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Abstract:Metamodeling techniques have recently been proposed to address the computational issues related

to the valuation of large portfolios of variable annuity contracts. However, it is extremely di�cult, if not im-

possible, for researchers to obtain real datasets from insurance companies in order to test theirmetamodeling

techniques on such real datasets and publish the results in academic journals. To facilitate the development

and dissemination of research related to the e�cient valuation of large variable annuity portfolios, this paper

creates a large synthetic portfolio of variable annuity contracts based on the properties of real portfolios of

variable annuities and implements a simple Monte Carlo simulation engine for valuing the synthetic port-

folio. In addition, this paper presents fair market values and Greeks for the synthetic portfolio of variable

annuity contracts that are important quantities for managing the �nancial risks associated with variable an-

nuities. The resulting datasets can be used by researchers to test and compare the performance of various

metamodeling techniques.
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1 Introduction
A variable annuity is an insurance product created and sold by insurance companies as a tax-deferred retire-

ment vehicle to address many people’s concerns about outliving their assets [29, 32]. Essentially, a variable

annuity is a deferred annuity with two phases: the accumulation phase and the payout phase. During the ac-

cumulation phase, the policyholder makes purchase payments to the insurance company. During the payout

phase, the policyholder received bene�t payments from the insurance company. The policyholder’s money

is invested in a set of investment funds provided by the insurance company. The policyholder has the option

of allocating the money among this set of investment funds. A major feature of a variable annuity is that it

includes guarantees or riders. Due to this attractive feature, lots of variable annuity contracts were sold. Ac-

cording to [32], the annual sales of variable annuities in the U.S. were more than $100 billion for every year

from 1999 to 2011.

The guarantees embedded in variable annuities are �nancial guarantees that cannot be adequately ad-

dressed by traditional actuarial approaches [6, 26]. Dynamic hedging is adopted by many insurance compa-

nies to mitigate the �nancial risks associated with these guarantees. Dynamic hedging requires calculating

the fair market values and Greeks (i.e., sensitivities) of the guarantees. Since the guarantees embedded in

variable annuities are relatively complex, their fair market values cannot be calculated in closed form except
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for special cases [14, 24]. In practice, insurance companies rely onMonte Carlo simulation to calculate the fair

market values and the Greeks of the guarantees. However, usingMonte Carlo simulation to value a large port-

folio of variable annuity contracts is extremely time-consuming because every contract needs to be projected

over many economic scenarios for a long time horizon [11].

In the past few years, metamodeling techniques have been proposed to address the computational issues

associated with the valuation of large variable annuity portfolios. See, for example, [15], [20], [16], [21], [22],

[27], [19], [28], and [23]. The main idea of metamodeling techniques is to construct a surrogate model on a

set of representative variable annuity contracts in order to reduce the number of contracts that are valued

by Monte Carlo simulation. This is achieved by selecting a small number of representative contracts, using

Monte Carlo simulation to calculate the fairmarket values (or other quantities of interest) of the representative

contracts, building a regression model (i.e., the metamodel) based on the representative contracts and their

fair market values, and �nally using the regression model to value the whole portfolio of variable annuity

contracts.

However, it is di�cult for researchers to obtain real datasets from insurance companies to assess the

performance of those metamodeling techniques. As a result, the aforementioned papers on variable annuity

portfolio valuationused synthetic datasets to test theperformance of theproposedmetamodeling techniques.

Di�erent groups of researchers created di�erent synthetic datasets to test various proposed methods. For

example, the synthetic datasets used by [15] and [27] are di�erent in portfolio composition.

In this paper, we create synthetic datasets to facilitate the development and dissemination of research

related to the e�cient valuation of large variable annuity portfolios. In particular, we create a large synthetic

portfolio of variable annuity contracts based on the properties of real portfolios of variable annuities and

implement a simple Monte Carlo valuation engine that is used to calculate the fair market values and the

Greeks of the guarantees embedded in those synthetic variable annuity contracts. The purposes of this work

are to relieve researchers from spending time on creating such datasets and to provide common datasets that

can be used to evaluate the performance of metamodeling approaches.

The remaining part of this paper is organized as follows. Section 2 describes how the synthetic portfolio

of variable annuity contracts is created. Section 3 presents a Monte Carlo simulation engine for valuing the

guarantees embedded in variable annuities. In Section 4, we present synthetic datasets that can be used to

test the performance of metamodeling techniques. Section 5 concludes the paper with some remarks. The

software that is used to generate the synthetic portfolio and implement the Monte Carlo simulation engine is

described in Appendix B.

2 Synthetic Portfolio of Variable Annuity Contracts
In this section, we describe how to create a synthetic portfolio of variable annuity contracts to mimic a real

portfolio of variable annuity contracts. In particular, we create a synthetic portfolio of variable annuity con-

tracts based on the following major properties typically observed on real portfolios of variable annuity con-

tracts:

• Di�erent contracts may contain di�erent types of guarantees.

• The contract holder has the option to allocate the money among multiple investment funds.

• Real variable annuity contracts are issued at di�erent dates and have di�erent times to maturity.

2.1 Guarantee Types

Guarantees embedded in variable annuities can be divided into two broad categories: the guaranteed min-

imum death bene�t (GMDB) and guaranteed minimum living bene�ts (GMLB). The GMDB rider guarantees

the policyholder a speci�c amount upon death during the term of the contract [26]. The death bene�t is paid

to the designated bene�ciary of the policyholder upon the death of the policyholder. The death bene�t comes
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in several forms [5]: return of premium death bene�t, annual roll-up death bene�t, and annual ratchet death

bene�t. The return of premium death bene�t is the most basic form of the death bene�t. Under this form,

the death bene�t paid is equal to the maximum of the account value at time of death and the premium. This

option is usually o�eredwithout additional charges. Under the annual roll-up death bene�t option, the death

bene�t increases at a speci�ed interest rate. Under the annual ratchet death bene�t option, the death bene�t

is reset to the account value if it is higher than the current death bene�t.

