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Fat-Tailed Regression Modeling with Spliced Distributions

Guojun Gan and Emiliano A. Valdez
Department of Mathematics, University of Connecticut, Storrs, Connecticut

Insurance claims data usually contain a large number of zeros and exhibits fat-tail behavior. Misestimation of one end of the
tail impacts the other end of the tail of the claims distribution and can affect both the adequacy of premiums and needed reserves
to hold. In addition, insured policyholders in a portfolio are naturally non-homogeneous. It is an ongoing challenge for actuaries
to be able to build a predictive model that will simultaneously capture these peculiar characteristics of claims data and policy-
holder heterogeneity. Such models can help make improved predictions and thereby ease the decision-making process. This article
proposes the use of spliced regression models for fitting insurance loss data. A primary advantage of spliced distributions is their
flexibility to accommodate modeling different segments of the claims distribution with different parametric models. The threshold
that breaks the segments is assumed to be a parameter, and this presents an additional challenge in the estimation. Our simula-
tion study demonstrates the effectiveness of using multistage optimization for likelihood inference and at the same time the reper-
cussions of model misspecification. For purposes of illustration, we consider three-component spliced regression models: the first
component contains zeros, the second component models the middle segment of the loss data, and the third component models the
tail segment of the loss data. We calibrate these proposed models and evaluate their performance using a Singapore auto insur-
ance claims dataset. The estimation results show that the spliced regression model performs better than the Tweedie regression
model in terms of tail fitting and prediction accuracy.

1. INTRODUCTION
For many lines of insurance business, actuarial data often exhibit more extreme tail behavior than normally distributed data.

Existing techniques to deal with fat-tailed data include (Shi 2014) transformation, generalized linear models (GLMs), regres-
sion models based on generalized distributions, quantile regression, and mixture models. Transformation involves creating a
new distribution based on a function of an underlying random variable. For example, the logarithmic transformation is com-
monly applied to claim amounts to obtain a more symmetric distribution (Klugman et al. 2012). The GLMs extend the linear
models based on the normal distribution to a large family of models based on distributions that can be discrete, continuous, or
both (McCullagh and Nelder 1989; de Jong and Heller 2008). To apply a GLM to model fat-tailed data, people commonly use
fat-tailed distributions such as the gamma distribution and the inverse Gaussian distribution (Frees 2009). Existing regression
models based on generalized distributions often involve transforming random variables. The GB2 regression model is an
example based on generalized distributions (Frees and Valdez 2008; Gan and Valdez 2017). Regression models based on
extreme value distributions have been developed to deal with highly skewed data (Wang and Dey 2010). Quantile regression
models are different from traditional regression models in that the former focus on the quantiles, instead of the mean, of the
response variable (Koenker 2005; Kudryavtsev 2009). Mixture models are based on a weighted sum of distributions and have
been used to model fat-tailed loss data (Lee and Lin 2010; Miljkovic and Gr€un 2016).

However, these techniques have limitations. A drawback of the transformation method is that it changes the variance struc-
ture of the data and may magnify the error of the prediction. GLMs and regression based on generalized distributions model
the data using a single distribution, which might not be suitable when tail behavior is inconsistent with the behavior of the
entire loss distribution. Quantile regression is generally unsuitable for small datasets since it relies on empirical quantiles.
Calibrating existing models with such data can lead to biases that tend to either underestimate or overestimate the tail of the
distribution. Finally, while mixture models are becoming increasingly popular, estimating the parameters within such frame-
work is often based on the Expectation-Maximization algorithm which poses significant challenges, especially on the initializa-
tion of parameter estimates (McLachlan and Peel 2000; Yin and Lin 2016).
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In this article, we explore the potential use of spliced distributions to better capture fat-tail characteristics of insurance claims
data. A spliced distribution involves using different distributions in subdivided intervals to describe the behavior of a loss ran-
dom variable. An advantage of spliced distributions is that they allow us to model different parts of a response variable with dif-
ferent distributions. Splicing is classified as a method for creating new distributions, and this method provides the flexibility of
decomposing a distribution into several parts to better capture behavior within distinct regions. For each part, smooth functions
of covariates will be incorporated into the parameters of the distribution. Spliced distributions have the potential to better cap-
ture tails of a loss distribution with wide ranging applications in general insurance, health insurance, and life insurance.

The method of splicing has appeared in Klugman et al. (2012) as a method for creating new distributions, and it has been pro-
posed for modeling heavy tails for operational risks (Peters and Shevchenko 2015). Two-component spliced distributions have
been used to fit skewed loss data. See, for example, Cooray and Ananda (2005), Scollnik (2007), Vernic et al. (2009), Pigeon and
Denuit (2011), and Nadarajah and Bakar (2014). An R package was developed for composite lognormal distributions (Nadarajah
and Bakar 2013). However, little work has been done on using spliced distributions with covariate information to fit data and
draw inference from the results. The familiar two-part frequency-severity regression model (Frees 2009, Chap. 16) for insurance
claims can be considered as a special case of spliced distribution models. Another example that used spliced distributions is Fang
and Ma (2013), where a three-part regression model was proposed to analyze the quality of health insurance coverage in China.

To demonstrate the promise of using spliced distributions to model fat-tailed data, we consider a dataset of auto insurance
claims from a Singapore company. A classic actuarial problem is ratemaking, the process of determining the price of insurance
products. For auto and other types of general insurance products, the premium rate is usually determined in advance of know-
ing the ultimate cost of the claims. As a result, a major step of the ratemaking process is to predict as accurately as possible
the expected claims based on historical data (Ohlsson and Johansson 2010; Gray and Pitts 2012; Friedland 2014; Parodi 2014).
Regression models are typically used to model the relationships between the claims and the underlying explanatory variables
to capture heterogeneity and make improved predictions. It is a challenge to build regression models for the Singapore auto
claims data; the data exhibit fat-tail behavior where extreme values are more likely to occur than in normally distributed data.
In this article, we address this challenge by using spliced regression models.

