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Abstract. Variable annuities are important financial products that
result in 100 billion sales in 2018. These products contain complex guar-
antees that are computationally expensive to value, and insurance com-
panies are turning to machine learning for the valuation of large port-
folios of variable annuity policies. Although earlier studies, exemplified
by the regression modelling approach, have shown promising results, the
valuation accuracy is unsatisfying. In this paper, we show that one main
cause for the poor valuation accuracy is the inefficient selection of repre-
sentative policies. To overcome this problem, we propose a novel transfer-
learning based portfolio valuation framework. The framework first builds
a backbone deep neural network using historical Monte Carlo simulation
results. The backbone network provides a valuation-driven representation
for selecting the policies that best represent a large portfolio. Further-
more, the transferred network provides a way to adaptively extrapolate
from these representative policies to the remaining policies in the portfo-
lio. By overcoming a major difficulty faced by the popular Kriging model,
the need of matrix inversion, the transferred network can handle a large
number of representative policies to sufficiently cover a diverse portfolio.
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1 Introduction

A variable annuity (VA) is a retirement insurance product. Guarantees embedded
in variable annuities have complex risk profiles and many insurance companies
manage the risk through dynamic hedging [11], which results in a large portfolio
of individual policies. In order to simulate the performance of dynamic hedging
and determine the stochastic reserve of VA products, insurance companies rely
on nested Monte Carlo (MC) simulations [14]. However, the computation of MC
simulations for a large VA portfolio is time-consuming because each VA policy
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Fig. 1. Meta-modeling approach for VA portfolio valuation.

needs to be projected over many scenarios for a long time horizon. For example,
[9] implemented the nested MC simulations in Java, and they calculated the
partial dollar deltas along 1, 000 real-world paths at annual steps. For a portfolio
of 38, 000 VA policies, the calculation would take about 2.97 years to complete. In
practice, a portfolio needs to be reevaluated under multiple market assumptions.
Repeating the MC simulation for each market assumption is simply infeasible.

Recently, meta-modeling approaches [16] have been proposed in the litera-
ture [5,10,20] to address the aforementioned computational problem. Figure 1
shows that the meta-modeling approach involves three main steps: First, we
select a small number of representative VA policies by a clustering algorithm or
a sampling method; Then, we run the MC simulation to generate the valuation of
representative VA policies; Finally, we choose an appropriate meta-model (e.g.,
linear regression) to estimate the valuation of all policies in the large portfo-
lio based on the valuation of representative policies. Meta-modeling approaches
can significantly reduce the runtime because only a small number of represen-
tative policies are valuated by the high-accuracy MC simulation method, and
the whole portfolio of policies are valuated by the meta-model. Although the
meta-model may produce less accurate valuation for each policy, the aggregated
valuation for the whole portfolio can achieve a low overall error due to the nature
of dynamic hedging [5]. This attractive feature makes meta-modeling a popular
VA valuation framework.

However, current VA meta-modeling approach relies on efficient selection of
policies representing the whole portfolio. When a portfolio is large and with
diverse policies, this task is challenging and usually results in poor valuation
accuracy (See Sect. 3).

Our Contributions. We propose a new framework for accurate valuation
of a large VA portfolio. It builds on the commonly adopted clustering-based
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Table 1. Example predictor variables used for clustering VA policies.

Variable Description

gender Gender of the policyholder

age Age of the policyholder

productType Product type of the VA policy

gmwbBalance Guaranteed minimum withdrawal benefit (GMWB) balance

gbAmt Guaranteed benefit amount

FundValuei Account value of the ith fund, for i = 1,2,. . . ,n

ttm Time to maturity in years

approach. At the centre of our framework is the novel idea of clustering not at
the predictors themselves, but at a deeper representation guided by the target
performance of policies. This is done in a principled approach using deep neural
network motivated by the information bottleneck [17] principle (see Sect. 4.2 for
details).

The proposed method for selecting representative policies greatly improves
the coverage of the diverse policies in a dynamically hedged portfolio. This con-
tributes to superior performance in portfolio risk valuation. In addition to an
abstract representation to improve clustering, the deep neural network provides
a way to quickly re-estimate VA valuations under varying market assumptions.
Extensive empirical evaluations have confirmed that our framework provides
more accurate VA estimates, which also implies reduced dependency on the com-
putational expensive Monte Carlo simulation. Finally, our framework addresses
a major challenge faced by the state-of-the-art Kriging model, the need to com-
pute matrix inversion which inhibits the use of a moderately bigger number of
representative policies.