There are several types of GMLBs: guaranteedminimumaccumulation bene�ts (GMAB), guaranteedmin-

imum income bene�ts (GMIB), guaranteed minimum maturity bene�ts (GMMB), and guaranteed minimum

withdrawal bene�ts (GMWB). The GMAB rider guarantees that the policyholder has the option to renew the

contract during a speci�ed window after a speci�ed waiting period, which is usually 10 years. The speci�ed

widows typically begins on an anniversary date and remains open for 30 days [7]. The GMIB rider guarantees

that the policyholder can convert the lump sum accumulated during the term of the contract to an annuity at

a guaranteed rate [26]. The GMMB rider guarantees the policyholder a speci�c amount at the maturity of the

contract [26]. The GMWB rider gives a policyholder the right to withdraw a speci�ed amount during the life

of the contract until the initial investment is recovered. Similar to the death bene�t, the living bene�t can be

the original premium or subject to regular or equity-dependent increases.

The riders can be purchased individually or in combination for additional fees. For example, the GMDB

and the GMWB riders can be purchased simultaneously. To create a synthetic portfolio of variable annuity

contracts, we consider 19 products shown in Table 1. For the synthetic variable annuity policies, we set the

rider fees of individual riders in the range of 0.25% to 0.75% according to the ranges given in [5]. The rider fee

of the combined guarantees is set equal to the sum of the fees of the individual guarantees minus 0.20%.

Table 1: Variable annuity contracts in the synthetic portfolio.

Product Description Rider Fee

DBRP GMDB with return of premium 0.25%
DBRU GMDB with annual roll-up 0.35%
DBSU GMDB with annual ratchet 0.35%
ABRP GMAB with return of premium 0.50%
ABRU GMAB with annual roll-up 0.60%
ABSU GMAB with annual ratchet 0.60%
IBRP GMIB with return of premium 0.60%
IBRU GMIB with annual roll-up 0.70%
IBSU GMIB with annual ratchet 0.70%
MBRP GMMB with return of premium 0.50%
MBRU GMMB with annual roll-up 0.60%
MBSU GMMB with annual ratchet 0.60%
WBRP GMWB with return of premium 0.65%
WBRU GMWB with annual roll-up 0.75%
WBSU GMWB with annual ratchet 0.75%
DBAB GMDB + GMAB with annual ratchet 0.75%
DBIB GMDB + GMIB with annual ratchet 0.85%
DBMB GMDB + GMMB with annual ratchet 0.75%
DBWB GMDB + GMWB with annual ratchet 0.90%
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2.2 Investment Funds

In practice, the policyholder’s money is invested in one or more investment funds provided by the insurance

company. The policyholder is allowed to select the investment funds. In dynamic hedging, a fund mapping

is used to map an investment fund to a combination of tradable and liquid indices such as the S&P500 in-

dex. A fund mapping is used for the following reasons. First, di�erent policyholders may invest their money

in di�erent combinations of investment funds. Second, most of the investment funds are not tradable and

guarantees need to be hedged by derivatives on tradable indices such as S&P500. Third, using tradable and

liquid indices in the asset model is also convenient in terms of calibrating the asset model parameters from

the market.

A fund mapping that maps an investment fund to k indices is denoted by a vector of k weights

(w
1
, w

2
, . . . , wk) such that

k∑
j=1

wj = 1.

The rate of return rf of the investment fund at a period is calculated as

rf =
k∑
j=1

wjrIj , (1)

where rIj is the rate of return of index Ij at the same period for j = 1, 2, . . . , k. The weights of an investment

fund can be estimated by the method of least squares from the historical returns of the investment fund and

the indices.

Table 2 shows the fund mappings of ten investment funds. Funds 1 to 5 are the index funds that replicate

US large-cap equity, US small-cap equity, international equity, �xed income, and money market fund, re-

spectively. Fund 6 is a balancedmix of US large-cap equity and US small-cap equity. Other funds are di�erent

combinations of the indices.

Table 2: Ten investment funds. Each row is a mapping from an investment fund to a combination of �ve indices.

Fund US Large US Small Intl Equity Fixed Income Money Market

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
6 0.6 0.4 0 0 0
7 0.5 0 0.5 0 0
8 0.5 0 0 0.5 0
9 0 0.3 0.7 0 0
10 0.2 0.2 0.2 0.2 0.2

In the synthetic portfolio, we generate the account values of the investment funds of a policy as follows.

First, we generate randomly the total account value AV from a speci�ed range. Second,we generate a random

integer l between 1 and 10, inclusive. Third, we select randomly l investment funds from the ten investment

funds. Finally, we set the account values of those l selected investment funds to be AV/l, that is, the total

account values are allocated to the l investment funds equally.
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2.3 Aging

Aging refers to the process of adjusting a variable annuity contract from an old date to a newdate to re�ect the

changes of the account values and other relevant items (e.g., withdrawals, bene�t base). In practice, variable

annuity policies in a portfolio are issued at di�erent dates. To value the policies at the valuation date, the

policies are aged from the issue dates to the valuation date.

To create the synthetic portfolio of variable annuity policies, we make some assumptions for the sake of

simplicity. In particular, we assume that all policies are issued on the �rst day of amonth and the policyhold-

ers’ birth dates are also on the �rst day of a month. The birth dates of policyholders are randomly generated

from an interval of dates and the issue dates of the policies are randomly generated from another interval of

dates. Table 3 shows some parameters used to create synthetic policies. Once we generate a variable annuity

policy, we age it to the speci�ed valuation date. In practice, the aging process re�ect what happens actually

to the policies. To generate the synthetic portfolio, aging a policy is just projecting the policy from the issue

date to the valuation date based on one economic scenario of the investment funds. Details of the liability

cash �ow projection are discussed in Section 3.2.

Table 3: Parameter values used to generate the synthetic portfolio.

