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Valuation of Large Variable Annuity Portfolios with Rank Order Kriging

Guojun Gan and Emiliano A. Valdez
Department of Mathematics, University of Connecticut, Storrs, Connecticut

Metamodels, which simplify the simulation models used in the valuation of large variable annuity portfolios, have recently
increased in popularity. The ordinary kriging and the GB2 (generalized beta of the second kind) regression models are examples
of metamodels used to predict fair market values of variable annuity guarantees. It is well known that the distribution of fair
market values is highly skewed. Ordinary kriging does not fit skewed data well but depends on only a few parameters that can be
estimated straightforwardly. GB2 regression can handle skewed data but parameter estimation can be quite challenging. In this
article, we explore the rank order kriging method, which can handle highly skewed data and depends only on a single parameter,
for the valuation of large variable annuity portfolios. Our numerical results demonstrate that the rank order kriging method per-
forms remarkably well in terms of fitting the skewed distribution and producing accurate estimates of fair market values at the
portfolio level.

1. INTRODUCTION
A variable annuity (VA) refers to an attractive insurance product that provides upside participation and downside protection

in both bull and bear markets. A main feature of variable annuities is that they contain guarantees (Hardy 2003; Ledlie et al.
2008; The Geneva Association 2013). Due to the attractive guarantee features, lots of variable annuity contracts have been
sold in the past decade. According to the Insured Retirement Institute, for example, new sales in the United States in 2016
were 102 billion dollars and the total assets under management was 1.9 trillion.

Due to limited reinsurance capacity, dynamic hedging is widely adopted by insurance companies to mitigate the financial
risks arising from their VA business. In fact, the hedging programs helped to save the industry about $40 billion in September
and October 2008 during the global financial crisis (Chopra et al. 2009). However, dynamic hedging requires computing
Greeks or sensitivities of the guarantees to major market factors. Because VA guarantees are relatively complex, their fair mar-
ket values, which are used to calculate Greeks, cannot be evaluated explicitly. Insurance companies rely heavily on Monte
Carlo simulation to calculate the fair market values. One major drawback of Monte Carlo simulation is that it is computation-
ally intensive to value a large VA portfolio because every VA contract needs to be projected over many scenarios for a long
time horizon (Dardis 2016).

During the past few years, metamodeling approaches have been used to address the computational problem arising from
VA hedging. A metamodel is a surrogate model intended to simplify the original model. Using a metamodeling approach to
estimate the fair market value (FMV) of a portfolio of VA contracts involves four major steps (Barton 2015):

1. Select a small number of representative VA contracts from the portfolio (experimental design).
2. Run Monte Carlo simulation to calculate the FMVs of the selected VA contracts.
3. Build a metamodel based on the selected VA contracts and the corresponding FMVs (predictive modeling).
4. Use the metamodel to estimate the FMVs of all VA contracts in the portfolio.

As seen from the above steps, metamodeling techniques do not require valuing the full portfolio. Because the metamodel is
much more computationally efficient than the Monte Carlo simulation model, it substantially reduces the valuation time.
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The metamodeling approach depends on two major components: an experimental design and a predictive model. Research
to date has focused on these two components. Gan (2013) used the k-prototypes clustering algorithm for the experimental
design and ordinary kriging as the metamodel. Gan and Lin (2015) used the k-prototypes algorithm to select representative VA
contracts and universal kriging for functional data as the metamodel. Because the k-prototypes algorithm is not efficient for
selecting a moderate number (e.g., 200) of representative VA contracts, Latin hypercube sampling (LHS; Gan 2015) and the
truncated fuzzy c-means algorithm (Gan and Huang 2017) have been proposed to select representative contracts. In particular,
Gan and Valdez (2016) investigated several experimental design methods and found that clustering and LHS are comparable
in accuracy and are better than other methods such as random sampling. Gan and Lin (2017) used the LHS and conditional
LHS methods with ordinary and universal kriging to calculate dollar deltas quickly for daily hedging purpose.

Hejazi and Jackson (2016) and Xu et al. (2018) used neural networks as metamodels for the valuation of large VA
portfolio. Hejazi, Jackson and Gan (2017) treated the valuation of large VA portfolios as a spatial interpolation problem
and studied several interpolation methods, including inverse distance weighting and radial basis function. Gan and
Valdez (2017a) studied the use of a copula to model the dependency of partial dollar deltas and found that using a
copula does not improve the prediction accuracy of the metamodel because the dependency is well captured by the
covariates. Gan and Valdez (2018) proposed the use of the GB2 (generalized beta of the second kind) distribution to
model the fair market values in order to address the skewness typically observed in the distribution of the fair market
values. Gan (2018) studied the use of linear models with interaction terms as metamodels for the valuation of large
VA portfolios.