This article is organized as follows. In Section 2 we give a description of the spliced distributions. In Section 3 we present
regression models based on spliced distributions with covariates. In particular, we describe two specific spliced regression
models with three components. In Section 4 we demonstrate the effectiveness of the spliced regression models by calibrating
them to the Singapore auto claims data. Some concluding remarks are presented in Section 5.

2. SPLICED DISTRIBUTIONS
The density function of an n-component spliced distribution is defined as follows (Klugman et al. 2012):

f xð Þ ¼

a1f1 xð Þ; if x 2 C1;
a2f2 xð Þ; if x 2 C2;

..

.

anfn xð Þ; if x 2 Cn:

8>>><>>>: (1)

Here a1; a2; :::; an are positive weights that add up to one:Xn
i¼1

ai ¼ 1:

For i ¼ 1; 2; :::; fiðxÞ is a legitimate density function with all probability on the interval Ci:ð
Ci

fi xð Þ dx ¼ 1:

The intervals C1;C2; :::;Cn are mutually exclusive:

Ci \ Cj ¼ Ø; 8i 6¼ j:

The intervals are also sequentially ordered: x< y if x 2 Ci and y 2 Cj for all i< j. For example, the intervals can be formed
by C1 ¼ ½c0; c1�;C2 ¼ ðc1; c2�; :::;Cn ¼ ðcn�1;1Þ, where c0; c1; :::; cn�1 are break points or thresholds. An advantage of spliced
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distributions is that they allow us to model different parts of a response variable with different distributions. In addition, the
spliced distribution allows the inclusion of point mass distributions.

The density function given in Equation (1) can be written compactly as:

f xð Þ ¼
Xn
i¼1

ICi xð Þaifi xð Þ; (2)

where I is an indicator function. The cumulative distribution function can be expressed as

FðxÞ ¼
Xn

i¼1
ICiðxÞ

�Xi�1

j¼1
aj þ aiFiðxÞ

�
; (3)

where Fi is the corresponding cumulative distribution function of fi in the interval Ci. Figure 1 shows the shape of a hypothet-
ical density function of a three-part model with clear marks of the thresholds.

We now consider a spliced distribution with three components. Auto insurance policies often include deductibles. If a claim
amount is less than the deductible, the claim amount is not observed. Let n be the number of policies in the dataset that are
used to build the regression model. For i ¼ 1; 2; :::; n, let Y�

i be the unobserved, or latent, variable that represents the total claim
amount of the ith policy. Let Yi by the observed variable that represents the total claim payment made by the insurance com-
pany for the ith policy. Suppose that the deductible of the ith policy is di. Then we have

Yi ¼ 0; if Y�
i � di;

Y�
i �di; if Y�

i >di:

�
Suppose that Y�

i follows a three-component spliced distribution whose density is given by

f � y�i
� � ¼

p1
f0 y�i ; gið Þ
F0 di; gið Þ ; y�i 2 0; di½ �;

p2
f1 y�i ; aið Þ

F1 cþ di; aið Þ � F1 di; aið Þ ; y�i 2 di; cþ dið �;

1�p1�p2ð Þ f2 y�i ; cið Þ
1� F2 cþ di; cið Þ ; y�i 2 cþ di;1ð Þ;

8>>>>>>><>>>>>>>:
(4)

where p1>0; p2>0, c> 0, and fj and Fj are the probability density and cumulative distribution functions of the distribution for
the ðjþ 1Þth component for j¼ 0, 1, 2. Here gi; ai, and ci are parameters associated with the distributions for the three compo-
nents, respectively. The sum of the weights p1 and p2 is less than 1: p1 þ p2<1. The threshold c is a parameter to be estimated
from the data.

0 h

f(
x)

x

FIGURE 1. Hypothetical Density Function of Spliced Distribution with Three Components. Note: The shaded triangle represents the point mass at zero, and
h is the threshold that separates the middle and tail segments.
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Let f be the probability density function for the observed variable Yi. Noting that

f 0ð Þ ¼ P Yi ¼ 0ð Þ ¼ P Y�
i � di

� � ¼ p1;

we have from Equation (4)

f yið Þ ¼

p1; yi ¼ 0;

p2
f1 yi þ di; aið Þ

F1 cþ di; aið Þ � F1 di; aið Þ ; yi 2 0; cð �;

1�p1�p2ð Þ f2 yi þ di; cið Þ
1� F2 cþ di; cið Þ ; yi 2 c;1ð Þ:

8>>>><>>>>: (5)

To estimate the parameters of the spliced regression model, we can use the method of maximum likelihood by maximizing
the following log-likelihood function:

L hð Þ ¼ log p1
Xn
i¼1

I 0f g yið Þ þ
Xn
i¼1

I 0;cð � yið Þ log p2 þ log f1 yi þ di; aið Þ� log F1 cþ di; aið Þ�F1 di; aið Þð Þ� �
þ
Xn
i¼1

I c;1ð Þ yið Þ log 1�p1�p2ð Þ þ log f2 yi þ di; cið Þ� log 1�F2 cþ di; cið Þð Þ� �
:

(6)

Note that the weights p1 and p2 are estimated from the proportions of points falling in the intervals ½0; 0� and ð0; c�, respect-
ively. This can be shown by solving the following estimating equations:

@L
@p1

¼ 1
p1

Xn
i¼1

I 0f g yið Þ� 1
1� p1 � p2

Xn
i¼1

I c;1ð Þ yið Þ ¼ 0

and

@L
@p2

¼ 1
p2

Xn
i¼1

I 0;cð � yið Þ� 1
1� p1 � p2

Xn
i¼1

I c;1ð Þ yið Þ ¼ 0:

In general, we assume that the threshold c is unknown and estimated from the data. We use the method of maximum likelihood
to estimate the threshold and the rest of the parameters in the model. We anticipate challenges because the likelihood at the
threshold will be unstable leading us to possible difficulties of solving the optimization problem. To overcome these problems,
we propose to use a multistage optimization approach (Gan and Valdez 2017) to estimate the parameters. The subsequent sec-
tion shows the effectiveness of this approach.

