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Abstract. Variable annuities are very profitable financial products that
pose unique challenges in risk prediction. Metamodeling techniques are
popular due to the significant saving in computation time. However, the
current metamodeling techniques still have a low valuation accuracy. One
key difficulty is the selection of a small number of contracts that opti-
mally represent the whole portfolio. In this paper, we propose a novel
and highly effective method for selecting representative contracts. At
the center of this method is a deep neighbor embedding that supports
robust clustering of the contracts in a portfolio. The embedding is a low-
dimensional representation that respects similarities among contracts in
both contract-specific features and their historical performance, achieved
through abstract representation in a deep neural network. Empirical
results show that the proposed model achieves significant improvement
in valuation accuracy, often 10 times or more accurate compared with
the popular Kriging-based model.
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1 Introduction

A variable annuity (VA) is a retirement insurance product that in the U.S. alone
generated 92.9 billion sales in 2018, according to Insured Retirement Institute

(IRI). With the product’s popularity, comes the significant and complex risk due
to the return guarantees embedded in variable annuities. The traditional risk
estimation method based on Monte-Carlo simulation involves the prohibitive
computational cost and fails to handle large policy portfolios in most insurance
companies. Insurance companies are turning to machine learning for the valua-
tion of large portfolios of variable annuity policies. In particular, metamodeling
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techniques [4,7] have been proposed to provide a portfolio-level risk estimate
with a minimal amount of simulation.

With metamodeling, Monte Carlo simulation [8] is conducted only on a small
number of representative policies in a large portfolio. The risk estimates on these
representative policies are then used to infer the overall risk profile of the whole
portfolio. Selecting the truly representative policies is crucial for successful meta-
modeling. Today, the most popular approach is to partition a portfolio into a
number of policy clusters and then select the centroid policy from each cluster as
a representative policy [4]. In the past, clustering is usually performed on a set
of predefined features describing each policy and the policyholder. This choice of
feature space has a number of potential issues, ranging from the presence of irrel-
evant features, mixed variable types, to the so-called “curse of dimensionality”
when the feature set is large. In order to improve the accuracy and robustness
of risk estimation, researchers have been actively searching for better ways to
select representative policies [2,3,5]. Our earlier work [1] suggests that clustering
on the deep-representation level greatly improves the accuracy.

Metamodeling and the Challenges. The metamodeling of a large portfo-
lio consists of two steps. First a small number of representative policies are
selected from the portfolio using clustering-based approaches or sampling-based
approaches and then valued via computationally intensive MCMC. Next, a
regression model extrapolate the MCMC valuation to all policies in the port-
folio. Selecting the truly representative policies is the key to the success of
metamodeling.

The aforementioned clustering-based approaches perform clustering on a
high-dimension space, which can result imbalanced clusters (see Fig. 1b). Figure 1
illustrates clearly a low-dimensional embedding of the deep representation can
generate robust clusters. We can see that the silhouette value almost sur-
passes the average level in a low-dimensional embedding. However in the high-
dimensional representation space, it’s extremely nonuniform for each cluster. In
this paper, we present a novel framework integrating neighbor embedding with
deep transfer learning, which achieves a significant performance improvement.

Our Contributions. In this work, we propose a novel approach to select rep-
resentative policies for variable annuities, extending our work in [1]. This app-
roach significantly improves the quality of selected representative policies, via
clustering over a low-dimensional embedding of the deep representation of the
portfolio. To our knowledge, it is the first time that dimension reduction has
been applied to metamodeling for variable annuities. Although the idea looks
deceivingly simple, we show that a naive application of dimension reduction on
the original feature space does not work. It is the integration of transfer learning
and local-distance preserving embedding that results in the significant perfor-
mance improvement shown in this paper.
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2 The Method: DR-TL

In this section, we present a dimension-reduced transfer learning (DR-TL) frame-
work. Unlike TL framework in [1] performs clustering in a high-dimension space,
Fig. 2 shows DR-TL framework performs clustering in a low-dimension embed-
ding. The process consists of major steps as follows: (1) Fit a backbone deep
neural network using historical Monte Carlo simulation results, then get a high-
dimensional latent representation of policies from intermediate layer. (2) Apply
the neighbor-based embedding to the deep representation to get a low-dimension
manifold. (3) Clustering via the k-means algorithm in the low-dimension space
to find representative contracts. (4) Run the Monte Carlo simulation for the
valuation of representative contracts under the target market. (5) Fine-tuning

(a) Clustering in a low-dimensional space. (b) Clustering in a high-dimensional space.