Among the aforementioned metamodels, ordinary kriging and the GB2 regression model are two popular choices. The
advantage of ordinary kringing over the GB2 regression model is that the former depends only on a few parameters that can be
estimated straightforwardly. However, one drawback of ordinary kriging is that the dependent variable (i.e., the fair market
value) is assumed to follow a Gaussian distribution. This assumption is not appropriate for the fair market value of the guaran-
tees as the distribution of fair market values is positively skewed. Although the GB2 regression model addresses the skewness
of the dependent variable, estimating the parameters of the GB2 regression model posed additional challenges (Gan and
Valdez 2018).

In this article, we study the use of rank order kriging (Pachepsky, Radcliffe, and Selim 2003) to model the fair market val-
ues of VA guarantees. Rank order kriging is also known as quantile kriging. This method estimates the rank order of the
dependent variable given the values of the independent variables and transforms the estimated rank order to the original scale.
Rank order kriging has the advantages that it depends only on a few parameters and that it is effective for handling highly
skewed data (Juang, Lee, and Ellsworth 2000).

The remainder of this article is organized as follows. In Section 2, we give a description of the data we use to demonstrate
the usefulness of rank order kriging for VA valuation. In Section 3, we introduce and describe the rank order kriging method
in detail. In Section 4, we present some numerical results to show the performance of rank order kriging. Section 5 concludes
the article with some remarks.

2. DESCRIPTION OF THE DATA
We use the synthetic data set produced in Gan and Valdez (2017b) to evaluate the performance of the rank order kriging

method. This data set consists of a portfolio of 190,000 VA policies and their fair market values. Each VA policy is character-
ized by 45 features. Some features (e.g., fund fees) have identical values for all policies. We exclude these features and use the
remaining features as explanatory variables. The following list contains the variables we use for modeling the fair mar-
ket values:

� gender: Gender of the policyholder
� productType: Product type of the VA contract
� gmwbBalance: Guaranteed Minimum Withdrawal Benefit (GMWB) balance
� gbAmt: Guaranteed benefit amount
� FundValuei: Account value of the ith fund, for i ¼ 1, 2, . . . , 10
� age: Age of the policyholder. It is calculated from the birth date and the valuation date.
� ttm: Time to maturity in years. It is calculated from the valuation date and the maturity date.

Among the variables listed above, gender and productType are the only categorical variables. The portfolio contains 76,007
(about 40%) policies with female policyholders. There are 19 product types and each product type has 10,000 policies.
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Table 1 shows some summary statistics of the continuous variables. From the table, we see that except for age and ttm, all
variables are dollar amounts and have zeros. Table 2 shows some summary statistics of the fair market values. Many policies
have negative fair market values because for these policies the benefit is less than the risk charge. From Table 2 we also see
that the mean is much higher than the median, indicating that the distribution of the fair market values is positively skewed.
The histogram shown in Figure 1 confirms the skewness of the distribution.

The fair market values shown above were calculated by Monte Carlo simulation, which is computationally intensive. As
reported in Gan and Valdez (2017b), it would take a single CPU (central processing unit) about 108 hours to calculate the fair
market values for all of the policies in the portfolio.

3. RANK ORDER KRIGING
In this section, we describe the rank order kriging method in detail. Figure 2 shows a high-level procedure of this method.

From the figure, we see that in the rank order kriging method, standardized ranks are estimated and back transformed to get
the fair market values in the original scale.

3.1. Ordinary Kriging for Ranks
To describe the ordinary kriging method for ranks, let z1, z2, :::, zk be the k representative VA policies and let v1, v2, :::, vk

be the corresponding fair market values (or other quantities of interest). For j ¼ 1, 2, :::, k, let uj be the standardized rank of vj;
that is,

uj ¼ uðzjÞ ¼ rðvjÞ
k

, (1)

TABLE 1
Summary Statistics of the Continuous Variables

Min. 1st Quarter Median Mean 3rd Quarter Max.