3. SPLICED REGRESSION MODELS WITH COVARIATES
In this section we propose two specific spliced regression models. There are many ways to specify the spliced distribution

given in Equation (5) because we have many choices of distributions for the second and the third components. To specify the
distributions for the second and the third components, we consider distributions that are medium-tailed, heavy-tailed, and
extreme value distributions (Coles 2001; Kotz and Nadarajah 2000; Panjer 2006; Foss et al. 2013; Klugman et al. 2014). In
this article, we consider two specifications of the spliced distribution. The first specification uses a medium-tailed distribution
for the second component and a heavy-tailed distribution for the third component. The second specification uses a heavy-tailed
distribution for the second component and an extreme value distribution for the third component. In particular, we consider the
gamma, Pareto, and Type I Gumbel distributions. The Pareto distribution is typically used to model the heavy tail of a distribu-
tion. However, it can also be used to model the central values of a variable by truncation (Aban et al. 2006). The gamma distri-
bution is considered as a medium-tailed distribution and is commonly used to model claim severity (Frees et al. 2014). The
Pareto distribution is considered as a heavy-tailed distribution (Foss et al. 2013). The Type I Gumbel distribution is an example
of extreme value distributions (Kotz and Nadarajah 2000; Coles 2001).
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3.1. Spliced Model 1
In the first specification, we use the gamma distribution and the Pareto distribution to model the second and the third com-

ponents of the spliced distribution. In this case, we have

f1 y; k; h1ð Þ ¼
yk�1 exp � y

h1

	 

hk1C kð Þ ; y>0; (7)

where CðkÞ is the complete gamma function, k> 0 is a shape parameter, and h1>0 is a scale parameter. The corresponding
cumulative distribution function is given by

F1 y; k; h1ð Þ ¼
c k; y

h1

	 

C kð Þ ; (8)

where cðk; yÞ is the lower incomplete gamma function defined as

c k; yð Þ ¼
ðy
0
tk�1e�t dt:

The expectation of a gamma variable Y with density f1 is

E Y½ � ¼ kh1: (9)

In this specification, we use the Pareto distribution for the third component. The probability density and cumulative distri-
bution functions of the Pareto distribution are given by

f2 y; a; h2ð Þ ¼ aha2
yþ h2ð Þaþ1 ; y>0 (10)

and

F2 y; a; h2ð Þ ¼ 1� h2
yþ h2

� �a

; (11)

respectively, where a>0 is the shape parameter and h2>0 is the scale parameter. When a>1, the expectation of a Pareto vari-
able Y with density f2 is

E Y½ � ¼ h2
a� 1

: (12)

Plugging Equations (7), (8), (10), and (11) into Equation (5), we have

f yið Þ ¼

p1; yi ¼ 0;

p2

yi þ dið Þk�1 exp � yi þ di
h1

� �
hk1 c k;

cþ di
h1

� �
� c k;

di
h1

� �� � ; yi 2 0; cð �;

1�p1�p2ð Þ a cþ di þ h2ð Þa
yi þ di þ h2ð Þaþ1 ; yi 2 c;1ð Þ:

8>>>>>>>>><>>>>>>>>>:
(13)

One challenge of using the method of maximum likelihood to fit the above probability density function to the claims data is
to calculate the logarithm of the term cðk; cþdi

h1
Þ�cðk; dih1Þ because this term can be close to zero during the optimization process.

To address this numerical problem, we calculate the logarithm of this term as follows:

ln c k;
cþ di
h1

� �
� c k;

di
h1

� �� �
¼ ln

ðcþdi
h1

di
h1

tk�1e�t dt

¼ � di
h1

þ ln
ð c

h1

0
t þ di

h1

� �k�1

e�t dt:
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The corresponding cumulative distribution function is given by

F yið Þ ¼

p1; yi ¼ 0;

p1 þ p2

c k;
yi þ di
h1

� �
�c k;

di
h1

� �
c k;

cþ di
h1

� �
� c k;

di
h1

� � ; yi 2 0; cð �;

1� 1�p1�p2ð Þ cþdiþh2
yiþdiþh2

	 
a
; yi 2 c;1ð Þ:

8>>>>>>>><>>>>>>>>:
(14)

We can use the inverse of the cumulative distribution function to simulate claim payments from the fitted model. When the
difference cðk; cþdi

h1
Þ�cðk; dih1Þ is close to zero, we need to calculate the underlying fraction:

c k;
yi þ di
h1

� �
�c k;

di
h1

� �
c k;

cþ di
h1

� �
� c k;

di
h1

� � ¼

ðyiþdi
h1

di
h1

tk�1e�t dt

ðcþdi
h1

di
h1

tk�1e�t dt

¼

ð yi
h1

0
t þ di

h1

� �k�1

e�t dtð c
h1

0
t þ di

h1

� �k�1

e�t dt

:

To estimate the expected claim payments for a policy, we can calculate the expectation from the model. When a>1, the
expectation of Yi is given by

E Yi½ � ¼ p2 h1

c k þ 1;
cþ di
h1

� �
�c k þ 1;

di
h1

� �
c k;

cþ di
h1

� �
� c k;

di
h1

� � � di

0BBB@
1CCCA

þ 1�p1�p2ð Þ acþ di þ h2
a� 1

:

(15)

To ensure numerical stability, we also need to calculate the above expectation carefully when the difference
cðk; cþdi

h1
Þ�cðk; dih1Þ is close to zero. In such cases, we can calculate the fraction as follows:

c k þ 1;
cþ di
h1

� �
�c k þ 1;

di
h1

� �
c k;

cþ di
h1

� �
� c k;

di
h1

� � ¼
Ð cþdi

h1
di
h1

tke�t dt

Ð cþdi
h1

di
h1

tk�1e�t dt

¼ k þ
di
h1

	 
k� cþdi
h1

	 
k
exp � c

h1

� �
Ð c

h1
0 t þ di

h1

	 
k�1
e�t dt

:

