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Preface

Variable annuities are life insurance products that offer various types of fi-
nancial guarantees. Insurance companies that have a large block of variable
annuity business face many challenges. For example, guarantees embedded in
variable annuity policies demand sophisticated models for pricing, financial re-
porting, and risk management. In practice, insurance companies rely heavily
on Monte Carlo simulation to calculate the fair market values of the guar-
antees because the guarantees are complicated and no closed-form valuation
formulas are available. One drawback of Monte Carlo simulation is that it is
extremely time-consuming and often prohibitive to value a large portfolio of
variable annuity contracts because every contract needs to be projected over
many scenarios for a long time horizon.

This monograph is devoted to metamodeling approaches, which have been
proposed recently in the academic literature to address the computational
problems associated with the valuation of large variable annuity portfolios. A
typical metamodeling approach involves the following four steps:

1. select a small number of representative variable annuity contracts
(i.e., experimental design),

2. use Monte Carlo simulation to calculate the fair market values (or
other quantities of interest) of the representative contracts,

3. build a metamodel (i.e., a predictive model) based on the represen-
tative contracts and their fair market values, and

4. use the metamodel to estimate the fair market value for every con-
tract in the portfolio.

Using metamodeling approaches can significantly reduce the runtime of valu-
ing a large portfolio of variable annuity contracts for the following reasons:
first, building a metamodel only requires using the Monte Carlo simulation
model to value a small number of representative contracts; second, the meta-
model is usually much simpler and more computationally efficient than Monte
Carlo simulation.

This book is primarily written for undergraduate students, who study ac-
tuarial science, statistics, risk management, and financial mathematics. It is
equally useful for practitioners, who work in insurance companies, consulting
firms, and banks. The book is also a source of reference for researchers and
graduate students with scholarly interest in computational issues related to
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xii Preface

variable annuities and other similar insurance products. The methods pre-
sented in the book are described in detail and implemented in R, which is
a popular language and environment for statistical computing and graphics.
Using the R code and datasets that accompany this book, readers can easily
replicate the numerical results presented in the book. In addition, readers can
modify the R code included in this book for their own use.

This book is divided into three parts. The first part, which consists of
Chapters 1, 2, and 3, introduces the computational problems associated with
variable annuity valuation, reviews existing approaches, and presents the
metamodeling approach in detail. The second part includes Chapters 4, 5,
and 6. This part introduces some experimental design methods, which are
used to select representative variable annuity contracts. In particular, we de-
scribe Latin hypercube sampling, conditional Latin hypercube sampling, and
hierarchical k-means for selecting representative policies. The third part in-
cludes Chapters 7 to 12 and introduces six metamodels: ordinary kriging,
universal kriging, GB2 regression, rank order kriging, linear model with in-
teractions, and tree-based models. These metamodels are predictive models
that have been studied in the academic literature for speeding up variable
annuity valuation. The dependencies of the chapters are shown in Figure 1.
We implement all the experimental design methods and metamodels using a
synthetic dataset, which is described in the appendix of this book.

Chapter 1 | Chapter 2 |
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Chapter 11
Chapter 12

FIGURE 1: Chapter dependencies.

This book has grown from several research projects on variable annuity
valuation undertaken by the authors at the University of Connecticut. First,
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