This paper is organized as follows. Section 2 reviews the related work, and
Sect. 4 proposes the transfer-learning framework. The details of experiments and
result analysis are presented in Sect. 5. Finally, in Sect. 6 we conclude the paper.

2 Related Work

During the past five years, a number of research papers on meta-modeling for
VA valuation have been published [2,3,5–8,10,12,13,20]. In [2] and [6], the k-
prototype algorithm was used to select representative VA policies and the Krig-
ing model was used as the meta-model. To address the drawback that the k-
prototype algorithm is not efficient for selecting a moderate number (e.g., 200)
of representative VA policies, [3] proposed the Latin hypercube sampling (LHS)
to select representative policies. In [5], a scalable clustering algorithm called the
truncated fuzzy c-means (TFMC) algorithm was used to select representative
policies. In [7], several methods for selecting representative VA policies were
compared. The authors found that the clustering method and the LHS method
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produce similar results, and both are better than other methods such as random
sampling.

In [12] and [20], neural networks were employed for the valuation of large VA
portfolio. In [13], the valuation of large VA portfolios was formulated as a spatial
interpolation problem. In [8], the authors studied the use of copula to model the
dependency of partial dollar deltas and found that the use of copula does not
improve the prediction accuracy of the meta-model. In [10], the authors used the
GB2 (generalized beta of the second kind) distribution to model the fair market
values. In [4], the author considered interactions between VA policy features in
linear models and found that linear models with interaction terms can produce
accurate predictions.

Among the meta-models considered in the aforementioned papers, the Krig-
ing model is one of the top performers in terms of accuracy. Therefore in this
paper, the Kriging model is used as the baseline for evaluating our proposed
framework. To describe the ordinary Kriging model, let z1, z2, . . ., zs be the
representative VA policies. For every j = 1, 2, . . . , k, let vj be the fair market
value of zj that is calculated by Monte Carlo simulation. Then the fair market
value of the VA policy xi in the portfolio is estimated as follows:

ŷi =

k
∑

j=1

wij · vj , (1)

where wi1, wi2, . . . , wik are the Kriging weights obtained by solving the following
linear equation system [15]:
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In the above equation, θi is a control variable used to make sure the sum of
the Kriging weights is equal to one,

Vrs = α + exp

(

−
3

β
D(zr, zs)

)

, r, s = 1, 2, . . . , k, (3)

and

Dij = α + exp

(

−
3

β
D(xi, zj)

)

, j = 1, 2, . . . , k, (4)

where D(·, ·) denotes the Euclidean distance, and both α ≥ 0 and β > 0 are
parameters.

One major drawback of the Kriging model is that the computational cost for
large k can be inhibitive, due to the need for matrix inversion.
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(a) All variables including
productType and Gender.
Distinct clusters are for-
med for different product
types.

(b) With productType re-
moved and Gender kept.
Two genders lead to two
nearly identical clusters.
But better mixture is
achieved in each cluster.

(c) With both Gender

and productType remo-
ved. The artefact due to
Gender is also removed.

Fig. 2. t-SNE visualization of policies in a portfolio, forming clusters from which rep-
resentative policies are selected.

3 Challenges in Representative Policy Selection

The success of meta-modeling relies on a set of well-balanced representative
policies. However, finding such representative policies in a large portfolio remains
some challenges. We will illustrate these challenges for clustering-based meta-
modeling, which also apply to the sampling-based approach.

In the clustering-based approach, the representative policies are chosen from
cluster centroids. The clustering of policies are based on a bag of variables
assumed to be potentially predictive of the policy performance. These may
include variables related to the policy holder and those related to the prod-
ucts themselves. Some example variables are shown in Table 1. Clearly until the
simulation is completed, we do not actually know whether or how much these
variables can predict the policy performance. Adding to this indiscriminating
use of variables, the clustering also runs on bare categorical variables (e.g.,
gender and productType). Such categorical variables, especially those with a
large number of levels, can create artificial clusters aligned mostly with their
levels. Figure 2 demonstrates the inherent challenge of selecting ’representative’
policies solely based on independent variables, which may or may not be predic-
tive of target variable (policy valuation in this case). In other words, noisy or
irrelevant policies-level features may impose undue influence on the clustering
results, leading to unreliable ‘representative’ policies. Clearly the above diffi-
culties of finding truly representative policies also apply to the sampling-based
approach. The problem needs to be addressed for meta-modeling to achieve more
reliable valuation.

