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Abstract—Machine learning refers to a broad class of
computational methods that use experience to improve
performance or to make accurate predictions. There are
two broad categories of machine learning tasks: supervised
learning and unsupervised learning. Supervised learning
tasks involve labeled data, which consist of inputs and
their desired outputs. Unsupervised learning tasks involve
unlabeled data, which consist of only inputs. In this
paper, we give a brief overview of some machine learning
techniques and demonstrate their applications in insurance.
In particular, we apply data clustering and tree-based
models to address a computational problem arising from
the valuation of variable annuity products. Our numerical
results show that tree-based models are able to produce
accurate predictions and reduce the computational time
significantly.

Index Terms—data clustering, regression tree, variable
annuity, portfolio valuation

I. INTRODUCTION

The term machine learning was coined by Samuel in

1959 [1] to indicate the field of study where computers

have the ability to learn without being explicitly pro-

grammed. Nowadays, the term has evolved to indicate

the broad field of study where computational methods

use experience, which refers to the past information

available for analysis, to improve performance or to

make accurate predictions [2], [3]. The experience usu-

ally takes the form of electronic data collected and

made available to the learner. The quality and size of

the experience are important to the performance of the

learner. Since machine learning algorithms require data

to learn, the field is closely related to and has significant

overlap with several other areas such as data mining,

pattern recognition, statistics, artificial intelligence, and

neurocomputing [4].

In machine learning, the goal is to design efficient

and accurate prediction algorithms. In particular, Tom

M. Mitchell provided the following formal definition of

algorithms studied in machine learning [5, p2]:

A computer program is said to learn from

experience E with respect to some class of

tasks T and performance measure P , if its

performance at tasks in T , as measured by P ,

improved with experience E.

The quality of the algorithms is measured by their

time, space, and sample complexities, which are used

to evaluate the amount of time, the amount of memory

space, and the sample size required by an algorithm to

learn a family of concepts [6].

Major machine learning problems include classifi-

cation, regression, ranking, clustering, and dimension

reduction. In classification, the examples are divided

into two or more categories and the learner produces a

model to assign unseen examples to one or more of these

categories. In regression, the labels assigned to examples

are continuous rather than discrete. In ranking, examples

are ordered according to some criterion. In clustering,

examples do not have labels and the learner partitions

the examples into homogeneous groups called clusters.

Dimension reduction is also called manifold learning

and its goal is to transform examples into a lower-

dimensional space while preserving some properties of

the examples.

Figure 1 shows a list of common machine learning

tasks, which differ in the types of the training data,

the order to receive the training data, and the test data.

In supervised learning, the learner receives a training

sample of labeled data and makes predictions for unseen

examples. The aforementioned classification, regression,

and ranking problems are associated with supervised

learning. Unsupervised learning works with unlabeled

data. Clustering and dimension reduction are examples

of unsupervised learning problems. In semi-supervised

learning, the learner receives a training sample that

consists of both labeled and unlabeled data. Classifica-

tion, regression, and ranking problems sometimes can978-1-5386-5541-2/18/$31.00 ©2018 IEEE



be formed as semi-supervised learning problems. Trans-

ductive inference is similar to semi-supervised learning

but with the goal to predict labels only for particular

test points. Online learning involves multiple rounds

of intermixed training and testing phases. Reinforce

learning also involves intermixed training and testing

phases and its goal is to maximize the reward over a

course of actions and iterations with the environment.

In active learning, the learner adaptively or interactively

collects training examples with the goal to achieve a

performance comparable to standard supervised learning,

but with fewer labeled examples.

Machine Learning Transductive Inference

Semi-supervised Learning

Unsupervised LearningSupervised Learning

Online Learning

Reinforce LearningActive Learning

Fig. 1: Categories of machine learning tasks.

In this paper, we give a brief review of some com-

monly used machine learning algorithms. In particular,

we focus on some supervised and unsupervised learning

algorithms.

II. UNSUPERVISED LEARNING

Unsupervised learning algorithms include cluster-

ing algorithms, principal component analysis, hidden

Markov models, and some neural networks. In this

section, we introduce data clustering.

Data clustering, also known as cluster analysis, refers

to the process of dividing a dataset into homogeneous

groups or clusters such that points in the same cluster

are similar and points from different clusters are quite

distinct [7], [8]. First originating in anthropology and

psychology in the 1930s [9]–[11], data clustering has

become one of the most popular tools for exploratory

data analysis and has found applications in many scien-

tific areas.