gmwbBalance 0.00 0.00 0.00 35,611.54 0.00 499,708.73
gbAmt 0.00 186,864.95 316,225.98 326,834.59 445,940.63 1,105,731.57
FundValue1 0.00 0.00 12,635.17 33,433.87 49,764.15 1,099,204.71
FundValue2 0.00 0.00 15,107.17 38,542.81 56,882.55 1,136,895.87
FundValue3 0.00 0.00 10,043.96 26,740.18 39,199.69 752,945.34
FundValue4 0.00 0.00 10,383.79 26,141.80 39,519.79 610,579.68
FundValue5 0.00 0.00 9,221.26 23,026.50 35,023.00 498,479.36
FundValue6 0.00 0.00 13,881.41 35,575.67 52,981.06 1,091,155.87
FundValue7 0.00 0.00 11,541.47 29,973.25 44,465.70 834,253.63
FundValue8 0.00 0.00 11,931.41 30,212.11 45,681.16 725,744.64
FundValue9 0.00 0.00 11,562.79 29,958.29 44,302.35 927,513.49
FundValue10 0.00 0.00 11,850.05 29,862.24 44,967.78 785,978.60
age 34.52 42.03 49.45 49.49 56.96 64.46
ttm 0.59 10.34 14.51 14.54 18.76 28.52

TABLE 2
Summary Statistics of the Fair Market Values

Min. 1st Quarter Median Mean 3rd Quarter Max.

fmv �94.94 �5.14 12.49 67.59 66.81 1,536.70

Note: Numbers are in thousands.
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where rðvjÞ 2 f1, 2, :::, kg is the rank order of vj; that is, rðvjÞ is the position of vj when v1, v2, :::, vk are arranged in ascending
order. The standardized rank transformation is monotonically increasing.

Let x1, x2, :::, xn be the VA policies in a portfolio, where n is the number of VA policies in the portfolio. Under an ordinary
kriging model, the standardized rank of the fair market value of the guarantees embedded in the ith policy xi is assumed to be
(Cressie 1993; Juang, Lee, and Ellsworth 2000):

UðxiÞ ¼ lþ dðxiÞ, i ¼ 1, 2, :::, n,

where l is an unknown constant and dð�Þ is a zero-mean intrinsically stationary spatial process. In this model, UðxiÞ can be
predicted as (Cressie 1993)

ûðxiÞ ¼
Xm
j¼1

wijuðzjÞ, (2)

where uðzjÞ is the standardized rank order of the jth representative policy as defined in Equation (1) and wi1,wi2, :::,wim are the
kriging weights. These kriging weights are obtained by solving the following linear equation system:

V11 � � � V1m 1
..
. . .

. ..
. ..

.

Vm1 � � � Vmm 1
1 � � � 1 0

0
BBB@

1
CCCA �

wi1

..

.

wim

hi

0
BBB@

1
CCCA ¼

Di1

..

.

Dim

1

0
BBB@

1
CCCA, (3)

FIGURE 1. A Histogram of the Fair Market Values. Note: Numbers in the horizontal axis are in thousands.

FIGURE 2. Sketch of the Rank Order Kriging Method.
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where hi is the Lagrange multiplier to ensure the sum of the kriging weights equal to one and Vls and Dil are semivariograms
that describe the degree of spatial dependence of the fair market values. Mathematically, Vls and Dil are calculated as

Vls ¼ cðjjzl�zsjjÞ, (4a)

Dil ¼ cðjjxi�zljjÞ, (4b)

where jj � jj is the L2 norm (i.e., the Euclidean distance) and cðhÞ is a semivariogram function defined as (Chiles and Delfiner
2012):

cðhÞ ¼ 1
2
Var uðz1Þ�uðz2Þ½ �, h ¼ jjz1�z2jj:

There are several theoretical semivariogram models, including linear, spherical, exponential, and Gaussian models. For example,
the linear semivariogram model can be specified as (Chiles and Delfiner 2012)

cðhÞ ¼ bh,

where b is a parameter. A linear model is appropriate when spatial variability increases linearly with distance. The exponential
semivariogram model can be specified as (Isaaks and Srivastava 1990)

cðhÞ ¼ 1� exp � 3
b
h

� �
, l, s ¼ 1, 2, :::,m,

where b>0 is a parameter.
To select a suitable theoretical semivariogram model, we investigate the empirical semivariogram given by (Juang, Lee,

and Ellsworth 2000)

ceðhÞ ¼
1

2jSðhÞj
X

ðs, tÞ2SðhÞ
½uðsÞ�uðtÞ�2, (5)

where S(h) is a set of all pairs of policies that have a distance of h; that is,

SðhÞ ¼ fðs, tÞ : jjs�tjj ¼ h, s 2 X0, t 2 X0g,

and jSðhÞj is the number of elements in S(h). Here X0 ¼ fz1, z2, :::, zkg is the set of representative policies.

3.2. Back Transformation
Most of the rank order kriging estimates ûðxiÞ are between 0 and 1. There are a few estimates that are outside of this inter-

val. We need to transform these kriging estimates back to the original scale. This can be done by an interpolation model.
Before transforming the rank order kriging estimates back to the scale of the original data, we need to correct the smoothing
effect of these estimates (Yamamoto 2010).

