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a b s t r a c t 

Outlier detection is an important data analysis task in its own right and removing the outliers from 

clusters can improve the clustering accuracy. In this paper, we extend the k -means algorithm to provide 

data clustering and outlier detection simultaneously by introducing an additional “cluster” to the k -means 

algorithm to hold all outliers. We design an iterative procedure to optimize the objective function of the 

proposed algorithm and establish the convergence of the iterative procedure. Numerical experiments on 

both synthetic data and real data are provided to demonstrate the effectiveness and efficiency of the 

proposed algorithm. 
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1. Introduction 

The goal of data clustering is to identify homogeneous groups

or clusters from a set of objects. In other words, data clustering

aims to divide a set of objects into groups or clusters such that

objects in the same cluster are more similar to each other than to

objects from other clusters [3,11] . As an unsupervised learning pro-

cess, data clustering is often used as a preliminary step for data

analytics. For example, data clustering is used to identify the pat-

terns hidden in gene expression data [30] , to produce a good qual-

ity of clusters or summaries for big data to address the associated

storage and analytical issues [9] , to select representative insurance

policies from a large portfolio in order to build metamodel models

[12,14] . 

Many clustering algorithms have been developed in the past

sixty years. Among these algorithms, the k -means algorithm is

one of the oldest and most commonly used clustering algorithms

[22,31] . Despite being used widely, the k -means algorithm has sev-

eral drawbacks. One drawback is that it is sensitive to noisy data

and outliers. For example, the k -means algorithm is not able to

recover correctly the two clusters shown in Fig. 1 (a) due to the

outliers. As we can see from Fig. 1 (b), three points were clustered

incorrectly. 

Motivated by Dave and Krishnapuram [7] , we propose in this

paper the KMOR ( k -means with outlier removal) algorithm by ex-
∗ Corresponding author. 
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ending the k -means algorithm for outlier detection. Dave and Kr-

shnapuram [7] proposed to use an additional “cluster” for the

uzzy c -means algorithm to hold all outliers. In the KMOR algo-

ithm, we use the same idea of introducing an additional “cluster”

hat contains all outliers. Given a desired number of clusters k , the

MOR algorithm partitions the dataset into k + 1 groups, which in-

lude k clusters and a group of outliers that cannot fit into the k

lusters. Unlike most existing clustering algorithms with outlier de-

ection, the KMOR algorithm assigns all outliers into a group natu-

ally during the clustering process. 

The remaining part of this paper is organized as follows. In

ection 2 , we give a review of clustering algorithms that can detect

utliers. In Section 3 , we present the KMOR algorithm in detail.

n Section 4 , we demonstrate the performance of the KMOR algo-

ithm with numerical results on both synthetic and real datasets.

ection 5 concludes the paper with some remarks. 

. Related work 

Kadam and Pund [27] and Aggarwal [2 , Chapter 8] reviewed

everal approaches to detect outliers, including the cluster-based

pproach. Aggarwal [1] devoted a whole book to outlier analy-

is. Yu et al. [36] proposed the OEDP k -means algorithm by re-

oving outliers from the dataset before applying the k -means al-

orithm. Aparna and Nair [5] proposed the CHB-K-Means algo-

ithm by using a weighted attribute matrix to detect outliers. Jiang

t al. [24] proposed two initialization methods for the k -modes

lgorithm to choose initial cluster centers that are not outliers.

http://dx.doi.org/10.1016/j.patrec.2017.03.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.03.008&domain=pdf
mailto:guojun.gan@uconn.edu
http://dx.doi.org/10.1016/j.patrec.2017.03.008
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Fig. 1. An illustration showing that the k -means algorithm is sensitive to outliers. (a) A data set with two clusters and two outliers. The two clusters are plotted by triangles 

and circles, respectively. The two outliers are denoted by plus signs. (b) Two clusters found by the k -means algorithm. The two found clusters are plotted by triangles and 

circles, respectively. 
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lthough much work has been done on outlier analysis, few of

hem perform clustering and detect outliers simultaneously. In this

ection, we focus on clustering methods with the built-in mecha-

ism of outlier detection and give a review of those methods. 