During the past several decades, many clustering al-

gorithms have been proposed. Among these clustering

algorithms, the k-means algorithm [12], [13] is perhaps

the most widely used algorithm. To describe the k-

means algorithm, let X = {x1,x2, . . . ,xn} be a dataset

containing n points, each of which is described by d

numerical features. Given a desired number of clusters k,

the k-means algorithm aims at minimizing the following

objective function:

P (U,Z) =

k∑

l=1

n∑

i=1

uil‖xi − zl‖
2, (1)

where U = (uil)n×k is an n × k partition matrix, Z =
{z1, z2, . . . , zk} is a set of cluster centers, and ‖ · ‖ is

the L2 norm or Euclidean distance.

The k-means algorithm employs an iterative proce-

dure to minimize the objective function. It updates the

partition matrix U and the cluster centers Z alternately

by allowing only one to change at a time. During the

past several decades, many improvements of the k-means

algorithms have been proposed. See [14] for details.

III. SUPERVISED LEARNING

There exist a large variety of supervised learning

algorithms: linear regression models, generalized linear

models, support vector machines, neural networks, tree-

based models, to just name a few. In this section, we

introduce tree-based models.

Tree-based models involve dividing the predictor

space (i.e., the space formed by independent variables)

into a number of simple regions and using the mean

or the mode of the region as the prediction [5], [15].

Tree-based models can be applied to both regression

problems and classification problems. When applied to

regression problems, the resulting tree model is called a

regression tree. When applied to classification problems,

the resulting tree model is called a classification tree.

To build a regression tree, the predictor space (i.e.,

the space formed by independent variables) is divided

into non-overlapping regions such that the following

objective function

f(R1, R2, . . . , RJ) =

J∑

j=1

n∑

i=1

IRj
(xi)(yi − µj)

2 (2)

is minimized, where I is an indicator function, Rj de-

notes the set of indices of the observations that belong to

the jth box, µj is the mean response of the observations

in the jth box, xi is the vector of predictor values for

the ith observation, and yi is the response value for the

ith observation. Building a classification tree is similar

to building a regression tree. However, we use the mode

(i.e., the most frequently occurring value) of a region to

predict the response of an observation that belongs to

the region.

Tree-based models generally do not perform to the

level of other regression and classification models in

terms of predictive accuracy. However, aggregating many

trees has the potential to improve the predictive accuracy



significantly [16]. Methods for aggregating trees include

bagging, boosting, and random forests.

Bagging and boosting are general-purpose methods

for reducing the variance of a statistical learning model.

The random forest method uses multiple bootstrapped

training samples. However, only a small subset of the

predictors is used to fit a tree to a bootstrapped train-

ing sample. Tree-based models may outperform linear

models when the relationship between the response and

the predictors is nonlinear. When the response and the

predictors are thought to have an approximately linear

relationship, then linear models are likely to outperform

tree-based models.

IV. APPLICATION IN VARIABLE ANNUITY

VALUATION

In this section, we demonstrate the application of

machine learning techniques to address a computational

problem arising from the valuation of variable annuity

(VA) products.

A. Description of the Problem

A VA is a popular insurance product that is created by

insurance companies as a tax-deferred retirement vehicle

to address concerns many people have about outliving

their assets [17]. A main feature of VAs is that they

contain guarantees, which include guaranteed minimum

death benefit (GMDB), guaranteed minimum accumu-

lation benefit (GMAB), guaranteed minimum income

benefit (GMIB), and guaranteed minimum withdrawal

benefit (GMWB). These guarantees are financial guaran-

tees that cannot be adequately addressed by traditional

actuarial approaches. When the stock market goes down,

for example, the insurance companies may lose money

on all the VA contracts.

Dynamic hedging is widely adopted by insurance

companies to manage the financial risks associated with

variable annuities. Dynamic hedging requires calculating

Greeks (i.e., sensitivities) of the guarantees embedded

in variable annuities. Since the guarantees are complex,

their fair market values, which are used to calculate

Greeks, cannot be determined in closed form. Monte

Carlo simulation is used in practice to calculate the fair

market values of these guarantees.

One major drawback of Monte Carlo simulation is

that it is computationally intensive. Using Monte Carlo

simulation to calculate the fair market values of a large

portfolio of VAs may take days or weeks [18], [19].