Feature Value

Policyholder birth date [1/1/1950, 1/1/1980]
Issue date [1/1/2000, 1/1/2014]
Valuation date 1/6/2014
Maturity [15, 30] years
Initial account value [50000, 500000]
Female percent 40%

(20% of each type)
Fund fee 30, 50, 60, 80, 10, 38, 45, 55, 57, 46bps

for Funds 1 to 10, respectively
M&E fee 200 bps

3 Monte Carlo Valuation
During the past decade, some studies have attempted to value variable annuity contracts in a unifying way.

For example, [5] developed a framework to value various guarantees embedded in variable annuity contracts.

[3] proposed a unifying framework to value variable annuities under general model assumptions. [4] devel-

oped a dynamic programming algorithm for pricing the GMWB under a general Lévy processes framework.

[31] presented an optimal stochastic control framework to price variable annuity guarantees. However, these

existing studies focused on contracts that are written on a single asset.

In this section, we present a simple Monte Carlo valuation model for valuing guarantees of the synthetic

portfolio of variable annuities. In particular, we present a multivariate risk-neutral scenario generator, lia-

bility cash �ow modeling, and fair market value and Greek calculation. An early version of this Monte Carlo

valuation model was presented at a conference by one of the authors [17]. The purpose of this Monte Carlo

valuation model is to calculate the fair market values and related Greeks of the synthetic variable annuities

so that metamodeling techniques can be tested. As a result, we made many simplifying assumptions in the

Monte Carlo valuationmodel. For example, we consider only single-premium contracts and do not model dy-

namical policyholder behaviors. Monte Carlo valuation models used in practice are much more complicate

than the one presented in this paper. Although the Monte Carlo valuation model presented in this paper is
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simple, the datasets it creates are useful to validate metamodeling techniques. If a metamodeling technique

does not work well for the datasets created in this paper, it is unlikely that it will work well for real datasets

in practice.

3.1 Risk-Neutral Scenario Generator

Economic scenario generators are used to simulate movement scenarios of the indices according to an asset

model. There are two types of scenarios: risk-neutral and real-world. Risk-neutral scenarios are simulated un-

der the risk-neutral measure; while real-world scenarios are simulated under the real-world measure. Risk-

neutral scenarios are used to calculate the fair market values of �nancial derivatives such as the guaran-

tees embedded in variable annuities. Real-world scenarios are used to calculate solvency capitals or evaluate

hedging strategies.

Most economic scenario generators remain proprietary, but two economic scenario generators are in the

public domain: the one developed by the CAS (Casualty Actuarial Society) and the SOA (Society of Actuaries)

and the one developed by the AAA (American Academy of Actuaries) and the SOA [2]. The CAS-SOA scenario

generator is used to generate economic scenarios for asset-liability analysis for property-liability insurers

[1, 10].

The AAA and the SOA have created an economic scenario generator, named Academy’s Interest Rate

Generator (AIRG), for regulatory reserve and capital calculations. The latest version of the economic scenario

generator can be obtained from https://www.soa.org/tables-calcs-tools/research-scenario/. It is a real-world

economic scenario generator and can be used to generate both interest rate and equity scenarios.

Both the CAS-SOA generator and the AAA-SOA generator can generate interest rate and equity scenar-

ios. However, the resulting scenarios generated by these two generators di�er signi�cantly. In particular, the

interest rates generated by the CAS-SOA generator have a wider distributions than those generated by the

AAA-SOA generator. For a detailed comparison of the two economic scenario generators, readers are referred

to [2].

Although using economic scenario generators is the only practical way to value many life insurance con-

tracts, it has received little attention in the academic literature. The paper by [33] is among the few papers

devoted to this subject. [33] gives a brief background of the Solvency II and discusses the use of economic

scenario generators in the context of Solvency II.

In this paper, we present a simple economic scenario generator to generate risk-neutral scenarios. In this

simple generator, we model �xed income indices directly rather than use an interest rate model. The inputs

to the generator consists of the yield curve, the correlation matrix, and the volatilities.

Table 4: The US swap rates at various tenors as of June 11, 2014.

Tenor Swap Rate

1 year 0.28%
2 year 0.58%
3 year 1.01%
4 year 1.42%
5 year 1.76%
7 year 2.27%
10 year 2.73%
30 year 3.42%

Let ∆ be the time step and m be the number of time steps. For example, ∆ =

1

12

and m = 360 if we use a

monthly time step and a horizon of 30 years. The yield curve can be bootstrapped from swap rates [18, 25]. For
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example, Table 4 gives 8 swap rates of di�erent tenors from the USmarket. We can bootstrap the 8 swap rates

to get 8 discount factors at the maturity dates of corresponding swaps. Then we can interpolate the discount

factors to get the discount factors at all months. Figure 1 shows themonthly forward rates interpolated by the

loglinear method [25].
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Figure 1: The monthly forward rates bootstrapped from the swap rates given in Table 4.

Now let us introduce a multivariate Black-Scholes model. Suppose that there are k indices S(1), S(2), . . .,
S(k) in the �nancial market and their risk-neutral dynamics are given by [8]:

d S(h)t
S(h)t

= rt d t +
k∑
l=1

σhl d B(l)t , S(h)
0

= 1, h = 1, 2, . . . , k (2)

where B(1)t , B(2)t , . . ., B(k)t are independent standard Brownian motions, rt is the short rate of interest, and the

matrix (σhl) is used to capture the correlation among the indices. The stochastic di�erential equations given

in Equation (2) have the following solutions [8]:

S(h)t = exp

 t∫
0

rs d s −
t
2

k∑
l=1

σ2hl


+

k∑
l=1

σhlB(l)t


, h = 1, 2, . . . , k. (3)

Let t
0
= 0, t

1
= ∆, . . . , tm = m∆ be time steps with equal space ∆. For j = 1, 2, . . . ,m, let A(h)j be the

accumulation factor of the hth index for the period (tj−1, tj), that is,

A(h)j =

S(h)j∆
S(h)
(j−1)∆

. (4)

Suppose that the continuous forward rate is constant within each period. Then we have

exp

(
∆(f

1
+ f

2
+ · · · + fj)

)
= exp

 tj∫
0

rs d s

 , j = 1, 2, . . . ,m,
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where fj is the annualized continuous forward rate for period (tj−1, tj). The above equation leads to

fj =
1

∆

tj∫
tj−1

rs d s, j = 1, 2, . . . ,m.

