci, Cj, and Ck be three clusters. Let Ci [ Cj be the cluster formed by merging Ci and
Cj. The Lance-Williams formula calculates the distance between Ck and Ci [ Cj as

D Ck;Ci [ Cjð Þ ¼ aiD Ck;Cið Þ þ ajD Ck;Cjð Þ þ bD Ci;Cjð Þ þ cjD Ck;Cið Þ�D Ck;Cjð Þj; (10)

where ai, aj, b, and c are parameters. According to different settings of the parameters, agglomerative hierarchical clustering
algorithms can be further divided into single-linkage, complete-linkage, group average, weighted group average, centroid,
median, and Ward’s methods, as shown in Table 3.

The single-linkage algorithm is one of the simplest hierarchical clustering algorithm. This algorithm was first proposed by
Florek et al. (1951) and then independently by McQuitty (1957) and Sneath (1957). From the Lance-Williams formula, we see
that the single-linkage algorithm calculates the distance between two clusters as
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D Ck;Ci [ Cjð Þ ¼ 1
2
D Ck;Cið Þ þ 1

2
D Ck;Cjð Þ� 1

2
jD Ck;Cið Þ�D Ck;Cjð Þj

¼ min D Ck;Cið Þ;D Ck;Cjð Þ� 	
:

(11)

As a result, the single-linkage algorithm is also referred to as the nearest neighbor clustering algorithm, the minimum algo-
rithm, and the connectedness algorithm (Rohlf 1982).

The complete-linkage algorithm uses the furthest neighbor distance to measure the dissimilarity of two clusters because
from the Lance-Williams formula we have

D Ck;Ci [ Cjð Þ ¼ 1
2
D Ck;Cið Þ þ 1

2
D Ck;Cjð Þ þ 1

2
jD Ck;Cið Þ�D Ck;Cjð Þj

¼ max D Ck;Cið Þ;D Ck;Cjð Þ� 	
:

(12)

The group average algorithm uses the average distances between the points in two clusters to measure the dissimilarity
between the two clusters. To see this, we suppose that

D C;C0ð Þ ¼ 1
jCj � jC0j

X
x2C;y2C0

D x; yð Þ;

where C and C0 are two nonempty, nonoverlapping clusters and Dðx; yÞ denotes the distance between two points. Then from
the Lance-Williams formula, we have

D Ck;Ci [ Cjð Þ ¼ jCij
jCij þ jCjj

P
x2Ck ;y2Ci

D x; yð Þ
jCkj � jCij þ jCjj

jCij þ jCjj

P
x2Ck ;y2Cj

D x; yð Þ
jCkj � jCjj

¼ 1
jCij þ jCjj

 �jCkj

X
x2Ck;y2Ci[Cj

D x; yð Þ:
(13)

The weighted group average algorithm updates the distances in a similar way as does the group average algorithm.
However, the weighted group average ignores the sizes of the clusters merged to form the new cluster. From the Lance-
Williams formula, the weighted group average algorithm calculates the distance as follows:

D Ck;Ci [ Cjð Þ ¼ 1
2
D Ck;Cið Þ þ 1

2
D Ck;Cjð Þ: (14)

TABLE 3
Commonly Used Parameters for Lance-Williams Formula, Where ni, nj, and nk Denote Number of Data Points in Ci, Cj,

and Ck, Respectively

Algorithm ai aj b c

Single-linkage 1
2

1
2

0 � 1
2

Complete-linkage 1
2

1
2

0 1
2

Group average ni
niþnj

nj
niþnj

0 0

Weighted group average 1
2

1
2

0 0
Centroid ni

niþnj
nj

niþnj
� ninj

ðniþnjÞ2
0

Median 1
2

1
2 � 1

4
0

Ward’s niþnk
niþnjþnk

njþnk
niþnjþnk

� nk
niþnjþnk

0
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The previous four agglomerative hierarchical algorithms are called graph algorithms because the distance between a cluster
and the newly formed cluster depends only on the distance between the cluster and the two clusters merged to form the new
cluster. Unlike these graph algorithms, the last three agglomerative hierarchical algorithms (i.e., centroid, median, and Ward’s)
are called geometric algorithms.