B. Approach based on Clustering and Tree-based Mod-

els

Recently, metamodeling techniques have been pro-

posed to address the computational issues associated

with the valuation of large VA portfolios. See, for

example, [20]–[31]. The main idea of metamodeling

techniques is to build a predictive model based on a

small number of representative VA contracts in order to

reduce the number of contracts that are valued by Monte

Carlo simulation. As a result, a metamodeling technique

involves the following four steps:

1) select a small number of representative contracts,

2) use Monte Carlo simulation to calculate the fair

market values (or other quantities of interest) of

the representative contracts,

3) build a regression model (i.e., the metamodel)

based on the representative contracts and their fair

market values,

4) use the regression model to estimate the fair mar-

ket value for every contract in the portfolio.

In the past, data clustering [20], [22], [26], Latin

hypercube sampling [21], [26], and conditional Latin hy-

percube sampling [23] have been used to select represen-

tative VA contracts from the portfolio. Ordinary kriging

[20], universal kriging [23], and GB2 (Generalized beta

of the second kind) regression model [28] have been used

to build the metamodel. The advantage of kriging over

the GB2 regression model is that the former does not

require parameter estimation. However, one drawback of

kriging is that the dependent variable (i.e., the fair market

value) is assumed to follow a Gaussian distribution.

This assumption is not appropriate for the fair market

value of the guarantees. Although the GB2 regression

model addresses the skewness of the dependent variable,

estimating the parameters of the GB2 regression model

posed additional challenges.

In this paper, we apply tree-based models to predict

the fair market value of the guarantees embedded in a

VA contract. To select representative VA contracts, we

use the hierarchical k-means algorithm [32], which is

efficient in dividing a large portfolio into hundreds of

clusters.

C. Description of the Data

The dataset is a synthetic dataset created in [18]

and contains 190,000 VA policies, each of which is

described by 45 variables. Since some of the variables

have identical values, we exclude these variables from

the metamodeling process. The explanatory variables

used to select representative VA contracts and build the

tree-based models are described below:

• gender - Gender of the policyholder,

• productType - Product type of the VA policy,

• gmwbBalance - GMWB balance,

• gbAmt - Guaranteed benefit amount,

• FundValuei - Account value of the ith fund, for

i = 1, 2, . . . , 10,

• age - Age of the policyholder, and

• ttm - Time to maturity in years.



TABLE I: Summary statistics of the explanatory and the response variables.

Variable Min 1st Q Median 3rd Q Max

gmwbBalance 0.00 0.00 0.00 0.00 499,708.73
gbAmt 0.00 186,864.95 316,225.98 445,940.63 1,105,731.57
FundValue1 0.00 0.00 12,635.17 49,764.15 1,099,204.71
FundValue2 0.00 0.00 15,107.17 56,882.55 1,136,895.87
FundValue3 0.00 0.00 10,043.96 39,199.69 752,945.34
FundValue4 0.00 0.00 10,383.79 39,519.79 610,579.68
FundValue5 0.00 0.00 9,221.26 35,023.00 498,479.36
FundValue6 0.00 0.00 13,881.41 52,981.06 1,091,155.87
FundValue7 0.00 0.00 11,541.47 44,465.70 834,253.63
FundValue8 0.00 0.00 11,931.41 45,681.16 725,744.64
FundValue9 0.00 0.00 11,562.79 44,302.35 927,513.49
FundValue10 0.00 0.00 11,850.05 44,967.78 785,978.60
age 34.52 42.03 49.45 56.96 64.46
ttm 0.59 10.34 14.51 18.76 28.52
fmv -94,944.17 -5,142.94 12,488.63 66,814.16 1,536,700.08

Table I shows some summary statistics of the con-

tinuous explanatory variables and the response variable

fmv. The dataset also has two categories explanatory

variables: gender and productType. There are 19

different types of products and there are about 40%

female and 60% male for each product type. The number

of policies in each product type is the same, i.e., 10,000.

The fair market values of the guarantees are calculated

by a simple Monte Carlo simulation model [18]. A

histogram of the fair market values is shown in Figure

2, which shows that the distribution of the fair market

values is positively skewed.
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Fig. 2: A histogram of the fair market values (FMV).

The fair market values are in 1000s.