Covariates and exposures can be incorporated into the spliced regression model through the scale parameters h1 and h2. Let
xi be a numerical vector representing the covariate values and Ei be the exposure of the ith policy. Then we can let the scale
parameters to be dependent on xi as

h1 ¼ Ei exp b01xi
� �

; h2 ¼ Ei exp b02xi
� �

; (16)

where b1 and b2 are vectors of regression parameters.
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3.2. Spliced Model 2
In the second specification of the spliced model, we use the Pareto distribution for the second component and the Type-I

Gumbel distribution for the third component. In this case, we have

f1 y; a; h1ð Þ ¼ aha1
xþ h1ð Þaþ1 ; y>0 (17)

and

F1 y; a; h1ð Þ ¼ 1� h1
yþ h1

� �a

; (18)

respectively, where a>0 is the shape parameter and h1>0 is the scale parameter.
The probability density function of the Type I Gumbel distribution is defined as (Kotz and Nadarajah 2000)

f2ðy; l; h2Þ ¼ 1
h2

exp � y�l
h2

� exp

�
� y�l

h2

�" #
; y 2 ð�1;1Þ; (19)

where l is the location parameter and h2>0 is the scale parameter. The corresponding cumulative distribution function of the
Type I Gumbel distribution is defined as

F2 y; l; h2ð Þ ¼ exp � exp � y�l
h2

� �� �
; y 2 �1;1ð Þ: (20)

The expectation of a Type I Gumbel variable Y with density f2 is given by

E Y½ � ¼ lþ ch2;

where c is the Euler-Mascheroni constant.
Plugging Equations (17), (18), (19), and (20) into Equation (5), we get the probability density function of the spliced distri-

bution as:

f ðyiÞ ¼

p1; yi ¼ 0;

p2
aðyi þ di þ h1Þ�a�1

ðdi þ h1Þ�a � ðcþ di þ h1Þ�a ; yi 2 ð0; c�;

p3

1
h2

e�
yiþdi�l

h2
� exp ð�yiþdi�l

h2
Þ

1� exp � exp

�
� cþ di�l

h2

�" # ; yi 2 ðc;1Þ;

8>>>>>>>>><>>>>>>>>>:
(21)

where p3 ¼ 1�p1�p2. Similar as in the first specification, calculating the log-likelihood function naively leads to numerical

instability because the term 1� exp � exp ð� cþdi�l
h2

Þ
h i

can be close to zero. To calculate the logarithm of this term, we notice

that

lim
x!0

1�e�x

x
¼ 1; (22)

which gives the approximation

ln 1�e�xð Þ� ln xð Þ;

where x is close to zero. Then we calculate the logarithm of this term as follows:
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ln 1� exp � exp � cþ di�l
h2

� �� �� �
; if

cþ di�l
h2

<20;

� cþ di�l
h2

; if
cþ di�l

h2
� 20:

8>><>>:
The cumulative distribution function of the above spliced distribution is given by

F yið Þ ¼

p1; yi ¼ 0;

p1 þ p2
di þ h1ð Þ�a� yi þ di þ h1ð Þ�a

di þ h1ð Þ�a � cþ di þ h1ð Þ�a ; yi 2 0; cð �;

1�p3

1� exp � exp � yi þ di�l
h2

� �� �
1� exp � exp � cþ di�l

h2

� �� � ; yi 2 c;1ð Þ:

8>>>>>>>>>>>><>>>>>>>>>>>>:
(23)

When the term exp ð� cþdi�l
h2

Þ is close to zero, the term exp ð� yiþdi�l
h2

Þ will also be close to zero because yi 2 ðc;1Þ. In
such cases, we can use Equation (22) to calculate the fraction:

1� exp � exp � yiþdi�l
h2

	 
h i
1� exp � exp � cþdi�l

h2

	 
h i� exp
c�yi
h2

� �
:

When a 6¼ 1, the expectation of Yi is given by

E Yi½ � ¼ p2
a

a� 1
� di þ h1ð Þ�aþ1� cþ di þ h1ð Þ�aþ1

di þ h1ð Þ�a � cþ di þ h1ð Þ�a � di � h1

 !

þ 1�p1�p2ð Þ l� di � h2
Ð exp �cþdi�l

h2

� �
0 e�y ln y dy

1� exp � exp � cþ di�l
h2

� �� �
0BB@

1CCA:

(24)

Calculating the last fraction in the above expectation naively can also lead to numerical problems because the term
expð� cþdi�l

h2
Þ can be close to zero or very large. To calculate the fraction correctly when the term is close to zero, we use that

lim
z!0

Ð z
0 e

�y ln y dy

1� e�zð Þ ln z ¼ 1;

which gives the approximation ð exp �cþdi�l
h2

� �
0

e�y ln y dy

1� exp � exp � cþdi�l
h2

	 
h i�� cþ di�l
h2

when cþdi�l
h2

� 20. To calculate the fraction correctly when expð� cþdi�l
h2

Þ is very large, and so we use the following:

lim
z!1

ðz
0
e�y ln y dy ¼ �c��0:5772156649;

where c is the the Euler-Mascheroni constant.
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Similarly as in the first specification, we can incorporate covariates and exposures through the scale parameters as shown in
Equation (16).

4. APPLICATION IN MODELING AUTO CLAIMS
4.1. Data Description

To demonstrate the performance of the spliced regression model, we obtained an auto dataset from a Singapore insurance
company. The auto dataset contains information about the vehicle age, the gender and age of the policyholder, and the NCD
(No Claim Discount) of the policy. We converted the vehicle age and the age of the policyholder into several buckets and
treated them as factors.

We organized the dataset in calendar years and used the data in calendar year 1994 as the training data and the data in cal-
endar year 1995 as the test data. The training dataset contains 24,531 records, and the test dataset contains 22,684 records. We
will use the training dataset for fitting the models and use the test dataset for out-of-sample validation.