Fig. 1. The silhouette plot for four clusters respectively in low-dimensional embedding
and in high-dimensional representation space. The dotted red line reflects the average
silhouette score of all the values. (Color figure online)

(a) TL framework (b) DR-TL framework

Fig. 2. The TL framework in [1] and the proposed DR-TL framework, with the addi-
tional neighbor embedding step to produce a low-dimensional manifold. A: Fit a model
with historical simulation (different market conditions). B: Fine-tuning the fitted model
by transfer learning method (updated market conditions). C: Data clustering. D: Monte
Carlo simulation.
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the backbone deep neural network model using representative policies and the
corresponding valuation under the target market. (6) Use the tuned model to
estimate the valuation of all policies in the portfolio.

2.1 Problem Formulation

Policy and Portfolio. A VA portfolio P often contains a large number N of
individual policies ci sold to different customers: P = {ci : 1 ≤ i ≤ N}. For each
policy ci, a feature vector xi captures the characteristics of the policy and the
customer. At the same time, each policy c has an expected risk yi. Although yi

is unknown in general, it can be very well estimated by Monte Carlo simulation,
though the simulation is usually very computationally extensive and can only
be performed on a small sample from P.

Metamodeling. Metamodeling attempts to estimate the aggregated risk Y of
the whole portfolio P using only regression models to compensate the lack of
complete Monte Carlo results. It involves two subtasks: selecting a subset R of
K representative policies of the portfolio P, and inferring the overall risk Y from
the simulated results {yi : ci ∈ R} on the representative subset.

The second subtask is relatively straightforward: instead of directly predict-
ing Y = mean ({yi : 1 ≤ i ≤ N}), we can pursue the unbiased estimate of each
yi. This can be achieved through fitting a regression model on {(xi, yi) : ci ∈ R}.
Our prior work has shown that a deep neural network pre-trained using historical
data achieved the best prediction performance so far.

The first subtask of selecting an optimal subset remains largely unsolved,
hence it is the focus of this work. One natural solution is to first cluster P
based on {xi} and then select only the cluster centers (similar to medoids) [4].
The prior work shows that clustering directly on the features {xi} can be prob-
lematic, especially when {xi} contains discrete features and/or high-variance
features irrelevant to yi. Instead, we have shown that transfer learning which
solves the second (regression) problem also provides an opportunity to better
address the first (clustering) problem, as better clustering can be obtained on
the deep representation of a pre-trained model.

Although deep representation in a pre-trained model leads to better cluster-
ing results, it also brings a new challenge: the high dimensionality of the deep
representation may cause sensitive clusters and cluster centers. Therefore, this
paper address the following research problem: with a limited computation bud-
get on the Monte Carlo simulation for K policies, how to find the robust K

clusters and cluster centers {cij : 1 ≤ j ≤ K} that allow the most accurate
estimation of Y given {(xij , yij) : 1 ≤ j ≤ K}.

2.2 Neighbour Based Embedding

As the hidden layer representation has a high dimension, directly performing
clustering algorithm may result in unstable clusters as well as sensitive cluster
centers. We use neighbor based embedding to map the high-dimension represen-
tations into a lower dimensional space without losing the local structures among
policies.
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There are many mature neighbor based embedding methods, such as t-
SNE [9], ISOMap [11] and UMAP [10]. In this paper, we use UMAP due to
its superiority in embedding stability and computational efficiency. The embed-
ding aims to preserve the local structures among observations. Many nonlinear
embedding methods follow a similar two-step process: generating weighted K-
neighbor graphs followed by laying out the graph in a low-dimensional space.