Combining Equations (3) and (4), we get

A(h)j = exp

[(
fj −

1

2

k∑
l=1

σ2hl

)
∆ +

k∑
l=1

σhl
√
∆Z(l)j

]
, (5)

where

Z(l)j =

B(l)j∆ − B
(l)
(j−1)∆√
∆

.

By the property of Brownian motion, we know that Z(l)
1

, Z(l)
2

, . . ., Z(l)m are independent random variables with

a standard normal distribution.

From Equation (5), we can calculate the continuous return for the period (tj−1, tj) as

R(h)j = lnA(h)j =

(
fj −

1

2

k∑
l=1

σ2hl

)
∆ +

k∑
l=1

σhl
√
∆Z(l)j . (6)

The mean and covariance matrix of the returns are given by

E
[
R(h)j

]
=

(
fj −

1

2

k∑
l=1

σ2hl

)
∆ (7)

and

Cov

(
R(h)j , R(s)j

)
= E

[(
R(h)j − E[R(h)j ]

)(
R(s)j − E[R

(s)
j ]

)]
= E

[( k∑
l=1

σhl
√
∆Z(l)j

)( k∑
l=1

σsl
√
∆Z(l)j

)]

=

k∑
l=1

σhlσsl∆, h, s = 1, 2, . . . , k. (8)

Let Σ be the covariance matrix of the annualized continuous returns of the k indices and let

σ =


σ
11

σ
12

· · · σ
1k

σ
21

σ
22

· · · σ
2k

.

.

.

.

.

.

.
.
.

.

.

.

σk1 σk2 · · · σkk

 .

Then we have

σ · σ′ = Σ, (9)

where σ′ is the transpose of σ. From Equation (9), we see that σ is the Cholesky decomposition of the covari-

ance matrix Σ.
The simple scenario generator described above requires two inputs: the forward curve and the covariance

matrix. In this generator, the bond index and the equity index are simulated in the same way by considering

their covariance structure.

Oncewe have index scenarios simulated fromEquation (5), we can obtain the fund scenarios by blending

these index scenarios. Let n be the number of risk-neutral paths. For i = 1, 2, . . . , n, j = 1, 2, . . . ,m, and
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h = 1, 2, . . . , k, let A(h)ij be the accumulation factor of the hth index at time tj along the ith path. Suppose that

there are g investment funds in the pool and the fund mappings are given by

W =


w
11

w
12

· · · w
1k

w
21

w
22

· · · w
2k

.

.

.

.

.

.

.
.
.

.

.

.

wg1 wg2 · · · wgk

 .

Then the simple returns of the hth investment fund can be blended as

F(h)ij − 1 =

k∑
l=1

whl
[
A(l)ij − 1

]
, h = 1, 2, . . . , g,

where F(h)ij is the accumulation factor of the hth fund for the period (tj−1, tj) along the ith path. Since the sum

of weights is equal to 1, we have

F(h)ij =

k∑
l=1

whlA(l)ij , h = 1, 2, . . . , g.

3.2 Liability Cash Flow Projection

Once we have the risk-neutral scenarios for all the investment funds F(l)ij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

l = 1, 2, . . . , g, we can project the cash �ows of the contract according to contract speci�cations and the

purpose of valuation. If we are interested in the value of the whole contract, we can project the cash �ows of

thewhole contract. For example, the valuationmethod proposed by [5] is based on thewhole contract. In this

paper, we are interested in the market-consistent value (or fair market value) of the guarantees embedded in

variable annuity contracts. To do so, we only project the cash �ows arising from the guarantees.

Without loss of generality, we assume that there are three types of cash �ows: death bene�t, guaranteed

bene�ts, and guarantee risk charges for providing such guaranteed bene�ts. For a general variable annuity

contract, we use the following notation to denote these cash �ows that occur within the period (tj−1, tj] along
the ith risk-neutral path:

GBij denotes the guaranteed death or living bene�t.

DAij denotes payo� of the guaranteed death bene�t.

LAij denotes payo� of the guaranteed living bene�t.

RCij denotes the risk charge for providing the guarantees;

PA(h)ij denotes the partial account value of the hth investment fund, for h = 1, 2, . . . , g.
TAij denotes the total account value. In general, we have

TAij =
g∑
l=1

PA(l)ij .

We use the following notation to denote various fees:

ϕME denotes the annualized M&E fee of the contract;

ϕG denotes the annualized guarantee fee for the riders selected by the policyholder;

ϕ(h)
F denotes the annualized fund management fee of the hth investment fund. Usually this fee goes to the

fund managers rather than the insurance company.

Then we can project the cash �ows in a way that is similar to the way used by [5]. For the sake of simplicity,

we assume that events occur in the following order during the term of the contract:

• fund management fees are �rst deducted;

• then M&E and rider fees are deducted;

• then death bene�t is paid if the policyholder dies;
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• then living bene�t is paid if the policyholder is alive.

We also assume that the fees are charged from the account values at the end of every month and the policy-

holder takes withdrawal at anniversaries of the contracts.

Once we have all the cash �ows, we can calculate the fair market values of the riders as follows:

V
0

=

1

n

n∑
i=1

m∑
j=1

(j−1)∆px0 · ∆qx
0
+(j−1)∆DAijdj

+

1

n

n∑
i=1

m∑
j=1

j∆px0LAijdj , (10)

where x
0
is the age of the policyholder, p is the survival probability, q is the probability of death, and dj is

the discount factor de�ned as

dj = exp


−∆

j∑
l=1

fl


.