Tables 1 and 2 show the summaries of the categorical variables and the continuous variables of the training dataset, respect-
ively. The payment is the sum of all payments made by the insurer to a policy. From Table 1 we see that the number of posi-
tive payments decreases when the vehicle age increases. The relationship between the number of positive payments and the

TABLE 1
Summary of Categorical Variables of the Training Dataset

Variable Category Zeros Nonzeros Total Count

vehicleAge 0–2 4989 (91.4%) 468 (8.6%) 5457
3–5 8310 (91.6%) 766 (8.4%) 9076
6–10 5533 (92.8%) 428 (7.2%) 5961
11–15 2773 (96.4%) 103 (3.6%) 2876
15þ 1130 (97.3%) 31 (2.7%) 1161

gender F 4144 (93.2%) 304 (6.8%) 4448
M 18591 (92.6%) 1492 (7.4%) 20083

age 0–22 32 (94.1%) 2 (5.9%) 34
23–25 322 (92.5%) 26 (7.5%) 348
26–35 7232 (92.0%) 628 (8.0%) 7860
36–45 8247 (92.9%) 633 (7.1%) 8880
46–55 4561 (92.9%) 348 (7.1%) 4909
56–65 1981 (93.6%) 135 (6.4%) 2116
65þ 360 (93.8%) 24 (6.3%) 384

NCD 0 4140 (91.4%) 388 (8.6%) 4528
10 2251 (92.0%) 197 (8.0%) 2448
20 2192 (91.3%) 210 (8.7%) 2402
30 2276 (92.6%) 181 (7.4%) 2457
40 1925 (92.5%) 157 (7.5%) 2082
50 9951 (93.8%) 663 (6.2%) 10614

TABLE 2
Summary of Continuous Variables of the Training Dataset

Variable Min 1st Q Mean Median 3rd Q Max

payment 0 0 319.2635 0 0 183572.5
exposure 0.0027 0.5041 0.7637 1 1 1
deductible 0 0 43.2926 0 0 5000
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NCD is negative in general. From Table 2 we see that most payments and deductibles are zero. The minimum exposure is
0.0027 years or one day. The maximum exposure is one year.

Tables 3 and 4 show the summaries of the categorical variables and the continuous variables of the test dataset, respectively.
We see similar patterns as in the training dataset.

Figure 2 shows the histograms of the positive payments of the training dataset and the test dataset. Since more than 90% of
the payments are zero, we omitted zero payments in the histograms so that we can see the distribution of positive payments in
detail. From the histograms we see that the distributions of the payments have long tails. Most of the payments are small, but
there are a few quite large payments.

4.2. Estimation Results
In this section we evaluate the spliced regression models empirically using the Singapore auto datasets. In particular, we

compare the spliced regression models and the Tweedie regression model (Smyth and Jørgensen 2002; Frees et al. 2016).
Unlike the frequency-severity model (Frees 2009), both the spliced regression models and the Tweedie regression model dir-
ectly model the loss costs.

In recent years, there has been an increase in interest of the use of Tweedie exponential family models to fit loss models.
See, for example, Frees et al. (2016). The Tweedie family of distributions belong to the exponential family with a variance

TABLE 3
Summary of Categorical Variables of the Test Dataset

Variable Category Zeros Nonzeros Total Count

vehicleAge 0–2 4024 (91.2%) 386 (8.8%) 4410
3–5 6726 (91.4%) 635 (8.6%) 7361
6–10 6597 (91.8%) 588 (8.2%) 7185
11–15 2154 (97.1%) 65 (2.9%) 2219
15þ 1489 (98.7%) 20 (1.3%) 1509

gender F 4101 (92.8%) 318 (7.2%) 4419
M 16889 (92.5%) 1376 (7.5%) 18265

age 0–22 10 (90.9%) 1 (9.1%) 11
23–25 107 (93.0%) 8 (7.0%) 115
26–35 4999 (91.7%) 454 (8.3%) 5453
36–45 7582 (92.6%) 605 (7.4%) 8187
46–55 5181 (92.6%) 415 (7.4%) 5596
56–65 2548 (93.4%) 181 (6.6%) 2729
65þ 563 (94.9%) 30 (5.1%) 593

NCD 0 2114 (92.3%) 177 (7.7%) 2291
10 1896 (91.9%) 168 (8.1%) 2064
20 1895 (89.0%) 235 (11.0%) 2130
30 1665 (92.6%) 133 (7.4%) 1798
40 1699 (93.3%) 122 (6.7%) 1821
50 11721 (93.2%) 859 (6.8%) 12580

TABLE 4
Summary of Continuous Variables of the Test Dataset

Variable Min 1st Q Mean Median 3rd Q Max

payment 0 0 308.0030 0 0 131,545.1
exposure 0.0027 0.5836 0.7935 1 1 1
deductible 0 0 39.9731 0 0 7000
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function of the power form as VðlÞ ¼ slp, for p not in (0, 1). However, when 1<p<2, the Tweedie distribution has a com-
pound Poisson-gamma interpretation with a probability mass at zero. Although in this case, there is no explicit expression for
the density function, the primary advantage of fitting such Tweedie models is to avoid the two-part model of fitting the fre-
quency and then the severity.

We used the R function optim to fit the spliced regression model to the training dataset by maximizing the log-likelihood
function given in Equation (6). To make the parameters have similar magnitudes, we reparameterize the threshold c by using a
logarithmic transformation: s ¼ lnðcÞ. Instead of inputing c into the optimization algorithm directly, we input s into the optim
function. For the second spliced regression model, we did the same for the parameter l by using r ¼ lnðlÞ.

To fit the Tweedie regression model to the training dataset, we followed a two-step process. First, we used the R function
tweedie.profile to estimate the Tweedie index parameter p. Second, we used the R function glm with the Tweedie family to fit
the Tweedie regression model to the training dataset.

Table 5 shows the values of the log-likelihood function, the AIC, and the BIC of the two spliced regression models as well
as the Tweedie model. These values are calculated based on the training dataset. From the table, we see that the second spliced
regression model provides the best fit among the three models. The two spliced regression models are much better than the
Tweedie model, which fits the data the worst among the three models.