4 Method

In this section, we present the transfer-learning (TL) based framework. Figure 3
shows the major steps in our framework, and the difference with Fig. 1
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Fig. 3. The proposed model. The dashed line highlights the new components intro-
duced. A deep neural network is trained using historical data or data from an approxi-
mate (simplified) simulation (Sect. 4.1). The trained network provides both a regulated
space for robust policy clustering (Sect. 4.2) and a base model that can be transferred
for extrapolation (Sect. 4.3).

(the traditional approach) has been highlighted with bold arrows in Fig. 3. In
general, the proposed transfer-learning (TL) framework consists of the following
five major steps.

1. Fit a multi-layered (deep) model based on a large number of historical simu-
lations, under a potentially different market scenarios.

2. Obtain feature representations from an intermediate layer, which also forms
a manifold of the portfolio, then use a data clustering algorithm to find a
small number of representative policies.

3. With the configurations of the target market, run the Monte Carlo simulation
for the valuation of representative policies.

4. Fine-tune the pre-trained model using simulation results of representative
policies.

5. Use the transferred model to value all policies in the portfolio.

4.1 Build a Deep Neural Network Using Historical Data

This step builds a deep neural network that provides both a representation for
clustering and a base model for transfer learning. Figure 4 shows the network
architecture. To train such a network, we exploit available historical simulation
data for similar VA products, potentially under a different set of market assump-
tions. When such historical simulation data is not available, we rely on the fact
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Fig. 4. The transfer learning architecture

that Monte Carlo simulation can be simplified with a much lower resolution to
trade simulation accuracy for efficiency. A network trained on such a proxy tar-
get variable is often sufficient as a base model. With the proxy training labels,
we train a dense network with three hidden layers.

4.2 Clustering on Hidden-Layer Representation

With the neural network trained, we perform the following steps to obtain the
representative contracts from a portfolio.

1. Feed contacts to the network and obtain the hidden-layer representations.
2. Perform clustering on the obtained representations.
3. From the generated clusters, retrieve the cluster centers, which will become

the representative policies.

Performing clustering on deep features can overcome the problem of ineffi-
cient clustering as shown in Fig. 2, because performing unsupervised learning on
such features is a highly effective technique used by many deep learning practi-
tioners. For example, deep representation was recently used to improve robust-
ness in video anomaly detection [19]. Such representation can be extracted by
deep neural network, which can transform input signals through multiple hidden
layers to output layer. More specifically, when model training begins, the net-
work receives an input X, and successively processes it through hidden layers,
where the output of previous layer is the input of next layer. The closer the
hidden layer is to the output layer, the more relevant features can be captured.

In our setup, the deep representation can be viewed as the result of reg-
ulating input features using the (proxy) target variable. Formally, it can be
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explained via the information bottleneck principle. The recent work by Tishby
and Zaslavsky [18] provides a formal structure for understanding the latent rep-
resentations in terms of information processing. The idea of information bottle-

neck principle is that a network rids noisy input data of extraneous details as
if by squeezing the information through a bottleneck, preserving information in
the data that is relevant to the outputs. As can be seen in Fig. 2, clustering
on the original inputs cannot distinguish relevant information from irrelevant
information.

More formally, assume an input random variable X ∈ X , and an output
random variable Y ∈ Y, given a join distribution p(X,Y ), the relevant informa-

tion is defined as the mutual information I(X;Y ), where we assume statistical
dependence between X and Y . In this case, we can capture relevant features by a
compressed mapping of input variable X that discards the information irrelevant
to Y .

In a multi-layer network, the hidden layer representation H provides an infor-
mation compression of X guided by Y . In terms of the mutual information, neural
network training tries effectively to minimise I(X;H) and maximise I(H;Y ).