A uniform random variable on an interval (a, b) has an expected value of aþb
2 and a variance of ðb�aÞ2

12 . Because the standar-
dized rank order UðxÞ has a uniform distribution on ð1=n, 1Þ, it has a variance of 1

12 ðn�1
n Þ2, which is approximately 1

12 when n is
large. However, the empirical variance of the rank order kriging estimates ûðx1Þ, :::, ûðxnÞ is usually less than 1

12 due to the
smoothing effect of the kriging method. Yamamoto (2005) proposed a procedure to correct the smoothing effect caused by
kriging. This procedure involves cross-validation, which is time consuming. In this article, we use a different and simple
approach to correct the smoothing effect.
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In particular, we modify the rank order kriging estimates as follows:

u�ðxiÞ ¼ rðûðxiÞÞ
n

, (6)

where rðûðxiÞÞ is the position of ûðxiÞ when ûðx1Þ, ûðx2Þ, :::, ûðxnÞ are arranged in ascending order. Since

fu�ðxiÞ : i ¼ 1, 2, :::, ng ¼
�
1
n
,
2
n
, :::, 1

�
,

the empirical variance of u�ðx1Þ, :::, u�ðxnÞ is equal to 1
12 ðn�1

n Þ2. In addition, the modified rank order kriging estimates fall
within the interval ð0, 1�, whereas the raw estimates may fall outside the interval.

Then we can transform the modified rank order kriging estimates back to the original scale. This can be done by using a
regression model or an interpolation method. For simplicity, we use a linear interpolation method given as follows:

y�i ¼ vi1 þ
u�ðxiÞ�ui1
ui2 � ui1

ðvi2�vi1Þ, (7)

where i1 and i2 are indices such that ui1 and ui2 are the ranks closest to u�ðxiÞ. The estimated fair market values y�1, y
�
2, :::, y

�
n

usually contain biases due to the data transformation (Garcia et al. 2010). As a result, we need to adjust the biases in these esti-
mates to get the final estimates of the fair market values. We use the multiplicative bias adjustment method (Garcia et al.
2010) to adjust the biases as follows:

ŷi ¼ ĉy�i , (8)

where ĉ ¼ l̂
lm

is the ratio of an estimate of the mean of the fair market values over the mean of the fair market values obtained
from the kriging model; for example,

l̂ ¼ 1
k

Xk
i¼1

vi, lm ¼ 1
n

Xn
i¼1

y�i :

This back-transformation approach, although ad hoc, is efficient and works well for our purpose as demonstrated by the
numerical results in this article.

4. NUMERICAL RESULTS
In this section, we present some numerical results to demonstrate the performance of the rank order kriging method. In par-

ticular, we compare the rank order kriging method with the ordinary kriging method and the GB2 regression model.

4.1. Experimental Setup
Metamodeling has two major components: an experimental design method and a metamodel. The experimental design

method is used to select representative VA contracts. The metamodel is used to predict the fair market values of all of the VA
contracts in the portfolio. In this article, our focus is to develop metamodels. In order to compare the performance of metamo-
dels in a consistent manner, we use the same experimental design method for all metamodels. Gan and Valdez (2016) com-
pared several experiment design methods and found that clustering-based methods produce good results. In our numerical
experiments, we use the hierarchical k-means algorithm (Gan and Valdez 2019) to select representative VA policies. In
Appendix B we provide numerical results of the metamodels for two additional experimental design methods.

Another important factor to consider in experimental design is the number of representative VA policies. Intuitively, the
number of representative VA policies cannot be too large or too small. Using a too large number of representative VA policies
will increase the runtime significantly because all representative VA policies have to be valued by Monte Carlo simulation.
Using a too small number of representative VA policies is also not appropriate because the resulting metamodel may not pro-
duce accurate predictions. In previous studies (e.g., Gan and Lin 2015; Gan 2018), the number of representative VA contracts
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is determined to be 10 times the number of predictors, including the dummy variables converted from categorical variables. In
this article, we follow this strategy to determine the number of representative VA policies. Because there are 34 predictors, we
start with 340 representative VA contracts. We also use 170 representative VA contracts to see the impact of the number of
representative VA contracts on the performance of the metamodels.

4.2. Validation Measures
To compare the performance of the metamodels in terms of accuracy, we use the following four validation meas-

ures: the percentage error, the mean error, the R2 (Frees 2009), and the concordance correlation coefficient of quantiles
(Lin 1989). The first two measures assesses the accuracy of the metamodels at the portfolio level. The third measure
assesses the accuracy at the individual policy level. The last measure is used to assess the agreement between two
empirical distributions.