In UMAP, the graph weights are derived from two weighted directed graphs

defined by the similarity measure w
((

xi, xij

))

= exp

(

− max(0,d(xi,xij )−ρi)
σi

)

,

where d
(

xi, xij

)

is the pairwise distance in the feature space, and ρi, σi are
normalising constants. The layout algorithm in UMAP is the widely used force-
directed graph layout algorithm. Negative sampling is used for computational
efficiency. In this paper, we set the embedding space dimension as 2. At the end
of the embedding step, the hidden representations are all mapped to a 2-d space
on which clustering will be carried out.

3 Experiment and Analysis

In this section, we evaluate the performance of the proposed DR-TL frame-
work using both simulated datasets and standard benchmark datasets. Then we
present the numerical results to show the superiority of low-dimensional embed-
ding of the deep representation including both simulated data and benchmark
dataset.

3.1 Data Description

Simulated Dataset. The simulated dataset is generated by make blobs func-
tion in sklearn Python library. This data is used to simulate a portfolio of 1, 000
policies with 5 features from 20 clusters. The corresponding Y = f(x) is made
up of a random noisy in linear and nonlinear form. In the linear form, Y1 and
Y2 simulate respectively two different market scenarios. Forming the dependent
variable coefficients are {2, 1, 1, 3, 5} and {5, 2, 3, 4, 2}. In the nonlinear form, Ŷ2

simulating the target market consists of a quadratic polynomial and the coeffi-
cients are {2, 1, 3, 1, 2}.

VA Benchmark Dataset. The second dataset [6] is a large synthetic bench-
mark dataset used extensively in metamodeling [8]. The runtime used to create
these synthetic datasets would be about 3 years if only a single CPU was used.
The dataset contains 1, 000 risk-neutral paths, and each path contains 38, 000
VA policies. Each policy contains a feature vector of 34 predictors, a Greeks
value and a central risk metric that is the target variable for metamodeling.

3.2 Performance Metrics

To evaluate the accuracy of the proposed model, we follow the strategy in [4]
and use the following two validation measures: the percentage error (PE) at the
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portfolio level and R2. Among which, the percentage error is defined as

PE(P) =

∑

ci∈P(ŷi − yi)
∑

ci∈P yi

, (1)

Table 1. PE of Kriging model and DR-Kriging model on simulated data.

# clusters PE ↓ (linear) PE ↓ (nonlinear)

Kriging model DR-Kriging model Kriging model DR-Kriging model

k = 10 −0.402 −0.303 0.167 0.178

k = 20 −0.084 −0.292 −0.091 0.169

k = 30 0.036 0.152 0.191 0.069

Table 2. R
2 of Kriging model and DR-Kriging model on simulated data.

# clusters R
2 ↑ (linear) R

2 ↑ (nonlinear)

Kriging model DR-Kriging model Kriging model DR-Kriging model

k = 10 0.604 0.824 0.252 0.289

k = 20 0.832 0.904 0.642 0.693

k = 30 0.954 0.830 0.778 0.778

where yi describes the value of policy ci in the portfolio P from the high-
resolution Monte Carlo simulation. and ŷi is the corresponding estimate from
the neural network. On the other hand, R2 is defined as

R2 = 1 −

∑

ci∈P(ŷi − yi)
2

∑

ci∈P(yi − µ)2
, (2)

where µ = 1
n

∑

ci∈P yi is the average Delta value.

From the above equations we can see, PE and R2 are complimentary mea-
surements for the valuation performance. While R2 indicates the fitness at the
policy level, PE directly reflects the accuracy at the portfolio level. For insur-
ance companies with a large portfolio, the hedging is commonly used to manage
the portfolio level risk. Therefore minimising PE, or equivalently maximising
the portfolio accuracy, is the primary objective in this work.