Jiang et al. [25] proposed a two-phase clustering algorithm for

utlier detection. In the first phase, the k -means algorithm is mod-

fied to partition the data in such a way that a data point is as-

igned to be a new cluster center if the data point is far away from

ll clusters. In the second phase, a minimum spanning tree is con-

tructed based on the cluster centers obtained from the first phase.

lusters in small sub trees are considered as outliers. He et al.

19] introduced the concept of cluster-based local outlier and de-

igned a measure, called cluster-based local outlier factor (CBLOF),

o identify such outliers. 

Hautamäki et al. [18] proposed the ORC (Outlier Removal Clus-

ering) algorithm to identify clusters and outliers from a dataset

imultaneously. The ORC algorithm consists of two consecutive

tages: the first stage is a purely k -means algorithm; the second

tage iteratively removes the data points that are far away from

heir cluster centroids. Rehm et al. [34] defined outliers in terms of

oise distance. The data points that are about the noise distance or

urther away from any other cluster centers get high membership

egrees to the outlier cluster. 

Jiang and An [26] also proposed a two-stage algorithm, called

BOD (Clustering Based Outlier Detection), to detect outliers from

atasets. In the first stage, an one-pass clustering algorithm is ap-

lied to divide a dataset into hyper spheres with almost the same

adius. In the second stage, outlier factors for all clusters obtained

rom the first stage are calculated and the clusters are sorted ac-

ording to their outlier factors. Clusters with high outlier factors
re considered outliers. Zhou et al. [38] proposed a three-stage k -

eans algorithm to cluster data and detect outliers. In the first

tage, the fuzzy c -means algorithm is applied to cluster the data. In

he second stage, local outliers are identified and the cluster cen-

ers are recalculated. In the third stage, certain clusters are merged

nd global outliers are identified. Zhang et al. [37] introduced a

easure called Local Distance-based Outlier Factor (LDOF) to mea-

ure the outlier-ness of objects in scattered datasets. Pamula et al.

33] used the k -means algorithm to prune some points around

he cluster centers and the LDOF measure to identify outliers from

he remaining points. Jayakumar and Thomas [23] proposed an ap-

roach to detect outliers based on the Mahalanobis distance. 

Ahmed and Naser [4] proposed the ODC (Outlier Detection and

lustering) algorithm to detect outliers. The ODC algorithm is a

odified version of the k -means algorithm. In the ODC algorithm,

 data point that is at least p times the average distance away

rom its centroid is considered as an outlier. Chawla and Gionis

6] proposed the k -means– algorithm to provide data clustering

nd outlier detection simultaneously. The k -means– algorithm re-

uires two parameters: k and l , which specify the desired number

f clusters and the desired number of top outliers, respectively. 

Ott et al. [32] extended the facility location formulation to

odel the joint clustering and outlier detection problem and pro-

osed a subgradient-based algorithm to solve the resulting opti-

ization problem. The model requires pairwise distances of the

ataset and the number of outliers as input. Whang et al. [35] pro-

osed the NEO- k -means (Non-exhaustive Overlapping k -means) al-

orithm, which is also able to identify outliers during the cluster-

ng process. 
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Some of the aforementioned algorithms perform clustering and

outlier detection in stages. In these algorithms, a clustering algo-

rithm is used to divide the dataset into clusters and some mea-

sure is calculated for the data points based on the clusters to iden-

tify outliers. The ODC algorithm, the k -means– algorithm, and the

NEO- k -means algorithm integrate outlier detection into the clus-

tering process. However, data points that are removed as outliers

during the iterative process of the ODC algorithm cannot be used

as normal points again when the centroids are updated. Determin-

ing the parameters α and β in the NEO- k -means algorithm is time

consuming. 