Once we fitted the models to the training dataset, we used the models to calculate the expected payments for each policies.
Table 6 shows the total payments aggregated from the expected payments of individual policies. The table also shows the
actual aggregate payments from the datasets. From Table 6 we see that the total payments obtained from the first spliced model
match the actual total payments the best among the three models. The second spliced regression model overestimated the total
payments. This is reasonable because the distributions used by the second spliced model have heavier tails than those used by
the first spliced model. As a result, the total payment estimated by the second spliced model is higher than that estimated by
the first spliced model. From Table 6 we also see that the Tweedie regression model underestimated the total payments. The
results show that the spliced regression model fits the tail better than the Tweedie model does.
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FIGURE 2. Histograms of Positive Payments.

TABLE 5
Values of Log-Likelihood Function, AIC, and BIC of Spliced Models

Model Log-likelihood AIC BIC

Spliced Model 1 �23,212.96 46,499.91 46,799.90
Spliced Model 2 �23,124.27 46,322.53 46,622.52
Tweedie Model �29,313.89 58,663.78 58,809.72
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In addition to the aggregate expected payments, Table 6 shows the standard errors of the aggregated payments. The standard
errors were obtained from 1000 sets of simulations from the fitted models. Let n be the number of policies in the dataset. For
j ¼ 1; 2; :::; 1000, the jth set of simulated payments, fey1j;ey2j; :::;eynjg was generated as follows. We first generated n uniform
random numbers r1j; r2j; :::, rnj. Then we obtained the simulated payments by using the inverse method,

eyij ¼ F�1 rijð Þ; i ¼ 1; 2; :::; n;

where F is the cumulative distribution function of the corresponding model. For the ith simulated payment, the covariate infor-
mation of the ith policy was used. The total payment of the jth set of simulated payments is calculated as

Sj ¼
Xn
i¼1

eyij; j ¼ 1; 2; :::; 1000:

The standard error is calculated as the standard deviation of the 1000 total payments S1, S2, :::, S1000.
From Table 6 we see that the second spliced model has the lowest standard errors. However, the actual amount is not within

two standard deviations of the predicted amount.
To see the performance of the models in terms of fitting the data, we simulated payments from the fitted models and com-

pared the QQ plots between the simulated payments and the actual payments from the data. Since covariates were incorporated
into the models, we simulated 10 payments for each policy by using the covariate values of the policy. Then we created QQ
plots using the simulated payments and the actual payments from the data.

TABLE 6
Total Payments Predicted by Models and Actual Aggregate Payments

Training Data Std Error Test Data Std Error

Actual amount 7,831,853.44 na 6,986,738.99 na
Spliced model 1 7,546,625.74 523,296.10 7,045,004.06 480,257.90
Spliced model 2 9,544,723.60 315,216.90 8,671,783.07 310,155.40
Tweedie model 7,121,984.37 401,990.40 6,309,039.75 351,389.50

FIGURE 3. QQ Plots of Actual Payments and Those Simulated from Spliced Model 1.
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Figure 3 shows the QQ plots of the actual payments and those simulated from the first spliced model. The QQ plots show
that the first spliced model fits the data well. Similarly Figure 4 shows the QQ plots of the actual payments and those simulated
from the second spliced model. The QQ plots in Figure 4 show that the second spliced model also fits the data well. However,
the first spliced model is better than the second spliced model in terms of predicting the total payments (see Table 6). Figure 5
shows the QQ plots of the actual payments and those simulated from the Tweedie model. The QQ plots clearly show that the
Tweedie model does not fit the data well.

Table 7 shows the estimates of the parameters of the spliced regression model. The covariates corresponding to the regres-
sion coefficients are given in Table 8. From Table 7 we see that the threshold estimated by the second spliced model is much
larger than that estimated by the first spliced model. In the first spliced model, the parameters k and a represent the shape
parameters of the gamma distribution and the Pareto distribution, respectively. In the second spliced model, the parameters a
and l represent the shape parameter of the Pareto distribution and the location parameter of the Type I Gumbel distribution,
respectively. The parameters b1 and b2 represent the regression coefficients of the covariates. Since the covariates are

FIGURE 4. QQ Plots of Actual Payments and Those Simulated from Spliced Model 2.

FIGURE 5. QQ Plots of Actual Payments and Those Simulated from Tweedie Model.
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incorporated into the spliced models through the scale parameters and the expectations of the spliced distributions are not
related to the scale parameters proportionally, it is not straightforward to interpret the regression coefficients.

Table 9 shows the estimates of the parameters of the Tweedie regression model. The parameters p and / represent the
Tweedie index parameter and the dispersion parameter, respectively. The parameter b contains the regression coefficients of
the covariates. In our Tweedie model, the covariates are incorporated into the model through the mean as

li ¼ Ei exp x0ib
� �

:

TABLE 7
Estimates of Parameters of Spliced Models

Spliced Model 1 Spliced Model 2

Parameter Estimate Std Error Parameter Estimate Std Error

sðln cÞ 8.6295 0.0083 sðln cÞ 9.4213 0.0030
k 0.6803 0.0000 a 0.6501 0.1229
b1;0 8.3411 0.0002 b1;0 9.1800 5.8871
b1;1 1.0461 0.4533 b1;1 �0.2065 0.1886
b1;2 0.9252 0.2904 b1;2 �0.1848 0.2120
b1;3 �0.6725 0.2582 b1;3 �0.7603 0.2750
b1;4 5.3341 4.2176 b1;4 �0.5618 0.4174
b1;5 0.1049 0.0000 b1;5 �0.2709 0.1917
b1;6 1.7755 3.3111 b1;6 �0.2716 5.8128
b1;7 0.5277 0.0000 b1;7 �0.6667 5.8652
b1;8 0.8395 0.2587 b1;8 �0.5569 5.8648
b1;9 1.0093 0.4251 b1;9 �0.3384 5.8633
b1;10 0.2623 0.4438 b1;10 �0.6206 5.8564
b1;11 3.9462 4.8294 b1;11 �0.1005 5.8278
b1;12 �1.3588 0.0000 b1;12 �0.6487 0.2712
b1;13 �0.5086 0.3513 b1;13 �0.6493 0.2616
b1;14 0.3718 0.7775 b1;14 �0.2805 0.2840
b1;15 �0.5154 0.4369 b1;15 �0.6575 0.2952
b1;16 �0.3042 0.3633 b1;16 �0.9450 0.2193
a 2.0481 0.1311 r ðln lÞ 7.0983 1.9193
b2;0 6.9416 5.8761 b2;0 7.4586 229.8717
b2;1 �0.5493 1.4543 b2;1 0.1635 0.2716
b2;2 0.5422 1.9854 b2;2 �0.3263 0.3127
b2;3 1.0285 1.8312 b2;3 �1.5175 0.8096
b2;4 0.0450 4.9411 b2;4 �2.6449 1.8361
b2;5 0.1242 2.7053 b2;5 0.6958 0.2813
b2;6 0.9743 5.6850 b2;6 0.4559 229.8785
b2;7 �1.0308 6.4777 b2;7 0.9574 229.8526
b2;8 �0.4936 5.4869 b2;8 1.5983 229.8462
b2;9 �0.5263 5.5260 b2;9 1.4133 229.8528
b2;10 �0.1779 6.1527 b2;10 1.9811 229.8601
b2;11 �1.0659 5.9968 b2;11 1.2883 229.8640
b2;12 �0.3517 3.1792 b2;12 0.9232 0.3875
b2;13 1.8602 4.1704 b2;13 �0.5996 0.3493
b2;14 �0.7991 4.0653 b2;14 �0.1985 0.3679
b2;15 0.4104 3.8923 b2;15 �0.0058 0.4113
b2;16 �0.5568 3.6407 b2;16 �0.1548 0.2597
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Interpreting the regression coefficients of the Tweeide model is straightforward. For example, all the estimates of the NCD
categories are negative. This means that a policyholder with a positive NCD is expected to have a lower payment than a pol-
icyholder with a zero NCD.

TABLE 8
Regression Coefficients and Corresponding Covariates

Regression Parameter Covariate

b0 Intercept
b1 vehicleAge2
b2 vehicleAge3
b3 vehicleAge4
b4 vehicleAge5
b5 genderM
b6 age2
b7 age3
b8 age4
b9 age5
b10 age6
b11 age7
b12 NCD10
b13 NCD20
b14 NCD30
b15 NCD40
b16 NCD50

TABLE 9
Estimates of Parameters of Tweedie Model with the Power Parameter and the Dispersion

Parameter Estimated to be 1.5612 and 657.4602, Respectively

Parameter Estimate Std Error

b0 (Intercept) 5.7226 1.5487
b1 (vehicleAge2) 0.0895 0.1212
b2 (vehicleAge3) �0.2224 0.1372
b3 (vehicleAge4) �1.3622 0.2045
b4 (vehicleAge5) �1.8829 0.3245
b5 (genderM) 0.2632 0.1259
b6 (age2) 1.0020 1.5899
b7 (age3) 0.6709 1.5456
b8 (age4) 0.7667 1.5462
b9 (age5) 0.8349 1.5482
b10 (age6) 0.7512 1.5537
b11 (age7) 0.8343 1.5944
b12 (NCD10) �0.2913 0.1826
b13 (NCD20) �0.3927 0.1863
b14 (NCD30) �0.4318 0.1840
b15 (NCD40) �0.4894 0.1953
b16 (NCD50) �0.7776 0.1404
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In summary, the numerical results demonstrate that the spliced regression models can be used to fit skewed auto claims
data. Using a medium-tailed distribution and a heavy-tailed distribution can produce satisfactory results. Using extreme value
distributions in the spliced model can overestimate the claim payments. In addition, the spliced regression models outperform
the Tweedie regression model in term of fitting the tails.

5. CONCLUDING REMARKS
Frequency-severity models have been widely used to model auto claims data. These models involve modeling separately

the claim count and the claim severity. For simplicity, studies have also been conducted to model the aggregate loss data dir-
ectly; the Tweedie model is an example of such models. In this article, we proposed the spliced regression model for fitting
the aggregate loss data directly. In particular, we considered a spliced distribution that consists of three components: the first
component contains zeros, the second component models the middle segment of the loss data, and the third component models
the tail segment of the loss data. We fitted two spliced regression models to a Singapore auto claims dataset. In the first spliced
model, we used a medium-tailed distribution for the second component and a heavy-tailed distribution for the third component.
In the second spliced model, we used a heavy-tailed distribution for the second component and an extreme value distribution
for the third component.

The numerical results show that both spliced models are superior to the Tweedie model in terms of fitting the tail of the
loss distribution. However, spliced models suffer from some drawbacks. One drawback of the spliced regression models is that
interpreting the regression coefficients of the spliced models is not as straightforward as in the Tweedie model. Another draw-
back is that estimating the parameters of the spliced model can be challenging as the log-likelihood function resulted from the
spliced distribution is highly nonlinear and non-continuous.
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APPENDIX. PARAMETER ESTIMATION
The spliced regression models have many parameters, which include the regression coefficients for the covariates. As a

result, estimating the parameters of the spliced models is quite challenging. We used the R function optim to maximize the
log-likelihood function of the spliced models. This function requires initial values of the parameters to be estimated.
Supplying good initial values to optim is critical to obtain plausible estimates of the parameters. In this paper, we adopted a
two-stage optimization procedure (Millar, 2011) to estimate the parameters. The multistage optimization procedure has been
successfully applied in estimating parameters of complex regression models (Gan and Valdez, 2017). In this appendix, we
describe the two-stage optimization procedure used to estimate the parameters of the spliced regression models.