3.3 Results

Performance of DR-Kriging Model on Simulated Data. First, we try a
dimension-reduced Kriging (DR-Kriging) model, which applies dimension reduc-
tion directly on the feature space, instead of the deep representation space.
On the simulated data, we compared the baseline Kriging model with the DR-
Kriging model. Tables 1 and 2 show PE and R2 achieved by the Kriging model
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and the DR-Kriging model with different number of clusters k. These results
show that dimension reduction directly applied on the feature space doesn’t
improve the performance.

DR-TL on Simulated Data. Unlike DR-Kriging, DR-TL applies dimension
reduction on the deep represenation. Table 3 shows PE achieved by the Kriging
model and the DR-TL model on the simulated data. For different numbers of
clusters, DR-TL model achieves smaller absolute PE values than the baseline
kriging model. the superiority of DR-TL is particularly evident on the nonlinear
data. For example, with 30 clusters, DR-TL reduced the PE from 0.038 to 0.009.

Table 3. PE of Kriging model and DR-TL model on simulated data.

# clusters PE ↓ (linear) PE ↓ (nonlinear)

Kriging model DR-TL model Kriging model DR-TL model

k = 10 0.425 0.035 1.268 −0.214

k = 20 0.100 0.024 0.529 0.017

k = 30 0.048 0.013 0.038 0.009

Table 4. R
2 of Kriging model and DR-TL model on simulated data.

# clusters R
2 ↑ (linear) R

2 ↑ (nonlinear)

Kriging model DR-TL model Kriging model DR-TL model

k = 10 0.604 0.987 0.222 0.004

k = 20 0.831 0.999 0.725 0.804

k = 30 0.953 0.999 0.816 0.926

Table 5. PE on benchmark data

# clusters PE ↓

Kriging TL DR-TL

50 −0.168 0.152 0.075

80 −0.050 0.088 0.032

90 0.098 0.053 0.006

100 −0.108 0.043 0.003

200 −0.032 0.024 0.003

Table 6. R
2 on benchmark data

R
2 ↑

Kriging TL DR-TL

0.187 0.139 0.162

0.273 0.508 0.245

0.304 0.504 0.281

0.222 0.445 0.430

0.365 0.485 0.507

Table 4 shows the R2 results on simulated data. While the PE shows the
accuracy at the portfolio level, the R2 shows the accuracy at the individual
policy level, which is not a primary concern for portfolio risk valuation.

DR-TL on Benchmark Data. Tables 5 and 6 show the results on the
benchmark data [4]. In addition to the Kriging model, TL model from [1] is used
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as another baseline. Although Table 6 shows that DR-TL does not optimise the
policy-level accuracy, Table 5 shows the proposed DR-TL method significantly
outperformed the two baselines on PE, the primary optimisation target of port-
folio metamodeling. First, a superior PE of 0.003 is achieved with as few as
100 representative policies. This is 30 times better than what can be achieved
through the mainstream Kriging method. This is a new level of accuracy that,
to our knowledge, has never been achieved through metamodeling with such a
small training sample. Second, the high accuracy translates to great saving in
terms of simulation time. If 90 representative policies are sufficient to reach a PE

less than 1%, the predicted risk can potentially be recalculated in near real-time
when an insurance company needs to adjust its product portfolio.

4 Conclusions

In this work, we have proposed a novel metamodeling framework integrating
neighbor embedding with deep transfer learning. Although dimension reduction
seems to be an obvious option to improve clustering stability, we have shown
that when directly applied to policy-level features, dimension reduction fails
to improve the valuation accuracy, and sometimes even results in higher PE.
Building on the transfer-learning metamodels, the new framework can locate
representative policies that are not only stable, but also relevant to the risk
profile.

The proposed framework enables a large portfolio to be valued in high accu-
racy with fewer than 50 training examples in metamodeling. This translates to
10 times or higher saving in the computational cost on simulation, and we believe
that this significant improvement of the valuation accuracy can potentially bring
disruptive change to how the insurance industry performs the risk evaluation.
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