The risk charge value can be calculated as

RC
0
=

1

n

n∑
i=1

m∑
j=1

j∆px0RCijdj . (11)

For the sake of simplicity, we did not use dynamical lapse models or stochastic mortality models [12, 13] in

our Monte Carlo valuation. How the cash �ows of various guarantees are projected is described in Appendix

A.

3.3 Fair Market Value and Greek Calculation

We use the bump approach [9] to calculate the Greeks. Speci�cally, we calculate the partial dollar deltas of

the guarantees as follows:

Delta(l)

=

V
0

(
PA(1)

0

, . . . , PA(l−1)
0

, (1 + s)PA(l)
0

, PA(l+1)
0

, . . . , PA(k)
0

)
2s −

V
0

(
PA(1)

0

, . . . , PA(l−1)
0

, (1 − s)PA(l)
0

, PA(l+1)
0

, . . . , PA(k)
0

)
2s , (12)

for l = 1, 2, . . . , k, where s is the shock amount applied to the partial account value and V
0
(· · · ) is the fair

market value written as a function of partial account values. Usually, we use s = 0.01 to calculate the dollar

deltas. The partial dollar delta measures the sensitivity of the guarantee value to an index and can be used to

determine the hedge position with respect to the index.

We calculate the partial dollar rhos in a similar way. In particular, we calculate the lth partial dollar rho

as follows:

Rho(l) = V0(rl + s) − V0(rl − s)
2s , (13)

where V
0
(rl + s) is the fair market value calculated based on the yield curve bootstrapped with the lth input

rate rl being shocked up s bps (basis points) and V
0
(rl − s) is de�ned similarly. A common choice for s is 10

bps.

4 Synthetic Datasets
In this section, we present the synthetic portfolio and the corresponding fair market values and greeks cal-

culated by the Monte Carlo simulation method described in the previous section. The datasets can be down-

loaded from http://www.math.uconn.edu/~gan/software.html.
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4.1 Synthetic Portfolio

We generated 10,000 synthetic variable annuity policies for each of the guarantee types given in Table 1.

The synthetic portfolio contains 190,000 policies. The �elds of the synthetic variable annuity policies are

described in Table 5. There are 45 �elds in total, including 10 fund values, 10 fund numbers, and 10 fund fees.

Table 5: Description of the policy �elds.

Field Description

recordID Unique identi�er of the policy
survivorShip Positive weighting number
gender Gender of the policyholder
productType Product type
issueDate Issue date
matDate Maturity date
birthDate Birth date of the policyholder
currentDate Current date
baseFee M&E (Mortality & Expense) fee
riderFee Rider fee
rollUpRate Roll-up rate
gbAmt Guaranteed bene�t
gmwbBalance GMWB balance
wbWithdrawalRate Guaranteed withdrawal rate
withdrawal Withdrawal so far
FundValuei Fund value of the ith investment fund
FundNumi Fund number of the ith investment fund
FundFeei Fund management fee of the ith investment fund

The synthetic portfolio contains about 40%policieswith female policyholders. Thedistributionof gender

by product type is shown in Table 6. Table 7 shows the summary statistics of the age, the time to maturity,

and the dollar �elds. The age is the years between the birth date and the current date. The time to maturity is

calculated from the current date and the maturity date. The fund fees and the M&E fee are given in Table 3.

The rider fees of di�erent guarantee types are presented in Table 1.

Table 6: Distribution of gender by product type.

Gender ABRP ABRU ABSU DBAB DBIB DBMB DBRP

F 4068 3974 4054 3974 3948 4013 4002
M 5932 6026 5946 6026 6052 5987 5998
Gender DBRU DBSU DBWB IBRP IBRU IBSU MBRP

F 3952 4038 4022 4007 4027 4007 3909
M 6048 5962 5978 5993 5973 5993 6091
Gender MBRU MBSU WBRP WBRU WBSU

F 3992 3980 3970 4076 3994
M 6008 6020 6030 5924 6006
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Table 7: Summary statistics of some �elds. Note that age and ttm are calculated from the birth date, valuation date, and matu-
rity date.

Min 1st Q Mean 3rd Q Max

gbAmt 50001.72 179180.9 312370.41 425946.3 989204.5
gmwbBalance 0 0 36140.74 0 499708.7
withdrawal 0 0 21927.8 0 499585.7
FundValue1 0 0 28183.12 41825.59 940769
FundValue2 0 0 27745.3 41002.11 904760.1
FundValue3 0 0 18765.45 26141.91 825405.7
FundValue4 0 0 15864.94 22333.24 939322
FundValue5 0 0 22813.6 33814.69 988808
FundValue6 0 0 28167.01 41802.33 872706.6
FundValue7 0 0 22952.38 33361.79 795151.2
FundValue8 0 0 21483.85 31447.77 877957.3
FundValue9 0 0 21090.49 30195.66 846460.2
FundValue10 0 0 22593.93 33276.01 868970.4
age 34.52 42.03 49.49 56.96 64.46
ttm 0.59 10.34 14.54 18.76 28.52

4.2 Fair Market Values and Greeks

We used the Monte Carlo simulation engine described in Section 3 to calculate the fair market values, partial

dollar deltas, and partial dollar rhos of the guarantees for the synthetic portfolio. Table 8 shows the total fair

market value and the total greeks for the synthetic portfolio. From the table, we see that the total fair market

value is positive, indicating that the guarantee bene�t payo� is more than the risk charge. The total partial

dollar deltas are negative because the guarantees are like put options, which have negative deltas. The signs

of the total partial dollar rhos for di�erent swap rates are di�erent. Since the variable annuity contracts are

usually long-term contracts, the guarantees are more sensitive to long-term interest rates than to short-term

interest rates.