D. Numerical Results

To demonstrate the performance of regression trees

in predicting the fair market values, we first apply

the hierarchical k-means to select k representative VA

contracts from the portfolio. Then we build regression

trees based on the k representative VA contracts and

their fair market values. Finally, we use the resulting

regression trees to predict the fair market value for each

VA contract in the portfolio.
To measure the accuracy of the regression trees, we

use the following two measures:

PE =

∑n

i=1
(ŷi − yi)∑n

i=1
yi

, R2 = 1−

∑n

i=1
(ŷi − yi)

2

∑n

i=1
(yi − µ)2

,

(3)

where yi and ŷi denote the fair market values of the ith

VA contract obtained from the Monte Carlo simulation

model and the tree model, respectively, n is the total

number of VA contracts in the portfolio, and µ is the

average fair market value, i.e., µ = 1

n

∑n

i=1
yi. The

percentage error PE measures the accuracy of the result

at the portfolio level. A lower absolute value of PE

indicates a better result. The R2 measures the accuracy

of the result at the individual contract level. A higher

value of R2 means a better result.
We tested the performance of regression trees with

different numbers of representative VA contracts. In

particular, we tested k = 340, where the number 340

is determined to be ten times the number of regressors,

which include the dummy binary variables converted

from the categorical variables. We also tested k = 680
by doubling the number of representative VA contracts

to see the impact of the number of representative VA

contracts on the performance.
Table II shows the performance of four tree-based

models: the regular regression tree model, the bagged

model, the boosted model, and the random forest model.

The runtime measures the time used to fit the model

and make all predictions. From the table, we see that

the regression tree model is the fastest model among

the four models. The R2 values show that the bagged

model and the boosted model have higher accuracy at

the individual contract level. Since the random forest

method use a subset of explanatory variables to decides

each split, its R2 is lower. At the portfolio level, the

prediction error is within 5% for all models. When we



Fig. 3: Scatter plots of the fair market values calculated by Monte Carlo and those estimated by tree-based models.

The four plots in the top are based on k = 340; the four plots in the bottom are based on k = 680.

TABLE II: Accuracy and speed of tree-based models.

Here RT and RF denote regression tree and random

forests, respectively. The runtime is in seconds.

(a) k = 340

RT Bagged Boosted RF

PE -3.85% -0.06% 2.15% 4.33%
R2 0.81 0.88 0.88 0.78
Runtime 0.34 7.07 33.57 6.69

(b) k = 680

RT Bagged Boosted RF

PE -3.19% -3.11% -1.10% 0.80%
R2 0.84 0.92 0.90 0.82
Runtime 0.38 10.31 31.95 8.42

double the number of representative VA contracts, we

see similar patterns for the accuracy.

Table II also shows the runtime of the tree-based

models. The runtime includes the time used for fitting

the tree-based models as well as the time used by the

tree-based models to make all the predictions. From

the table, we see that all the fitting and predictions

can be done within 1 minute. Note that it took Monte

Carlo simulation about 4 hours to calculate the fair

market values for all the 190,000 VA contracts in the

portfolio. Using the hierarchical k-means algorithm to

select k = 340 and 680 representative VA contracts

took about 130 and 136 seconds, respectively. To fit the

tree-based models, we only require running Monte Carlo

simulation for the selected representative VA contracts.

This can be done within a few minutes. As a result, the

approach based on clustering and tree-based models can

reduce the runtime significantly.
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Fig. 4: Variable importance obtained from the regression

tree.

Figure 3 shows the scatter plots of the fair market

values calculated by Monte Carlo simulation and those

predicted by the tree-based models. The figures show

that the predictions made by the bagged model, the

boosted model, and the random forest model are more

accurate than those made by the regression tree model.

If we compare the scatter plots in the top row and

those in the bottom row, we see that doubling the

number of representative VA contracts does not improve

significantly the accuracy at the individual contract level.

Figure 4 shows the variance importance obtained from



the tree model. From the figure, we see that the most im-

portant variables are productType and gbAmt. The

least important variables are ttm and FundValue10.

This makes sense because productType determines

how the guarantee payoffs are calculated and gbAmt

determines the amount of guarantee payments. The in-

vestment fund 10 is a balanced fund and has less impact

the guarantee payoffs than do the equity funds such as

the investment funds 1 and 3.

In summary, our numerical results show that tree-

based models can make accurate predictions for the fair

market values of guarantees embedded in VA contracts.

V. CONCLUDING REMARKS

Machine learning is a field that is closely related

to and has significant overlap with several other fields

such as data mining, pattern recognition, statistics, and

artificial intelligence. In this paper, we provided a brief

introduction to machine learning, with a focus on super-

vised and unsupervised learning. We also demonstrated

the application of machine learning techniques in life

insurance by using hierarchical k-means and tree-based

models to address a computational problem arising from

the valuation of VA products.
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