Let yi and ŷi denote the fair market value of the ith VA policy in the portfolio that is calculated by Monte Carlo simulation
and estimated by a metamodel, respectively. Then the percentage error (PE) and the mean error (ME) are defined as follows:

PE ¼
Pn

i¼1ðŷi � yiÞPn
i¼1yi

, (9)

ME ¼
Pn

i¼1ðŷi � yiÞ
n

, (10)

where n is the number of VA policies in the portfolio. The lower the absolute values of the PE and the ME, the better
the results.

The R2 is defined as follows:

R2 ¼ 1�
Pn

i¼1ðyi�ŷiÞ2Pn
i¼1ðyi��yÞ2

, (11)

where �y is the average of y1, y2, :::, yn. The lower the R
2, the better the results.

The concordance correlation coefficient for quantiles (CCCQ) is used to measure the agreement between the quantiles of
two samples. To define this measure, we let qj and q̂j be the 100j

m th quantile of fy1, y2, :::, yng and fŷ1, ŷ2, :::, ŷng, respectively,
for j ¼ 1, 2, :::,m, where m is a positive integer (e.g., m¼ 1000). Then CCCQ is defined as follows (Lin 1989):

CCCQ ¼ 2qr1r2
r21 þ r22 þ ðl1�l2Þ2

, (12)

where q is the correlation between ðq1, q2, :::, qmÞ and ðq̂1, q̂2, :::, q̂mÞ, r1 and l1 are the standard deviation and the mean of
ðq1, q2, :::, qmÞ, respectively, and r2 and l2 are the standard deviation and the mean of ðq̂1, q̂2, :::, q̂mÞ, respectively. A higher
CCCQ means more agreement between the quantiles of the fair market values obtained from two models.

4.3. Results
We applied the rank order kriging method, the ordinary kriging method, and the GB2 regression model to predict the fair

market values with k¼ 340 and k¼ 170 representative VA policies. Table 3 shows the accuracy of the three models when 340
representative VA policies were used. Except for the R2, all validation measures show that rank order kriging performs the

TABLE 3
Accuracy of the Metamodels When k¼ 340 Representative VA Policies Were Used

PE ME R2 CCCQ

Rank order kriging 0.0018 0.1236 0.8121 0.9958
Ordinary kriging 0.0032 0.2191 0.8009 0.9557
GB2 regression 0.0382 2.5811 0.8227 0.9853
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best among the three models. For example, the percentage error obtained by rank order kriging is 0.18%, which is much lower
than that obtained by the GB2 regression model. In terms of R2, the GB2 regression model performs the best because it pro-
duced the highest R2.

From Table 3, we also see that rank order kriging produced a CCCQ value of 0.9958, which is close to 1. This indicates
that the distribution of the fair market values estimated by rank order kriging matches quite well the distribution of the fair
market values calculated by Monte Carlo.

Figure 3 shows the scatterplot and the Q–Q plot of the fair market values estimated by rank order kriging and those calcu-
lated by Monte Carlo when 340 representative VA policies were used. The scatter plot shows that the estimation at the individ-
ual policy level is not very accurate. However, the points scatter quite symmetrically around the 45

�
line. The Q–Q plot shows

that the rank order kriging method did a good job of fitting the skewed data. The points fall closely to the 45
�
line.

Figures 4 and 5 show the scatter and Q–Q plots obtained from the ordinary kriging method and the GB2 regression model,
respectively. The scatterplot in Figure 4(a) shows that the estimates obtained from ordinary kriging are biased. The Q–Q plot
in Figure 4(b) shows that ordinary kriging does not fit the tail well. Figure 5(a) shows that the scatterplot produced by GB2

FIGURE 3. Scatter and Q–Q Plots of the Fair Market Values Calculated by Monte Carlo and Those Estimated by Rank Order Kriging When k¼ 340
Representative VA Policies Were Used.

FIGURE 4. Scatter and Q–Q Plots of the Fair Market Values Calculated by Monte Carlo and Those Estimated by Ordinary Kriging When k¼ 340
Representative VA Policies Were Used.
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regression is quite symmetric around the 45
�
line. The Q–Q plot in Figure 5(b) shows that GB2 regression fits the tail well

although the fit is a little bit off in the middle.
Comparing Figures 3, 4, and 5, we see that the rank order kriging method works pretty well in terms of fitting skewed data.