4.3 Transfer Learning

The previous step produces a deep network that maps each policy to a proxy
measurement of its valuation. It forms a base model that can recalibrate using
the high-resolution Monte Carlo simulation results on representative policies
under the target market condition.

Let (P ) be the portfolio of policies as shown in Fig. 1. The pre-trained net-
work can be viewed as a function f(c; θs) minimising

∑

c∈P L(f(c; θs), ys
c), where

ys
c is the valuation used for pre-training. With the set R of the representative

policies, we fine-tune the network so that θs is replaced by θt that minimises
∑

c∈R L(f(c; θt), yt
c), where yt

c is the valuation generated by high-resolution
Monte Carlo simulation.

5 Experiment and Analysis

Due to the demanding computational requirement of Monte Carlo simulation,
our experiment will be based on existing simulation results for a large VA port-
folio under five different sets of market assumptions. We will treat the first set
of simulation results as given and use it to train a deep neural network. From
the remaining four sets of results, we will simulate the process of re-valuation of
the representative policies under those market assumptions. They also provide
the ground truth for evaluating the valuation accuracy of the transferred model.

5.1 Data Description

To evaluate the performance of our transfer-learning framework, we follow [5]
and use a synthetic portfolio. The portfolio contains 38, 000 synthetic variable
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annuity policies, described by 34 features including 2 categorical features (See
Table 1).

Five sets of deltas have been generated using Monte Carlo simulation as in
[5] under different market assumptions. Figure 5 shows a histogram of the first
set of deltas. We use this set of deltas to simulate the available historical data
for training the backbone network. The remaining four sets of deltas will be used
as the ground-truths for evaluating the transfer-learning model.

Fig. 5. A histogram of deltas in a portfolio under the first application market. The
wide range of deltas reflects the diverse policies in a portfolio with dynamic hedging.
It is crucial that the selected representative policies provide sufficient coverage of such
a diverse portfolio.

5.2 Performance Metrics

To evaluate the accuracy of the proposed model, we follow the strategy in [5] and
use the following two validation measures: the percentage error at the portfolio
level and R2. The percentage error and R2 is respectively defined as

PE(P) =

∑

ci∈P(ŷi − yi)
∑

ci∈P yi

, R2 = 1 −

∑

ci∈P(ŷi − yi)
2

∑

ci∈P(yi − µ)2
(5)

where yi describes the value of policy ci in the portfolio P from the high-
resolution Monte Carlo simulation. And ŷi is the corresponding estimate from
the neural network, µ = 1

n

∑

ci∈P yi is the average Delta value.

From the above equations we can see, PE and R2 are complimentary mea-
surements for the valuation accuracy. While R2 measures the fitness at the policy
level, PE directly measures the accuracy at the portfolio level. Therefore min-
imising PE is our primary objective.

5.3 Baseline Models

To verify the performance of proposed transfer-learning framework, two baseline
models are set. One is the meta-model in [5]. In that model, the TFCM++
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algorithm is used to obtain k cluster centres as representative policies. After
obtaining the Monte Carlo simulated deltas for these k representative policies,
Kriging is performed to extrapolate the delta values to other policies in the
portfolio. Please see [5] for more details.

(a) clustering on the input space (policy-
specific features).

(b) clustering on the hidden-layer represen-
tation.

Fig. 6. clustering on the input space (policy-specific features).

To demonstrate the value of transfer learning, we also use the neural network
(NN) model trained directly on the representative policies as another baseline.
For simplicity, we use the same representative policies selected by the backbone
network, and corresponding deltas are acquired via the MC simulation. How-
ever, no fine-tuning is applied, the neural network starts with random parame-
ter initialisation and is directly trained using the small number of representative
policies under a target market assumption.

5.4 Implementation Details of the Proposed Model

The deep network. Using the first set of deltas, we train a three-layer densely
connected network. From the third hidden layer, we obtain the representation of
the policies and perform clustering using K-means to obtain the representative
policies. The trained network is saved as the base network for transfer learning
under a different set of market assumptions.

Transfer learning. For each of the remaining four sets of market assumptions, we
obtain the deltas for representative policies. These additional deltas were used
to fine-tune the saved basic network. Detailed illustrations are shown in Fig. 4.