Table 8: The total fair market value, the total partial dollar deltas, and the total partial rhos of the synthetic portfolio. Numbers
in parenthesis are negative numbers.

Quantity Name Value Quantity Name Value

FMV 18,572,095,089 Rho2y 167,704
Delta1 (4,230,781,199) Rho3y 85,967
Delta2 (2,602,768,996) Rho4y 2,856
Delta3 (2,854,233,170) Rho5y (96,438)
Delta4 (2,203,726,514) Rho7y (546,045)
Delta5 (2,341,793,581) Rho10y (1,407,669)
Rho1y 40,479 Rho30y (62,136,376)

The partial greeks shown in Table 8 are calculated by the bump approach as mentioned in Section 3. The

fair market values under various shocks are given in Table 9. The partial account values correspond to the

amount of money invested in the �ve indices that are calculated from the fund mapping.

Table 10 shows some summary statistics of the fair market values and greeks at the individual contract

level. From Table 10, we see that some contracts have negative fair market values. For these contracts, the

guarantee bene�t payo� is less than the risk charge. From the table, we also see that some contracts have
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Table 9: Fair market values and partial account values for di�erent combinations of interest rate shocks and equity shocks. The
numbers are in millions and “base” means no shocks are applied. Note that 1y_D and 1y_U mean shocking the 1 year rate down
and up 10 bps, respectively. 1_D and 1_U mean shocking the the �rst index down and up 1%, respectively.

irShock eqShock FMV AV1 AV2 AV3 AV4 AV5

base base 18,572 12,825 8,886 8,759 5,454 4,796
1y_D base 18,572 12,825 8,886 8,759 5,454 4,796
1y_U base 18,572 12,825 8,886 8,759 5,454 4,796
2y_D base 18,570 12,825 8,886 8,759 5,454 4,796
2y_U base 18,574 12,825 8,886 8,759 5,454 4,796
3y_D base 18,571 12,825 8,886 8,759 5,454 4,796
3y_U base 18,573 12,825 8,886 8,759 5,454 4,796
4y_D base 18,572 12,825 8,886 8,759 5,454 4,796
4y_U base 18,572 12,825 8,886 8,759 5,454 4,796
5y_D base 18,573 12,825 8,886 8,759 5,454 4,796
5y_U base 18,571 12,825 8,886 8,759 5,454 4,796
7y_D base 18,578 12,825 8,886 8,759 5,454 4,796
7y_U base 18,567 12,825 8,886 8,759 5,454 4,796
10y_D base 18,587 12,825 8,886 8,759 5,454 4,796
10y_U base 18,559 12,825 8,886 8,759 5,454 4,796
30y_D base 19,201 12,825 8,886 8,759 5,454 4,796
30y_U base 17,959 12,825 8,886 8,759 5,454 4,796
base 1_D 18,615 12,735 8,872 8,747 5,442 4,794
base 1_U 18,530 12,915 8,899 8,770 5,465 4,798
base 2_D 18,598 12,812 8,823 8,749 5,452 4,794
base 2_U 18,546 12,839 8,948 8,768 5,455 4,798
base 3_D 18,601 12,814 8,876 8,695 5,452 4,794
base 3_U 18,544 12,837 8,895 8,822 5,455 4,798
base 4_D 18,594 12,814 8,884 8,757 5,415 4,794
base 4_U 18,550 12,836 8,887 8,760 5,492 4,798
base 5_D 18,596 12,824 8,884 8,757 5,452 4,754
base 5_U 18,549 12,827 8,887 8,760 5,455 4,837
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Figure 2: Histogram of the fair market values and the deltas of individual policies.
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Figure 3: Histogram of the rhos of individual policies.
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Table 10: Summary statistics of the fair market values and greeks of individual policies. Numbers in parenthesis are negative
numbers.

Min 1st Q Mean 3rd Q Max

FMV (69,938) 4,542 97,748 108,141 1,784,549
Delta1 (435,070) (34,584) (22,267) (2,219) 216,125
Delta2 (412,496) (21,234) (13,699) (493) 300,019
Delta3 (296,035) (22,704) (15,022) (866) 187,414
Delta4 (312,777) (16,569) (11,599) (656) 40,924
Delta5 (355,741) (16,517) (12,325) 0 10,391
Rho1y (98) (0) 0 1 11
Rho2y (205) 0 1 2 20
Rho3y (343) (0) 0 3 23
Rho4y (473) (0) 0 3 32
Rho5y (610) (0) (1) 7 63
Rho7y (834) (5) (3) 14 137
Rho10y (1,236) (41) (7) 16 1,472
Rho30y (5,159) (388) (327) 0 0

positive deltas. The contracts that havepositive deltas are contractswith the annual ratchet guaranteebene�t.

For such contracts, the value of the guarantee may increase when the market goes up because the guarantee

bene�t is reset to the maximum of the current guarantee bene�t and the account value if the later is higher.

Figures 2 and 3 show the histograms of the fairmarket values and the partial greeks of individual policies.

From Figure 2, we see that the distribution of the fair market values is skewed to the right and has a fat tail.

The distributions of the partial deltas are skewed to the left. Figure 3 shows that the distributions of short-

term rhos are more symmetric than those of long-term rhos. In particular, the distribution of the 30-year rho

is skewed to the left and has a long tail in the left. All the histograms in Figure 2 and Figure 3 show that the

distributions have extreme values.

Since the Monte Carlo simulation method is time-consuming, we used the HPC (High Performance Com-

puting) cluster at the University of Connecticut with 80 CPUs together to calculate the fair market values and

the greeks of the synthetic portfolio. It took these 80 CPUs about 2 hours to �nish the calculations. If we add

the runtime of all these CPUs, the total runtime was 389925.98 seconds or 108.31 hours.