3. The KMOR algorithm 

In the KMOR algorithm, a data point that is at least γ × d avg 

away from all the cluster centers is considered as an outlier, where

γ is a multiplier and d avg is the average distance calculated dy-

namically during the clustering process. 

To describe the KMOR algorithm, let X = { x 1 , x 2 , . . . , x n } be a

numerical dataset containing n data points, each of which is de-

scribed by d numerical attributes. Let k be the desired number of

clusters. Let U = (u il ) n ×(k +1) be an n × (k + 1) binary matrix (i.e.,

u il ∈ {0, 1}) such that for each i = 1 , 2 , . . . , n, 

k +1 ∑ 

l=1 

u il = 1 . (1)

The binary matrix U has k + 1 columns. The last column of U is

used to indicate whether a data point is an outlier. If x i is an

outlier, then u i,k +1 = 1 . If x i is a normal point, then u i,k +1 = 0 . If

u i,k +1 = 0 , then u il = 1 for some l ∈ { 1 , 2 , . . . , k } , where l is the in-

dex of the cluster to which x i belongs. The binary matrix U is a

partition matrix that divides the dataset X into k + 1 groups, which

include k normal clusters and one special “cluster” that contains

the outliers. 

The KMOR algorithm divides X into k clusters and a group of

outliers by minimizing the following objective function 

P (U, Z) = 

n ∑ 

i =1 

( 

k ∑ 

l=1 

u il ‖ x i − z l ‖ 

2 + u i,k +1 D (U, Z) 

) 

, (2)

subject to 

n ∑ 

i =1 

u i,k +1 ≤ n 0 , (3)

where 0 ≤ n 0 < n is a parameter, Z = { z 1 , z 2 , . . . , z k } is a set of

cluster centers, ‖ · ‖ is the L 2 norm and 

D (U, Z) = 

(
γ

n − ∑ n 
j=1 u j,k +1 

)
k ∑ 

l=1 

n ∑ 

j=1 

u j,l ‖ x j − z l ‖ 

2 . (4)

Here γ ≥ 0 is also a parameter. The parameters n 0 and γ are used

to control the number of outliers. How to select appropriate values

for n 0 and γ is discussed in the end of this section. The first term

of P ( U, Z ) is employed in the standard k -means algorithm to put

similar data points into a cluster. The second term of P ( U, Z ) is

used to check how to assign a point to be an outlier based on the

average distance calculated from D ( U, Z ). 

The condition given in Eq. (3) limits the number of outliers to

be at most n 0 . In fact, the purpose of this condition is to make sure

that 

n ∑ 

i =1 

u i,k +1 < n. 

It is worth noting that this condition is necessary for the ob-

jective function to be nontrivial. Without the condition given in
q. (3) , the objective function reaches zero with u i,k +1 = 1 , u i,l = 0

or i = 1 , 2 , . . . , n and l = 1 , 2 , . . . , k . In other words, the objective

unction without the condition is minimized when all data points

re put into the group of outliers. When n 0 = 0 , the condition

iven in Eq. (3) implies that u i,k +1 = 0 for i = 1 , 2 , . . . , n . In this

ase, the KMOR objective function becomes the standard k -means

bjective function. When 0 < n 0 < n , the KMOR objective function

lso becomes the standard k -means objective function when γ →
 . In this setting, the second term u i,k +1 D (U, Z) is more dominant,

he minimization procedure will favour u i,k +1 to be zero, i.e., no

oints will be assigned to the group of outliers. Also it is obvious

n the KMOR objective function that we do not allow n 0 ≥ n in or-

er to prevent the algorithm from assigning all points to the group

f outliers. 