Under the centroid algorithm, we can show that the distance between two nonempty, nonoverlapping clusters is calculated
as

D C;C0ð Þ

¼ 1
jCj � jC0j

X
x2C

X
y2C0

d x; yð Þ� 1

2jCj2
X
x2C

X
y2C

D x; yð Þ� 1

2jC0j2
X
x2C0

X
y2C0

D x; yð Þ

¼ 1

2jCj2jC0j2
X
x12C

X
x22C

X
y12C0

X
y22C0

D x1; y1ð Þ þ D x2; y2ð Þ�D x1; x2ð Þ�D y1; y2ð Þ� 
:

(15)

If squared Euclidean distance is used, the above equation becomes

D C;C0ð Þ ¼
Xd
j¼1

1
jCj
X
x2C

xj � 1
jC0j

X
y2C0

yj

 !2

;

where d is the dimensionality of the dataset.
In the centroid algorithm, the distance between two clusters depends on the size of the clusters. If the sizes of the two clus-

ters to be merged are quite different, then the centroid of the new cluster will be very close to that of the larger cluster. The
median algorithm was proposed by Gower (1967) to alleviate the disadvantage of the centroid algorithm.

The Ward’s method minimizes the loss of information associated with merging two clusters (Ward 1963; Ward and Hook
1963), where the loss of information is measured by the sum of squared errors. If the squared Euclidean distance is used, the
sum of squared errors for a cluster C is calculated as

SSE Cð Þ ¼
Xd
j¼1

X
x2C

xj � ljð Þ2; (16)

where lj is the jth component of the center of C:

lj ¼
1
jCj
X
x2C

xj:

For examples of various agglomerative hierarchical clustering algorithms, readers are referred to Gan, Ma, and Wu (2007,
Chapter 7).

4.2. Divisive Hierarchical Algorithms
Unlike agglomerative hierarchical clustering algorithms, divisive hierarchical clustering algorithms use a top-down approach to

construct the nested partitions. At each step of a divisive algorithm, a cluster is split into two, and the number of clusters is
increased by one.

Divisive hierarchical algorithms are usually time-consuming because there are many nontrivial ways to divide a cluster. In
fact, there are 2jCj�1 nontrivial different ways to divide a cluster C. However, it is possible to construct divisive algorithms
without enumerating all possible divisions. For example, DIANA (divisive analysis) (Kaufman and Rousseeuw 1990) is an
example of divisive hierarchical clustering algorithms.

5. SCALABLE CLUSTERING ALGORITHMS
Most of the existing clustering algorithms focus on dividing a dataset into a small number of clusters. As the size of a data-

set grows, the number of clusters into which people wish to partition also grows. In some situations, clustering a dataset is the
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preliminary step of data analysis. In these cases, the clustering results are used as input in subsequent steps to build predictive
models, which require a large number of clusters to produce accurate predictions (see, e.g., Gan and Huang 2017). In this sec-
tion, we introduce some clustering algorithms that are efficient in dividing a large dataset into a large number of clusters.

5.1. TFCM
The TFCM (truncated fuzzy c-means) is an algorithm proposed by Gan, Lau, and Ma (2016) as an extension of the FCM

algorithm to divide a large dataset into a large number of clusters in an efficient way. The main idea behind the TFCM algo-
rithm is to reduce the number of distance calculations during the iterative process of the FCM algorithm.

To describe the TFCM algorithm, we let X ¼ fx1; x2; :::; xng be a dataset containing n data points. Let k be the desired num-
ber of clusters. Let T be an integer such that 1 � T � k and let UT be the set of fuzzy partition matrices U such that each row
of U has at most T nonzero entries, that is, U 2 UT if U satisfies the following conditions given in Equation (9) and

j l : uil>0f gj � T; i ¼ 1; 2; :::; n; (17)

where j � j denotes the number of elements in a set.
The TFCM algorithm and the FCM algorithm share the same objective function. However, the constraints of the objective

function are different as mentioned above. The goal of the TFCM algorithm is to find a truncated fuzzy partition matrix U and
a set of cluster centers Z that minimizes the following objective function:

P U;Zð Þ ¼
Xn
i¼1

Xk
l¼1

uail kxi � zlk2 þ �
� �

; (18)

where a>1 is the fuzzifier, U 2 UT ;Z ¼ fz1; z2; :::; zkg is a set of cluster centers, k � k is the L2-norm or Euclidean distance,
and � is a small positive number used to prevent division by zero.