5 Concluding Remarks
In this paper, we created a large synthetic portfolio of variable annuity contracts and aMonte Carlo valuation

engine to calculate the fair market values and Greeks of these synthetic contracts. The Monte Carlo valua-

tion engine consists of a risk-neutral scenario generator, which uses a multivariate Black-Scholes model to

simulate asset returns, and a method for cash �ow projection. The synthetic datasets have the following ad-

vantages:

• This synthetic portfolio has been created to mimic real portfolios in several major aspects such as issue

dates, investment funds. For example, real variable annuity contacts are usually issued at di�erent dates

and can invest in multiple funds.

• The Monte Carlo simulation engine is also similar to what used in practice. For example, a multivariate

Black-Scholesmodel is used to generate risk-neutral scenarios. A fundmapping and a deterministic yield

curve are used in the valuation.

However, the synthetic datasets also have some limitations:
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• The synthetic portfolio does not contains variable annuity contracts that have di�erent tax treatments.

In real portfolios, some contracts are quali�ed investments under the Income Tax Act.

• TheMonte Carlo simulation engine does not use any lapse models. In practice, some lapse model is used

in the Monte Carlo valuation.

In spite of the limitations, the synthetic datasets can be used to test the performance of variousmetamodeling

techniques in terms of speed and accuracy. If a metamodeling technique does not work well for the synthetic

datasets, it is not likely to work well for the real portfolio of variable annuity contracts. The full datasets

or subsets can be used to test di�erent models. Interested researchers and practitioners can download the

source code of the software from http://www.math.uconn.edu/~gan/software.html and possibly extend it to

consider other guarantee types or other Monte Carlo valuation methods.
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helpful and constructive comments that greatly improved the paper. The authors would also like to acknowl-

edge the �nancial support provided by the CAE (Centers of Actuarial Excellence) grant ¹ from the Society of
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A Cash Flow Projections for Guarantees
In this appendix, we outline the cash �ow projections of various guarantees embedded in variable annuities.

A.1 GMDB Projection

For j = 0, 1, . . . ,m − 1, the cash �ows of the GMDB from tj to tj+1 are projected as follows:

• The partial account values evolve as follows:

PA(h)i,j+1 = PA
(h)
ij F

(h)
i,j+1

(
1 − ∆ϕ(h)

F

) (
1 − ∆[ϕME + ϕG]

)
(14)

for h = 1, 2, . . . , g, where ∆ is the time step. Here we assume that the fees are deducted at the end of each

period and the fund management fees are deducted before the insurance fees and withdrawal.

• The guarantee risk charges are projected as

RCi,j+1 =
k∑
h=1

PA(h)ij F
(h)
i,j+1

(
1 − ∆ϕ(h)

F

)
∆ϕG . (15)

Note that the risk charge does not include the basic insurance fees.

• If the guaranteed death bene�t is evolves as follows:

GBi,j+1 =



GBi,j , if tj+1 is not an anniversary,

GBi,j , if tj+1 is an anniversary and

the bene�t is return of premium,

GBi,j(1 + r), if tj+1 is an anniversary and

the bene�t is annual roll-up,

max{TAi,j+1, GBi,j}, if tj+1 is an anniversary and

the bene�t is annual ratchet,

(16)

with GBi,0 = TAi,0.
• If the policyholder dies within the period (tj , tj+1], then the payo� of the death bene�t is projected as

DAi,j+1 = max{0, GBi,j+1 − TAi,j+1}. (17)

1 http://actscidm.math.uconn.edu
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• The payo� of the living bene�t is zero, i.e., LAi,j+1 = 0.

• After the maturity of the contract, all the state variables are set to zero.

A.2 GMAB and DBAB Projection

Di�erent speci�cations for the GMAB rider exist. See [26] and [31] for examples. We follow the speci�cation

given in [26] and consider GMAB riders that give policyholders to renew the policy at the maturity date. As a

result, a policy with the GMAB rider may have multiple maturity dates.

At thematurity dates, if the guaranteed bene�t is higher than the fund value, then the insurance company

has to pay out the di�erence and the policy is renewed by reseting the fund value to the guaranteed bene�t.

If the guaranteed bene�t is lower than the fund values, then the policy is renewed by reseting the guaranteed

bene�t to the fund value. Let T
1
= T be the �rst renewal date. Let T

2
, T

3
, . . ., TJ be the subsequent renewal

dates. Under such a GMAB rider, the guaranteed bene�t evolves as follows:

GBi,j+1 =
{

max{GBi,j , TAi,j+1} if tj+1 ∈ T,

GBi,j+1, if otherwise,

(18)

where T = {T
1
, T

2
, . . . , TJ} is the set of renewal dates. We assume that the policyholder renews the policy

only when the account value at a maturity date is higher than the guaranteed bene�t.

The payo� of the living bene�t is calculated as follows:

LAi,j+1 =
{

0, if tj+1 ∈ ̸ T,
max{0, GBi,j+1 − TAi,j+1}, if tj+1 ∈ T.

(19)

The payo� of the death bene�t is zero if the policy contains only the GMAB rider. For the DBAB policy, the

death bene�t is calculated according to Equation (17).

If the payo� is larger than zero, then the fund value is reseted to the guaranteed bene�t. In other words,

the payo� is deposited to the investment funds. We assume that the payo� is deposited to the investment

funds proportionally. Speci�cally, the partial account values are reseted as follows:

PA(h)i,j+1 = PA
(h)
ij F

(h)
i,j+1

(
1 − ∆ϕ(h)

F

) (
1 − ∆[ϕME + ϕG]

)
+ LA(h)i,j+1 (20)

for h = 1, 2, . . . , g, where LA(h)i,j is the amount calculated as,

LA(h)i,j+1 = LAi,j+1
PA(h)ij F

(h)
i,j+1

(
1 − ∆ϕ(h)

F

)
∑p

l=1 PA
(l)
ij F

(l)
i,j+1

(
1 − ∆ϕ(l)

F

) .