Like the k -means algorithm, the KMOR algorithm starts with a

et of k initial cluster centers and then keeps updating U and Z

ntil some stopping criterion is achieved. However, the objective

unction of the KMOR algorithm involves the interaction of the two

et of variables: u i,l (l = 1 , 2 , . . . , k ) and u i,k +1 . As a result, the iter-

tive process of the KMOR algorithm is different from that of the

tandard k -means algorithm. To describe the iterative process of

he KMOR algorithm, we define 

(U, V, Z) = 

n ∑ 

i =1 

( 

k ∑ 

l=1 

u i,l ‖ x i − z l ‖ 

2 + u i,k +1 D (V, Z) 

) 

, (5)

here V = (v i,l ) n ×(k +1) is an n × (k + 1) binary matrix that satis-

es conditions given in (1) and (3) . Comparing Eqs. (2) and (5) , we

ave Q(U , U , Z) = P (U, Z) . According to Q ( U, V, Z ), we can optimize

 by solving three subproblems: Q ( U , ·, ·), Q ( ·, V , ·) and Q ( ·, ·,
 ) iteratively. The pseudo-code of the KMOR algorithm is given in

lgorithm 1 . For each subproblem, we have the following theorems

o guarantee the optimality. 

Algorithm 1: Pseudo-code of the KMOR algorithm, where σ
and N max are two parameters used to terminate the algorithm. 

Input : X , k , γ , n 0 , δ, N max 

Output : Optimal values of U and Z 

1 Initialize Z (0) = { z (0 ) 
1 

, z (0 ) 
2 

, . . . , z (0 ) 
k 

} by selecting k points from 

X randomly; 

2 Update U 

(0) by assigning x i to its nearest center for 

i = 1 , 2 , . . . , n ; 

3 s ← 0 ; 

4 P (0) ← 0 ; 

5 while True do 

6 Update U 

(s +1) by minimizing Q(U, U 

(s ) , Z (s ) ) according to 

Theorem 1; 

7 Update Z (s +1) by minimizing Q(U 

(s +1) , U 

(s +1) , Z) according 

to Theorem 3; 

8 s ← s + 1 ; 

9 P (s +1) ← P 
(
U 

(s +1) , Z (s +1) 
)
; 

10 if 
∣∣P (s +1) − P (s ) 

∣∣ < δ or s ≥ N max then 

11 Break; 

12 end 

13 end 

heorem 1. Let V = V ∗ and Z = Z ∗ be fixed. Let m 1 , m 2 , . . . , m n ∈
 1 , 2 , . . . , k } such that 

 i,m i 
= min 

1 ≤l≤k 
d i,l , 

here d i,l = ‖ x i − z ∗
l 
‖ 2 , that is, m i is the index of the center to

hich the point x is closest. Let (i , i , . . . , i n ) be a permutation of
i 1 2 
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(1 , 2 , . . . , n ) such that 

 i 1 ,m i 1 
≥ d i 2 ,m i 2 

≥ · · · ≥ d i n ,m i n 
. 

efine 

 

∗ = { i 1 , i 2 , . . . , i n 0 } ∩ { i ∈ { 1 , 2 , . . . , n } : d i,m i 
> D (V 

∗, Z ∗) } , 
here n 0 is a parameter of the KMOR algorithm. Then the binary ma-

rix U 

∗ that satisfies the conditions (1) and (3) and minimizes the

unction given in Eq. (5) is given as: 

 

∗
i,l = 

{
1 , if i / ∈ O 

∗ and l = m i , 
0 , if i ∈ O 

∗, 
(6) 

or i = 1 , 2 , . . . , n and l = 1 , 2 , . . . , k . For l = k + 1 , we have u ∗
i,k +1 

=
 − ∑ k 

s =1 u 
∗
is 

. 

roof. We only need to show that for any binary matrix U satisfy-

ng the conditions (1) and (3) , we have 

(U 

∗, V 

∗, Z ∗) ≤ Q(U, V 

∗, Z ∗) . 