To solve the optimization problem, the TFCM algorithm uses an alternative updating scheme shown in Algorithm 2. Since
the constraints of the FCM algorithm and the TFCM algorithm are different, how the fuzzy partition matrix and the cluster
centers are updated is also different. For the TFCM algorithm, Theorem 5.1 and Theorem 5.2 describe how to update the fuzzy
membership U and how to update the cluster centers Z, respectively.

Theorem 5.1 Let the cluster centers Z be fixed. Then the fuzzy partition matrix U 2 UT that minimizes the objective function
(18) is calculated by

uil ¼
kxi � zlk2 þ �
� �� 1

a�1

P
s2Ii kxi � zsk2 þ �
� �� 1

a�1

; 1 � i � n; l 2 Ii; (19)

where Ii is the set of indices of the T centers that are closest to xi:

Theorem 5.2 Let the fuzzy partition matrix U 2 UT be fixed. Then the set of centers Z that minimizes the objective function
(18) is calculated by

zlj ¼
Pn

i¼1 u
a
ilxijPn

i¼1 u
a
il

¼
P

i2Cl
uailxijP

i2Cl
uail

; (20)

for l ¼ 1; 2; :::; k and j ¼ 1; 2; :::; d, where d is the dimension of the dataset, zlj is the jth component of zl, and Cl ¼ fi : uil>0g:

5.2. Hierarchical k-Means
The traditional k-means algorithm is extremely slow when used to divide a large dataset into a large number of clusters due

to the large number of distance calculations in each iteration. To address this scalability issue, hierarchical k-means (Nister and
Stewenius 2006) uses a divisive approach to apply the traditional k-means with small k’s repeatedly until the desired number
of clusters is reached.
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Algorithm 4: Pseudo-code of the hierarchical k-means algorithm.

Input: A dataset X, k
Output: k clusters

1 Apply the k-means algorithm to divide the dataset into two clusters;
2 repeat
3 Apply the k-means algorithm to divide the largest existing cluster into two clusters;
4 until The number of clusters is equal to k;
5 Return the k clusters;

Algorithm 4 shows the pseudo-code of the hierarchical k-means algorithm. In this hierarchical k-means algorithm, we divide
an existing cluster into two at each step. The clustering result is similar to a binary tree.

6. APPLICATION IN VARIABLE ANNUITY VALUATION
In this section, we illustrate the use of data clustering in the valuation of large portfolios of variable annuities (VAs). Data

clustering can be effectively used to select representative contracts for metamodeling, which has been demonstrated to be use-
ful for the valuation of large VA portfolios. Here we focus on using scalable clustering algorithms to select representative VA
contracts. We will evaluate the quality of the representative contracts using some validity measures as well as the prediction
accuracy by a predictive model.

6.1. Description of the Problem
A variable annuity is a tax-deferred retirement vehicle created by insurance companies to address concerns that many peo-

ple have about outliving their assets. Under a VA contract, the policyholder agrees to make one lump-sum or a series of pur-
chase payments to the insurer and the insurer agrees to make benefit payments to the policyholder, beginning either
immediately or at a future date. The policyholder invests the premiums in a number of mutual funds provided by the insurer.

One major feature of VAs is that they contain guarantees. Common guarantees include guaranteed minimum death benefit
(GMDB), guaranteed minimum withdrawal benefit (GMWB), guaranteed minimum income benefit (GMIB), and guaranteed
minimum maturity benefit (GMMB). Because of these attractive guarantee features, lots of variable annuity contracts have
been sold in the past two decades. However, these are financial guarantees that cannot be adequately addressed by traditional
actuarial approaches (Hardy 2003).

Many insurance companies adopted dynamic hedging to mitigate the financial risks associated with the guarantees
embedded in VAs. Dynamic hedging requires calculating the fair market values and Greeks (i.e., sensitivities of the fair market
values of the guarantees to major market indices) for every VA contract. Since the guarantees are complex, there is no closed-
form formula to calculate the fair market values and the Greeks. In practice, insurance companies resort to Monte Carlo simu-
lation to calculate the fair market values and Greeks of these guarantees.