A.3 GMIB and DBIB Projection

A variable annuity policy with a GMIB rider gives the policyholder three options at the maturity date [5, 30]:

• get back the accumulated account values,

• annuitize the accumulated account values at the market annuitization rate, or

• annuitize the guaranteed bene�t at a payment rate rg per annum.

As a result, the payo� of the GMIB rider is given by

LAi,j+1 =

 0, if tj+1 < T,

max

{
0, GBi,j+1

äT
äg
− TAi,j+1

}
, if tj+1 = T,

(21)

where äT and äg are themarket price and the guaranteed price of an annuity with payments of $1 per annum

beginning at time T, respectively. In this paper, we determine äT by using the current yield curve. We specify
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äg by using a particular interest rate, i.e.,

äg =
∞∑
n=0

npxe−nr ,

where r is an interest rate set to 5%, which is about 1% higher than the 30 year forward rate shown in Figure

1.

The guaranteed bene�ts and guarantee risk charges are projected according to Equations (16) and (15),

respectively. The payo� of the death bene�t is zero if the policy contains only the GMIB. For the DBIB policy,

the death bene�t is projected according to Equation (17).

A.4 GMMB and DBMB Projection

For the GMMB and DBMB guarantees, account values, guarantee risk charges, and guaranteed bene�ts are

projected according to the GMDB case speci�ed in Equation (14), Equation (15), and Equation (16), respec-

tively. The payo� of the living bene�t is projected as

LAi,j+1 =
{

0, if tj+1 < T,
max{0, GBi,j+1 − TAi,j+1}, if tj+1 = T.

(22)

For the GMMB guarantee, the payo� of the guaranteed death bene�t is zero. For the DBMB guarantee, the

payo� of the guaranteed death bene�t is projected according to Equation (17).

A.5 GMWB and DBWB Projection

To describe the cash �ow project for the GMWB, we need the following additional notation:

WAGij denotes the guaranteed withdrawal amount per year. In general,WAGij is a speci�ed percentage of the

guaranteed withdrawal base.

WBGij denotes the guaranteed withdrawal balance, which is the remaining amount that the policyholder can

withdrawal.

WAij denotes the actual withdrawal amount per year.

For j = 0, 1, . . . ,m − 1, the cash �ows of the GMWB from tj to tj+1 are projected as follows:

• Suppose that the policyholder takes maximum withdrawals allowed by a GMWB rider at anniversaries.

Then we have

WAi,j+1 =

 min{WAGi,j ,WBGi,j}, if tj+1 is an anniversary,

0, if otherwise.

(23)

• The partial account values evolve as follows:

PA(h)i,j+1 = PA
(h)
ij F

(h)
i,j+1

(
1 − ∆ϕ(h)

F

) (
1 − ∆[ϕME + ϕG]

)
−WA(h)i,j+1 (24)

for h = 1, 2, . . . , g, where ∆ is the time step andWA(h)i,j is the amount withdrawn from the hth investment

fund, i.e.,

WA(h)i,j+1 = WAi,j+1
PA(h)ij F

(h)
i,j+1

(
1 − ∆ϕ(h)

F

)
∑p

l=1 PA
(l)
ij F

(l)
i,j+1

(
1 − ∆ϕ(l)

F

) .
If the account values from the investment funds cannot cover the withdrawal, the account values are set

to zero.

• The guarantee risk charges are projected according to Equation (15).
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• If the guaranteed bene�t is evolves as follows:

GBi,j+1 = GB*i,j+1 −WAi,j+1, (25)

where

GB*i,j+1 =



GBi,j , if tj+1 is not an anniversary,

GBi,j , if tj+1 is an anniversary and

the bene�t is return of premium,

GBi,j(1 + r), if tj+1 is an anniversary and

the bene�t is annual roll-up,

max{TAi,j+1, GBi,j}, if tj+1 is an anniversary and

the bene�t is annual ratchet,

(26)

with GBi,0 = TAi,0. The guaranteed bene�t is reduced by the amount withdrawn.

• The guaranteed withdrawal balance and the guaranteed withdrawal amount evolve as follows:

WBGi,j+1 = WBGi,j −WAi,j+1, WAGi,j+1 = WAGi,j (27)

withWBGi,0 = TAi,0 andWAGi,0 = xWTAi,0. Here xW is thewithdrawal rate. The guaranteedbase is adjusted

for the withdrawals.

• The payo� of the guaranteed withdrawal bene�t is projected as

LAi,j+1 =
{

max{0,WAi,j+1 − TAi,j+1}, if tj+1 < T,
max{0,WBGi,j+1 − TAi,j+1}, if tj+1 = T.

(28)

It is the amount that the insurance company has to pay by its own money to cover the withdrawal guar-

antee. At maturity, the remaining withdrawal balance is returned to the policyholder.

• The payo� of the guaranteed death bene�t for the GMWB is zero, i.e., DAi,j+1 = 0. For the DBWB, the

payo� is projected according to Equation (17).

• After the maturity of the contract, all the state variables are set to zero.

B Software Implementation
We implemented the yield curve construction program, the synthetic portfolio generator, the risk-neutral

scenario generator, and theMonte Carlo simulation engine in Java. The software package can be downloaded

from http://www.math.uconn.edu/~gan/software.html.

The yield curve construction program is used to bootstrap a yield curve from swap rates. The resulting

yield curve is used by the risk-neural scenario generator to generate risk-neutral scenarios. The synthetic

portfolio generator is used to create synthetic portfolios of variable annuity contracts. The Monte Carlo sim-

ulation engine is used to calculate the fair market values of the synthetic variable annuity contracts. Since

Monte Carlo simulation is extremely time-consuming, the simulation engine is implemented in such a way

that it can run on multiple machines with multiple threads. The parameters for the four major programs are

saved in XML �les. The XML parameter �les used to create the datasets in this paper can also be found in the

software package mentioned above.

In additional to the four major programs, we also developed two utility programs for consolidating the

fair market values from di�erent output �les and calculating the greeks.
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