In the first stage, we fix the threshold c¼ c0 and fit the probability distributions to the second and the third components
separately. In particular, we set c0 to be the 90th quantile of the positive payments of the training dataset. To fit the prob-
ability distribution to the second component, we use the optim function to maximize the following log-likelihood function:

Xn
i¼1

I 0;c0ð � yið Þ log f1 yi þ di; aið Þ� log F1 cþ di; aið Þ�F1 di; aið Þð Þ� �
:

To fit the probability distribution to the third component, we use the optim function to maximize the following log-likeli-
hood function:

Xn
i¼1

I c0;1ð Þ yið Þ log f2 yi þ di; cið Þ� log 1�F1 cþ di; cið Þð Þ½ �:

In the first stage, we use a moment-matching method to set the initial values of the parameters for the optim function. In
the first spliced model, we set the shape parameters to be k¼ 2 and a¼ 3. Then we figure out the scale parameters h1 and
h2 by solving the following equations:
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TABLE A.1
Initial Values for Fitting the First Spliced Model in the First Stage

(a) The Second Component

Parameter Initial Values Optimized Values

k 2 0.5672
b1;0 (Intercept) 7.4069 8.2747
b1;1 (vehicleAge2) 0 0.8079
b1;2 (vehicleAge3) 0 1.1520
b1;3 (vehicleAge4) 0 �0.3368
b1;4 (vehicleAge5) 0 4.8966
b1;5 (genderM) 0 0.2599
b1;6 (age2) 0 1.6106
b1;7 (age3) 0 0.4998
b1;8 (age4) 0 1.5016
b1;9 (age5) 0 1.7227
b1;10 (age6) 0 0.7906
b1;11 (age7) 0 0.1515
b1;12 (NCD10) 0 �1.4035
b1;13 (NCD20) 0 �0.7931
b1;14 (NCD30) 0 �0.1653
b1;15 (NCD40) 0 �0.4184
b1;16 (NCD50) 0 �0.6056

(b) The Third Component

Parameter Initial Values Optimized Values

a 3 2.0878
b2;0 (Intercept) 8.7888 9.1814
b2;1 (vehicleAge2) 0 0.0974
b2;2 (vehicleAge3) 0 0.1710
b2;3 (vehicleAge4) 0 0.0337
b2;4 (vehicleAge5) 0 �0.1755
b2;5 (genderM) 0 �0.0054
b2;6 (age2) 0 �0.3913
b2;7 (age3) 0 �0.5664
b2;8 (age4) 0 �0.6221
b2;9 (age5) 0 �0.6399
b2;10 (age6) 0 �0.6937
b2;11 (age7) 0 �0.4227
b2;12 (NCD10) 0 �0.0556
b2;13 (NCD20) 0 0.0456
b2;14 (NCD30) 0 0.0442
b2;15 (NCD40) 0 0.0112
b2;16 (NCD50) 0 �0.0657
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(b) The Third Component

Parameter Initial Values Optimized Values

rðln lÞ 9.371422 7.09129194
b2;0 (Intercept) 8.814632 7.43252237
b2;1 (vehicleAge2) 0 0.08305781
b2;2 (vehicleAge3) 0 �0.32173068
b2;3 (vehicleAge4) 0 �1.30299914
b2;4 (vehicleAge5) 0 �2.3196715
b2;5 (genderM) 0 0.80742237
b2;6 (age2) 0 0.35909548
b2;7 (age3) 0 1.04870881
b2;8 (age4) 0 1.44567675
b2;9 (age5) 0 1.35360982
b2;10 (age6) 0 1.95801864
b2;11 (age7) 0 0.83477819
b2;12 (NCD10) 0 0.52773722
b2;13 (NCD20) 0 �0.54048957
b2;14 (NCD30) 0 �0.30918772
b2;15 (NCD40) 0 �0.15583413
b2;16 (NCD50) 0 �0.25830768

TABLE A.2
Initial Values for Fitting the Second Spliced Model in the First Stage

(a) The Second Component

Parameter Initial Values Optimized Values

a 2 0.6026025
b1;0 (Intercept) 8.689295 9.24843245
b1;1 (vehicleAge2) 0 �0.19414535
b1;2 (vehicleAge3) 0 �0.21879452
b1;3 (vehicleAge4) 0 �0.73420871
b1;4 (vehicleAge5) 0 �0.50590499
b1;5 (genderM) 0 �0.31415013
b1;6 (age2) 0 �0.19595894
b1;7 (age3) 0 �0.70125607
b1;8 (age4) 0 �0.53241048
b1;9 (age5) 0 �0.44496368
b1;10 (age6) 0 �0.67809813
b1;11 (age7) 0 0.05108412
b1;12 (NCD10) 0 �0.65339639
b1;13 (NCD20) 0 �0.62254226
b1;14 (NCD30) 0 �0.25293234
b1;15 (NCD40) 0 �0.64208372
b1;16 (NCD50) 0 �0.89410846

572 G. GAN AND E. A. VALDEZ



h1

c k þ 1;
cþ di
h1

� �
�c k þ 1;

di
h1

� �
c k;

cþ di
h1

� �
� c k;

di
h1

� � �di ¼ �y1;
acþ di þ h2

a� 1
¼ �y2;

where �y1 is the average of payments in the interval ð0; c0� and �y2 is the average of payments in the interval ðc0;1Þ. Table
A.1 shows the initial values for the optim function as well as the optimized parameter values produced by the optim func-
tion. In this stage, we set the initial regression coefficients of all covariates to be zero. The initial intercept coefficients are
obtained by taking logarithms of the scale parameters obtained from solving the above equations.

In the second spliced model, we set the shape parameter to be a¼ 2 for the second component and the location parameter
l ¼ �y2

1:5772 for the third component. Then we figure out the scale parameters h1 and h2 by solving the following equations:

a
a� 1

� di þ h1ð Þ�aþ1� cþ di þ h1ð Þ�aþ1

di þ h1ð Þ�a � cþ di þ h1ð Þ�a �di�h1 ¼ �y1;

l�di� h2
Ð exp �cþdi�l

h2

� �
0 e�y ln y dy

1� exp � exp � cþ di�l
h2

� �� � ¼ �y2;

where �y1 is the average of payments in the interval ð0; c0� and �y2 is the average of payments in the interval ðc0;1Þ. Table
A.2 shows the initial values for the optim function as well as the optimized parameter values produced by the
optim function.

In the second stage, we use the optimized parameters from the first stage as initial values for the optim function and do
a full optimization. Note that the weights p1 and p2 in the log-likelihood function given in Equation (6) depend on the
threshold c. Given the threshold c, the weights can be determined by counting the number of payments in the intervals
ð0; c� and ðc;1Þ.
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