The ordinary kriging method does not fit well the tail of skewed data as expected. Table 4 shows some summary statistics of
the fair market values estimated by the three methods as well as those calculated by Monte Carlo. From the table, we see that
summary statistics obtained from the rank order kriging match well those obtained from Monte Carlo.

Figures 6(a) and 6(b) shows the empirical semivariograms of rank order kriging and ordinary kriging that are estimated
from the data, respectively. From the figures, we see that the empirical semivariogram of ordinary kriging has a wide range.
Both empirical semivariograms show that a linear theoretical semivariogram can be used. However, the ordinary kriging
method does not work with the linear semivariogram due to the wide range of semivariogram values. Instead, we used the
exponential semivariogram for the ordinary kriging method.

Figure 7(a) and (b) shows the histograms of the rank order kriging estimates and the modified rank order kriging estimates,
respectively. Figure 7(a) shows that the standardized ranks estimated by rank order kriging have bell shapes and a reduced vari-
ance due to the smoothing effect of the kriging method. In fact, the variance of the rank order kriging estimates is around 0.066,
which is less than the variance of a uniform variable on ð1=n, 1Þ. Figure 7(b) shows that the modified rank order kriging estimates
have a uniform distribution.

Table 5 shows the accuracy of the three models when 170 representative VA policies were used. Again, except for the R2,
all validation measures indicate that the rank order kriging method performs the best among the three models. The R2 values
show that the rank order kriging method does not fit well the data at the individual policy level. However, the CCCQ value
shows that rank order kriging fits the distribution pretty well.

FIGURE 5. Scatter and Q–Q Plots of the Fair Market Values Calculated by Monte Carlo and Those Estimated by GB2 Regression When k¼ 340
Representative VA Policies Were Used.

TABLE 4
Summary Statistics of the Fair Market Values Estimated by Different Methods

When k¼ 340 Representative VA Policies Were Used

Min. 1st Quarter Median Mean 3rd Quarter Max.

Monte Carlo –94.94 –5.14 12.49 67.59 66.81 1,536.70
Rank order kriging –43.54 –5.02 11.88 67.71 59.90 1,244.11
Ordinary kriging –50.38 6.97 28.62 67.81 70.67 1,210.32
GB2 regression –29.24 –4.10 19.68 70.17 57.23 1,459.24

Note: Numbers are in thousands.
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Figures 8, 9, and 10 show the scatter and QQ plots produced by the three models when 170 representative VA policies were
used. The QQ plots in Figures 8(b), 9(b), and 10(b) show that the rank order kriging method fit the skewed data quite well.
However, the scatterplot in Figure 8(a) shows that the fit produced by rank order kriging is not very accurate at the individual
policy level. The rank order kriging method overestimated and underestimated the fair market values of some policies. The
number of overestimates is comparable to the number of underestimates. As a result, the scatterplot is quite symmetric around
the 45� line. Table 6 shows some summary statistics of the fair market values obtained from the three methods when 170 rep-
resentative VA policies were used. The numbers in the table show that rank order kriging performed the best in terms of
matching the quantiles.

Figure 11 shows the empirical semivariograms of the rank order kriging method and the ordinary kriging method when 170
representative VA policies were used. We see patterns similar to those observed before and the semivariograms can be

FIGURE 6 (a) Empirical Semivariograms of Rank order Kriging and (b) Ordinary Kriging When k¼ 340 Representative VA Policies Were Used.

FIGURE 7. (a) Histograms of the Rank Order Kriging Estimates and (b) Modified Rank Order Kriging Estimates When k¼ 340 Representative VA Policies
Were Used.

TABLE 5
Accuracy of the Metamodels When k¼ 170 Representative VA Policies Were Used

PE ME R2 CCCQ

Rank order kriging 0.0040 0.2729 0.2381 0.9947
Ordinary kriging 0.0865 5.8491 0.6061 0.8568
GB2 regression –0.0073 –0.4951 0.8097 0.9784
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modeled linearly. However, the linear semivariogram for ordinary kriging has a wide range of values and does not work for
ordinary kriging. Again, we used the exponential semivariogram for ordinary kriging. Figure 12 shows the histograms of the
rank order kriging estimates and the modified estimates. We also see patterns similar to those observed before. The distribution
of the rank order kriging estimates has a bell shape and a reduced variance.

Finally, Table 7 shows the runtime of the three models. The runtime includes the time used to fit the model and the time
used to predict the fair market values. The time used to select representative policies is not included. From the table, we see
that the GB2 regression model is the fastest model among the three models. Rank order kriging and ordinary kriging are much
slower than GB2 regression due to the large number of distance calculations. However, the runtime used by rank order kriging
with k¼ 340 was around 5minutes, which is much less than the 108 hours used by Monte Carlo simulation (Gan and
Valdez 2017b).