However, Monte Carlo simulation is computationally intensive for valuing the guarantees for a large portfolio of VAs
(Dardis 2016). In fact, using Monte Carlo simulation to calculate the fair market values of a large portfolio of VAs may take
hours or several days. Recently the metamodeling approach has been proposed to address the computational problem. See, for
example, Hejazi and Jackson (2016), Gan and Huang (2017), Gan and Valdez (2017a), Hejazi, Jackson, and Gan (2017), Gan
(2018), Gan and Valdez (2018), and Xu et al. (2018). The metamodeling approach consists of the following major steps: (1)
selecting a small number of representative contracts, (2) using Monte Carlo simulation to calculate the fair market values (or
other quantities of interest) of the representative contracts, (3) building a regression model (i.e., the metamodel) based on the
representative contracts and their fair market values, and (4) finally using the regression model to value the whole portfolio of
variable annuity contracts. The main idea of metamodeling techniques is to construct a regression model based on a small
number of representative VA contracts to reduce the number of contracts that are valued by Monte Carlo simulation.

6.2. Description of the Data
To demonstrate the application of data clustering in VA valuation, we use a synthetic dataset created in Gan and Valdez

(2017b). The dataset contains 190,000 synthetic VA policies, each of which is described by 45 variables. Some of the variables
have identical values and thus are not useful for building predictive models. We exclude these variables from the clustering
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step as well as from the predictive model. The explanatory variables used to select representative VA contracts and build the
predictive model include the following:

� gender: Gender of the policyholder
� productType: Product type of the VA policy
� gmwbBalance: GMWB balance
� gbAmt: Guaranteed benefit amount,
� withdrawal: Total amount withdrawn
� FundValuei: Account value of the ith fund, for i ¼ 1; 2; . . . ; 10
� age: Age of the policyholder and
� ttm: Time to maturity in years.

Table 4 shows the summary statistics of the explanatory variables as well as the fair market values. Table 4(a) shows the
summary statistics of the continuous explanatory variables. Policyholders can select from 10 different investment funds. From
the summary statistics, we see that there are many zeros for the investment funds. The reason is that many policyholders do
not invest in all available funds. Table 4(b) shows the counts of the categorical variables. We see the distribution of female
and male; there are about 40% female and 60% male for each product type. However, the number of policies in each product
type is the same, that is, 10,000 for each of the 19 product types.

The fair market values of the guarantees are calculated by a simple Monte Carlo simulation model (Gan 2015; Gan and
Valdez 2017b). The summary statistics are shown in Table 4(c), and a histogram of the fair market values is shown in Figure
4. From the table, we see that there are negative fair market values. Since the fair market value for a VA contract is equal to
the present value of benefits minus that of the fees, it is negative when the present value of benefits is less than that of the
fees. From Figure 4, we see that the distribution of the fair market values is positively skewed.

6.3. Clustering Results
We apply the TFCM algorithm and the hierarchical k-means to divide the portfolio of VA contracts into 340 and 680 clus-

ters. Following the previous studies in Gan and Lin (2017), we set the initial number of clusters to be 10 times the number of
explanatory variables (including dummy binary variables) used to build predictive models. Then we test the clustering algo-
rithms again by doubling the initial number of clusters.

Since the portfolio of VA contracts does not contain any cluster labels (i.e., we do not know the clusters to which the VA
contracts belong), we use the relative within cluster sum of squares (RWCSS) to assess the accuracy of a single clustering
result. The RWCSS measure is defined as

RWCSS ¼
Pk

l¼1

P
x2Cl

Pd
j¼1 xj � zljð Þ2P

x2X
Pd

j¼1 xj � �xjð Þ2
; (21)

where Cl denotes the lth cluster, zl is the center of the lth cluster, and �x is the center of the whole dataset X. The RWCSS is the
ratio of the within cluster sum of squares when the whole dataset is divided into k clusters over that when the whole dataset is
in a single cluster. When k¼ 1, we have RWCSS¼ 1. When k is equal to the number of data points and each data point forms a
cluster, we have RWCSS¼ 0. Given the same number of clusters, the lower the RWCSS, the better the clustering result.