5.5 Results

Quality of Representative Policy Selection. To verify that the hidden
layer provides a better representation for selecting representative policies. We
randomly sample 5, 000 points on the input space and the representation space
respectively, and then group them into 5 clusters. The corresponding delta value
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range and distribution are shown in Fig. 6. Some similar clusters are presented in
Fig. 6a. For example, the leftmost two clusters have nearly identical distributions,
and similarly for the remaining three clusters, which suggests that the cluster-
ing on the input features will result in redundant representative policies, and
consequently inefficient use of the Monte Carlo simulation. In contrast, clusters
in Fig. 6b have distinct distributions, and they will likely lead to more distinct
representative policies.

Portfolio Estimation Accuracy. To demonstrate the superiority of proposed
model, we compare the TL model with Kriging model and NN model when
k = 100, 200 and 400. When k gets bigger, the baseline Kriging model becomes
infeasible due to the need for inverting a large matrix. Table 2 shows the accuracy
of three models. As we can see in this table, in each model, as the number of
clusters increases, PE reduces but R2 improves, which indicates that the larger
the number of representative policies, the higher the prediction accuracy. On
the other hand, in each setting, the accuracy of TL model is always the highest
among these models. For example, when k = 100, PE of Kriging model is 0.115
whereas TL model’s drops to 0.043. Similar trends can be observed in other
clusters, too. Moreover, with the increase of k, the advantage of the TL model
is more remarkable. The low R2 for the Kriging model suggests a poor model
fit. This is not surprising in views of the redundant clusters shown in Fig. 6a.

Overall, the transfer-learning framework outperforms the Kriging model and
the vanilla deep neural network in terms of the valuation accuracy.

Computing Cost. Table 3 shows the runtime of major steps of Kriging model
and TL model. The majority of the run time is still spent on generating Monte
Carlo simulation for the representative policies. In general, transfer-learning
framework does not take longer than the SoTA Kriging model, if a backbone
network is available. The fine-tuning step is faster than Kriging, especially when
the number of clusters k increases, because it avoids the need for matrix inver-
sion. The training of the backbone network took 54.90 s, a constant that is inde-
pendent of k.

Overall, the transfer-learning framework achieves improved accuracy (mea-
sured by PE) and shorter runtime (due to the avoidance of matrix inversion is
more pronounced). The differences are more pronounced as the number of clus-
ters k gets larger. For example, from Tables 2 and 3, when k = 400, PE of Kriging
model is 0.035, while TL model’s surprisedly drops to 0.001. This is achieved
with a shorter run-time than Kriging model. Therefore, the proposed framework
can have greater advantages in both estimation accuracy and computation time
when a portfolio has a greater diversity and requires more representative policies
for sufficient coverage.
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Table 2. Accuracy comparison of three models. k denotes the number of representative
policies.

k = 100 k = 200 k = 400

Kriging NN TL model Kriging NN TL model Kriging NN TL model

↓ PE 0.115 0.056 0.043 0.074 0.036 0.024 0.035 0.003 0.001

↑ R
2 0.324 0.437 0.445 0.392 0.452 0.485 0.446 0.577 0.661

Table 3. Runtime of the proposed TL framework and the baseline Kriging model.

k = 100 k = 200 k = 400

Kriging TL model Kriging TL model Kriging TL model

Clustering 1.63 1.46 3.35 3.16 8.10 7.82

Monte Carloa 722.34 722.34 1,444.68 1,444.68 2,889.36 2,889.36

Krigingb/Fine-tuning 3.07 2.65 7.30 2.86 14.79 3.88

Total 727.04 726.45 1455.33 1450.70 2912.25 2901.06
a,b Estimations derived from the results reported in [5].

6 Conclusions

We have proposed a new framework to address two challenges that current
meta-modeling approaches face in a large portfolio of VA policies: inefficient
selection of representative policies and the need for matrix inversion in Kriging.
Incorporating the principles of information bottleneck and transfer learning, the
framework achieves empirically validated improvement on the representative pol-
icy selection and the policy re-valuation under varying marketing assumption.
Furthermore, by avoiding matrix inversion in the popular Kriging model, the
proposed framework is able to handle a large number of representative policies,
which is critical for sufficient coverage of a diverse portfolio.

The current work can potentially be extended along several dimensions. In
particular in [1], we show that the clustering can be performed in a space of
reduced dimension, which can result in further improvement of the valuation
accuracy.
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