In summary, the numerical results show that the rank order kriging method is able to fit quite well the distribution of fair
market values that is highly skewed. In addition, the rank order kriging method produces accurate estimates at the portfolio
level and its runtime is similar to that of ordinary kriging.

FIGURE 8. Scatter and Q–Q Plots of the Fair Market Values Calculated by Monte Carlo and Those Estimated by Rank Order Kriging When k¼ 170
Representative VA Policies Were Used.

FIGURE 9. Scatter and Q–Q Plots of the Fair Market Values Calculated by Monte Carlo and Those Estimated by Ordinary Kriging When k¼ 170
Representative VA Policies Were Used.
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FIGURE 10. Scatter and Q–Q plots of the Fair Market Values Calculated by Monte Carlo and Those Estimated by GB2 Regression When k¼ 170
Representative VA Policies Were Used.

TABLE 6
Summary Statistics of the Fair Market Values Estimated by Different Methods

When k¼ 170 Representative VA Policies Were Used

Min. 1st Quarter Median Mean 3rd Quarter Max.

Monte Carlo –94.94 –5.14 12.49 67.59 66.81 1536.70
Rank order kriging –93.01 –5.68 11.83 64.63 65.66 1228.46
Ordinary kriging –68.37 2.12 25.77 68.40 76.07 964.12
GB2 regression –37.47 –3.56 18.07 66.12 67.27 1098.31

Note: Numbers are in thousands.

FIGURE 11. (a) Empirical Semivariograms of Rank Order Kriging and (b) Ordinary Kriging When k¼ 170 Representative VA Policies Were Used.
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5. CONCLUSIONS
The ordinary kriging and the GB2 regression model are two popular metamodels used to predict the fair market values of

VA guarantees. The advantage of ordinary kringing over the GB2 regression model is that the former is less demanding in
terms of parameter estimation. However, ordinary kriging assumes that the dependent variable (i.e., the fair market value) fol-
lows a Gaussian distribution. This assumption is not appropriate for the fair market value of the guarantees because the distri-
bution of fair market values is positively skewed. Although the GB2 regression model addresses the skewness of the
dependent variable, estimating the parameters of the GB2 regression model is quite challenging (Gan and Valdez 2018).

In this article, we studied the use of rank order kriging to predict the fair market values of VA guarantees. Rank order krig-
ing utilizes data transformation and thus is able to handle highly skewed data. Our numerical results show that the rank order
kriging method works well as expected. In particular, we compared rank order kriging with GB2 regression and ordinary krig-
ing and found that rank order kriging is better than GB2 regression and ordinary kriging in terms of fitting highly skewed data.
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APPENDIX A. GB2 REGRESSION MODEL
The GB2 regression model was proposed to predict the fair market values of VA guarantees (Gan and Valdez 2018). A

GB2 random variable has the following probability density function (Cummins et al. 1990):

f ðxÞ ¼ jaj
bBðp, qÞ

x
b

� �ap�1

1þ x
b

� �a
" #�p�q

, x>0, (A.1)
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where a 6¼ 0, p> 0, q> 0, b> 0, and B(p, q) is the beta function. The parameters a, p, and q are referred to as the shape
parameters of the GB2 distribution. The parameter b is called the scale parameter. When �p< 1

a<q, the expectation exists
and is given by

E X½ � ¼ bB pþ 1
a , q� 1

a

� �
Bðp, qÞ : (A.2)

Let Y denote the fair market value of guarantees embedded in a VA policy. Because Y can be negative, the shifted fair
market value

X ¼ Y þ c

is modeled with a GB2 distribution, where c is the shift parameter to be estimated from the data.
Independent or regressor variables are incorporated through the scale parameter b in order to make sure that the expecta-

tions can be calculated for all policies. The method of maximum likelihood is used to estimate the parameters. Let s be the
number of VA policies in the experimental design. For i ¼ 1, 2, :::, s, let vi be the fair market value of the guarantees
embedded in the ith VA policy in the experimental design. Then the log-likelihood function of the model is defined as
follows:

LðhÞ ¼ s ln
jaj

Bðp, qÞ�ap
Xs

i¼1

zTi bþ ðap�1Þ
Xs

i¼1

ln ðvi þ cÞ

�ðpþ qÞ
Xs

i¼1

ln 1þ vi þ c
exp ðzTi bÞ

� �a
" #

,
(A.3)

where h ¼ ða, p, q, c, bÞ and zi is a numerical vector representing the ith VA policy in the experiment design. It is worth not-
ing that estimating the parameters of the GB2 regression model is quite challenging. Gan and Valdez (2018) proposed a
multi-stage procedure to estimate the parameters.