Table 5 shows the RWCSS measures and the runtime of the two clustering algorithms with different values for k. From the
table, we see that the TFCM algorithm outperforms the hierarchical k-means given the same k. For example, the RWCSS
obtained by TFCM with k¼ 340 is 0.82, which is lower than 0.90, which is the TWCSS obtained by the hierarchical k-means
with k¼ 340. In terms of speed, the hierarchical k-means is faster than the TFCM algorithm by an order of magnitude. The rea-
son is that the TFCM algorithm spends much of time in the initialization phase and in the iterative phase for sorting.

To compare the four clustering results obtained by the two clustering algorithms with different number of clusters (k), we
calculate the corrected Rand indices between all pairs of the clustering results. The corrected Rand indices are shown in Table
6. From the table, we see that the clustering results are similar as the indices are larger than 0.5.
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6.4. Predictive Modeling Results
We also evaluate the quality of the clustering results produced by the two clustering algorithms based on the predictive

models that use the clustering results as inputs. In particular, we use the ordinary kriging model to evaluate the quality of the
clustering results. The ordinary kriging model has been used to predict fair market values in previous studies. See, for example,
Gan and Huang (2017).

To measure the accuracy of the ordinary kriging model, we use the following two measures: the percentage error and the
R2. The percentage error measures the aggregate accuracy of the result at the portfolio level because the errors at the individual

TABLE 4
Summary Statistics of Explanatory Variables and Fair Market Values

(a) Summary Statistics of Continuous Variables

Min 1st Q. Median 3rd Q. Max

gmwbBalance 0.00 0.00 0.00 0.00 499,708.73
gbAmt 50,001.72 179,451.09 303,003.73 426,821.47 989,204.53
withdrawal 0.00 0.00 0.00 0.00 499,585.73
FundValue1 0.00 0.00 8,147.13 38,646.82 916,827.66
FundValue2 0.00 0.00 8,242.02 37,914.72 844,322.70
FundValue3 0.00 0.00 4,833.63 23,886.98 580,753.42
FundValue4 0.00 0.00 4,140.30 20,435.29 483,936.90
FundValue5 0.00 0.00 7,108.14 31,635.25 494,381.61
FundValue6 0.00 0.00 8,378.14 38,679.09 861,030.03
FundValue7 0.00 0.00 6,468.98 30,629.72 629,146.30
FundValue8 0.00 0.00 6,127.67 28,975.36 553,867.27
FundValue9 0.00 0.00 5,826.50 27,674.85 659,807.39
FundValue10 0.00 0.00 6,617.43 30,791.50 588,961.66
age 34.52 42.03 49.45 56.96 64.46
ttm 0.59 10.34 14.51 18.76 28.52

(b) Counts of Categorical Variables

gender gender

productType F M productType F M

ABRP 4068 5932 IBRP 4007 5993
ABRU 3974 6026 IBRU 4027 5973
ABSU 4054 5946 IBSU 4007 5993
DBAB 3974 6026 MBRP 3909 6091
DBIB 3948 6052 MBRU 3992 6008
DBMB 4013 5987 MBSU 3980 6020
DBRP 4002 5998 WBRP 3970 6030
DBRU 3952 6048 WBRU 4076 5924
DBSU 4038 5962 WBSU 3994 6006
DBWB 4022 5978

(c) Summary Statistics of Fair Market Values

Min 1st Q. Median 3rd Q. Max

fmv (46,973.43) 29,388.71 81,814.27 167,665.95 2,517,911.77
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contract level can offset each other. In general, the lower the absolute value of PE, the better the result. The R2 measures the
accuracy of the result at the individual contract level. The higher the R2, the more accurate the result.

To define these measures, we let yi and ŷi denote the fair market value of the ith variable annuity contract obtained from the
Monte Carlo simulation model and that estimated by the ordinary kriging method, respectively, for i ¼ 1; 2; :::; n; where n is
the total number of VA contracts in the portfolio. For the portfolio used in this article, n¼ 190,000. The percentage error at the
portfolio level is defined as

PE ¼
Pn

i¼1 yi � ŷið ÞPn
i¼1 yi

: (22)

R2 is defined as

R2 ¼ 1�
Pn

i¼1 yi�ŷið Þ2Pn
i¼1 yi�lð Þ2 ; (23)

where l is the average fair market value:

FIGURE 4. Histogram of Fair Market Values, in 1000s.