o do that, we let U be an arbitrary binary matrix that satisfies

onditions (1) and (3) and let 

 = { i ∈ { 1 , 2 , . . . , n } : u i,k +1 = 1 } 
nd t = | O | . Let 

 

∗
i = 

k ∑ 

l=1 

u 

∗
il d il + u 

∗
i,k +1 D (V 

∗, Z ∗) , i = 1 , 2 , . . . , n 

nd 

 i = 

k ∑ 

l=1 

u i,l d il + u i,k +1 D (V 

∗, Z ∗) , i = 1 , 2 , . . . , n. 

hen we have a ∗
i j 

= D (V ∗, Z ∗) for j = 1 , 2 , . . . , t ∗ and a ∗
i j 

= d i j ,m i j 
for

j = t ∗ + 1 , . . . , n, where t ∗ = | O 

∗| . 
Let (s 1 , s 2 , . . . , s n ) be a permutation of (1 , 2 , . . . , n ) such that

 s j = D (V ∗, Z ∗) for j = 1 , 2 , . . . , t and 

 s t+1 
≥ a s t+2 

≥ · · · ≥ a s n . 

et us first consider the case when t = t ∗. In this case, we have

 

∗
i j 

= a s j = D (V ∗, Z ∗) for j = 1 , 2 , . . . , t and a ∗
i j 

≤ a s j for j = t + 1 , t +
 , . . . , n . Hence we have 

(U 

∗, V 

∗, Z ∗) = 

n ∑ 

j=1 

a ∗i j ≤
n ∑ 

j=1 

a s j = Q(U, V 

∗, Z ∗) . 

ow let us consider the case when t < t ∗. In this case, we have

 

∗
i j 

= a s j = D (V ∗, Z ∗) for j = 1 , 2 , . . . , t . For j = t + 1 , t + 2 , . . . , t ∗,

e have 

 s j = 

k ∑ 

l=1 

u s j l 
d s j l ≥ d s j ,m s j 

> D (V 

∗, Z ∗) = a ∗i j . 

or j = t ∗ + 1 , . . . , n, we have a ∗
i j 

≤ a s j . Hence we have 

(U 

∗, V 

∗, Z ∗) = 

n ∑ 

j=1 

a ∗i j ≤
n ∑ 

j=1 

a s j = Q(U, V 

∗, Z ∗) . 

or the case when t > t ∗, we have t ∗ < t ≤ n 0 because U satisfies

he condition (3) . In this case, we have a ∗
i j 

= a s j = D (V ∗, Z ∗) for j =
 , 2 , . . . , t ∗. For j = t ∗ + 1 , . . . , t, we have 

 

∗
i j 

= d i j ,m i j 
≤ D (V 

∗, D 

∗) = a s j . 

or j = t + 1 , t + 2 , . . . , n, we have a ∗
i j 

≤ a s j . In this case, we also

ave 

(U 

∗, V 

∗, Z ∗) = 

n ∑ 

j=1 

a ∗i j ≤
n ∑ 

j=1 

a s j = Q(U, V 

∗, Z ∗) . 
his completes the proof. �

According to Theorem 1 , the assignment of a point to a cluster

an be determined similar to that of the standard k -means algo-

ithm except we remove outliers in the clustering process. 

heorem 2. Let V = V ∗ and Z = Z ∗ be fixed. Let U 

∗ be the binary ma-

rix defined in Eq. (6) . Then by Theorem 1 , we know that U 

∗ satisfies

he conditions (1) and (3) and minimizes the function given in Eq. (5) .

uppose that 

n 
 

i =1 

u 

∗
i,k +1 = 

n ∑ 

i =1 

v ∗i,k +1 . 

hen 

(U 

∗, U 

∗, Z ∗) ≤ Q(U 

∗, V 

∗, Z ∗) . 

roof. We only need to show that 

 (U 

∗, Z ∗) ≤ D (V 

∗, Z ∗) . (7)