The fitted GB2 regression model is used to predict the fair market values of guarantees for the portfolio. Let n be the
number of VA policies in the portfolio and xi the numeric vector representing the ith VA policy in the portfolio. Then the
fair market value of guarantees for the ith VA policy can be estimated as follows:

ŷi ¼
exp ðxTi b̂ÞB p̂ þ 1

â , q̂ � 1
â

� �
Bðp̂, q̂Þ �ĉ, i ¼ 1, 2, :::, n, (A.4)

where â, p̂, q̂, ĉ, and b̂ are parameters estimated from the data.

APPENDIX B. COMPARISON OF EXPERIMENTAL DESIGNS
In this appendix, we provide some test results about the sensitivity of the experimental design methods on the three meta-

models. Gan and Valdez (2016) compared five experimental design methods for the GB2 regression model and found that
the data clustering method and the conditional Latin hypercube sampling method produce the most accurate results. Here
we compare two additional experimental design methods—conditional Latin hypercube sampling and random sampling—for
the three metamodels.

Table B.1 shows the performance of the three metamodels based on the two experimental design methods. The results
are mixed. Table B.1(a) shows that GB2 regression works the best when conditional Latin hypercube sampling was used to
select representative policies. Table B.1(b) shows that rank order kriging produced the best result in terms of CCCQ when
the random sample was used. In terms of PE and ME, rank order kriging did not perform as well as the other two metamo-
dels when conditional Latin hypercube sampling and random sampling were used to select representative policies. In terms
of R2 and CCCQ, rank order kriging outperformed ordinary kriging.

Figure B.1 shows the scatter plot and the Q–Q plot produced by rank order kriging with conditional Latin hypercube
sampling. These plots indicate that rank order kriging does not work well with conditional Latin hypercube sampling.
Figure B.2 shows the scatterplot and the QQ plot produced by rank order kriging with random sampling. Comparing
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TABLE B.1
Accuracy of the Metamodels When k¼ 340 Representative VA Policies Were Selected by the

Two Different Experimental Design Methods

(a) Conditional Latin hypercube sampling

PE ME R2 CCCQ

Rank order kriging –0.0720 –4.8676 0.8156 0.9791
Ordinary kriging –0.0365 –2.4654 0.7965 0.9256
GB2 regression 0.0331 2.2375 0.8238 0.9971
(b) Random sampling PE ME R2 CCCQ
Rank order kriging –0.0335 –2.2673 0.8396 0.9954
Ordinary kriging 0.0117 0.7876 0.8099 0.9520
GB2 regression 0.0172 1.1600 0.8729 0.9887

FIGURE B.2. Scatter and Q–Q Plots of the Fair Market Values Calculated by Monte Carlo and Those Estimated by Rank Order Kriging When k¼ 340
Representative VA Policies Were Selected by Random Sampling.

FIGURE B.1. Scatter and Q–Q Plots of the Fair Market Values Calculated by Monte Carlo and Those Estimated by Rank Order Kriging When k¼ 340
Representative VA Policies Were Selected by Conditional Latin Hypercube Sampling.
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FIGURE B.5. Scatter and Q–Q Plots of the Fair Market Values Calculated by Monte Carlo and Those Estimated by GB2 Regression When k¼ 340
Representative VA Policies Were Selected by Conditional Latin Hypercube Sampling.

FIGURE B.3. Scatter and Q–Q Plots of the Fair Market Values Calculated by Monte Carlo and Those Estimated by Ordinary Kriging When k¼ 340
Representative VA Policies Were Selected by Conditional Latin Hypercube Sampling.

FIGURE B.4. Scatter and Q–Q Plots of the Fair Market Values Calculated by Monte Carlo and Those Estimated by Ordinary Kriging When k¼ 340
Representative VA Policies Were Selected by Random Sampling.
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Figure B.2 with Figure B.1, we see that rank order kriging produced better results when random sampling was used to
select representative policies.

Figures B.3, B.4, B.5, and B.6 show the scatterplots and the Q–Q plots produced by ordinary kriging and GB2 regression
with the two experimental design methods. These figures show that ordinary kriging does not fit the right tail well and GB2
regression produced better results in both cases.

FIGURE B.6. Scatter and Q–Q Plots of the Fair Market Values Calculated by Monte Carlo and Those Estimated by GB2 Regression When k¼ 340
Representative VA Policies Were Selected by Random Sampling.
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