TABLE 5
Performance of TFCM Algorithm and Hierarchical k-Means on VA Data

Hkmean (340) Hkmean (680) TFCM (340) TFCM (680)

RWCSS 0.90 0.76 0.82 0.66
Runtime(sec) 130.02 136.19 2,647.11 5,544.81

TABLE 6
Corrected Rand Indices of Clustering Results

Hkmean (340) Hkmean (680) TFCM (340) TFCM (680)

Hkmean (340) 1.00 0.67 0.62 0.55
Hkmean (680) 0.67 1.00 0.51 0.62
TFCM (340) 0.62 0.51 1.00 0.56
TFCM (680) 0.55 0.62 0.56 1.00
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l ¼ 1
n

Xn
i¼1

yi:

Table 7 shows the performance of the ordinary kriging model based on different clustering results. From the table, we see
that given the same number of clusters, the accuracy of the ordinary kriging model based on the clustering result of TFCM is

TABLE 7
Accuracy and runtime of ordinary Kriging Model Based on Different Clustering Results, Numbers in Parentheses the

Numbers of Clusters

Hkmean (340) Hkmean (680) TFCM (340) TFCM (680)

PE 0.02 �0.02 �0.01 �0.02
R2 0.82 0.92 0.81 0.92
Runtime(sec) 329.50 787.11 334.62 808.99

FIGURE 5. Scatter and QQ Plots of Ordinary Kriging Model Based on Clustering Result from Hierarchical k-Means with k¼ 340.

FIGURE 6. Scatter and QQ Plots of Ordinary Kriging Model Based on Clustering Result from Hierarchical k-Means with k¼ 680.
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similar to that based on the clustering result of hierarchical k-means. For example, when k¼ 340, the R2 based on TFCM is the
same as that based on hierarchical k-means. The runtime of ordinary kriging doubles when the number of clusters doubles due
to the increasing number of distance calculation.

Figures 5 and 6 show the scatter plot and the QQ plot between the fair market values calculated by Monte Carlo simulation
and those estimated by ordinary kriging based on the hierarchical k-means algorithm. From the figures, we see that ordinary
kriging does not fit the tail well. However, increasing the number of representative contracts leads to more accurate results.
Figures 7 and 8 show the scatter plot and the QQ plot between the fair market values calculated by Monte Carlo simulation
and those estimated by ordinary kriging based on the TFCM algorithm. We see similar patterns as before.

In summary, our numerical experiments show that the hierarchical k-means algorithm is superior to the TFCM algorithm
when used to select representative VA contracts. The hierarchical k-means is faster than the TFCM algorithm by an order of
magnitude. In addition, the quality of the representative VA contracts produced by hierarchical k-means is comparable to that
of the representative VA contracts produced by the TFCM algorithm.

7. SUMMARY AND CONCLUSIONS
Data clustering is one of the most popular tools for exploratory data analysis and a major task of data mining. Since data

clustering works with unlabeled data, it is also known as unsupervised learning. As a result, data clustering has been applied to

FIGURE 7. Scatter and QQ Plots of Ordinary Kriging Model Based on Clustering Result from TFCM with k¼ 340.

FIGURE 8. Scatter and QQ Plots of Ordinary Kriging Model Based on Clustering Result from TFCM with k¼ 680.
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many scientific areas, including engineering, computer science, life science, and social science. In this article, we provided a
review of the fundamental concepts of data clustering and some clustering algorithms. In particular, we introduced distance
measures, cluster validity, and different types of clustering algorithms.

To demonstrate the applications of data clustering in actuarial science and insurance, we adopted an example that demon-
strates its usefulness in the valuation of large portfolios of VA contracts. We applied two scalable clustering algorithms, the
TFCM algorithm and the hierarchical k-means algorithm, to divide a large portfolio of variable annuity contracts into a large
number of clusters, which are used to select representative contracts for building predictive models. We also evaluated the
quality of the clustering results produced by the two clustering algorithms by the accuracy of the resulting predictive model.
Our numerical results show that, overall, the hierarchical k-means outperforms the TFCM algorithm.
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