By Theorem 1 , we know that U 

∗ is a binary matrix that satisfies

onditions (1) and (3) and minimizes Q ( U, V 

∗, Z ∗). Hence we have 

(U 

∗, V 

∗, Z ∗) ≤ Q(V 

∗, V 

∗, Z ∗) 

r 

n 
 

i =1 

( 

k ∑ 

l=1 

u 

∗
i,l ‖ x i − z ∗l ‖ 

2 + u 

∗
i,k +1 D (V 

∗, Z ∗) 

) 

≤
n ∑ 

i =1 

( 

k ∑ 

l=1 

v ∗i,l ‖ x i − z ∗l ‖ 

2 + v ∗i,k +1 D (V 

∗, Z ∗) 

) 

. (8) 

rom the assumption that 
∑ n 

i =1 u 
∗
i,k +1 

= 

∑ n 
i =1 v ∗i,k +1 

and Eq. (8) , we

et 

n 
 

i =1 

k ∑ 

l=1 

u 

∗
i,l ‖ x i − z ∗l ‖ 

2 ≤
n ∑ 

i =1 

k ∑ 

l=1 

v ∗i,l ‖ x i − z ∗l ‖ 

2 . 

q. (7) follows from the above inequality, the assumption, and the 

efinition of D ( V, Z ). This completes the proof. �

According to Theorem 2 , we can set V 

∗ equal to U 

∗, and guar-

ntee that the objective function value is always non-increasing. 

heorem 3. Let U = U 

∗ and V = U 

∗ be fixed. Then the cluster centers

 

∗ that minimizes the function (5) is given by 

 

∗
l,s = 

∑ n 
i =1 u 

∗
i,s 

x i,s ∑ n 
i =1 u 

∗
i,s 

(9) 

or l = 1 , 2 , . . . , k and s = 1 , 2 , . . . , d, where x i = [ x i, 1 , x i , 2 , ���, x i, d ] .

roof. By combining Eqs. (4) and (5) , we get 

(U 

∗, U 

∗, Z) = 

[
1 + 

γ
∑ n 

j=1 u 

∗
j,k +1 

n − ∑ n 
j=1 u 

∗
j,k +1 

]
n ∑ 

i =1 

k ∑ 

l=1 

u 

∗
i,l ‖ x i − z l ‖ 

2 . 

inimizing the above equation with respect to Z is equivalent to

inimizing the following function 

f (Z) = 

n ∑ 

i =1 

k ∑ 

l=1 

u 

∗
i,l ‖ x i − z l ‖ 

2 . 

aking derivative of the above equation with respect to z ls and

quating the derivative to zero lead to the result. This completes

he proof. �

According to Theorem 3 , we see that the update of cluster cen-

ers is the same as that in the standard k -means algorithm. 
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Table 1 

Average statistics of 100 runs of the four algorithms on syn- 

thetic datasets. The runtime is measured in seconds. (a) Results 

on the first synthetic dataset with k = 2 . (b) Results on the sec- 

ond synthetic dataset with k = 7 . 

KMOR ODC k -means– NEO- k -means 

R 0.91 0.87 0.32 0.34 

M E 0.05 0.16 0.95 0.94 

Outliers 6.14 5.04 53 52.27 

Runtime 0.003 0.003 0.019 0.015 

(a) 

KMOR ODC k -means– NEO- k -means 

R 0.562 0.782 0.291 0.292 

M E 0.707 1 0.709 0.717 

Outliers 272.37 0 408 407.43 

Runtime 0.029 0.01 0.044 0.078 

(b) 
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By using the results in Theorems 1 –3 , we can show that the

KMOR algorithm converges. In particular, we have 

P (U 

(s +1) , Z (s +1) ) = Q(U 

(s +1) , U 

(s +1) , Z (s +1) ) 

≤ Q(U 

(s +1) , U 

(s +1) , Z (s ) ) ≤ Q(U 

(s +1) , U 

(s ) , Z (s ) ) 

≤ Q(U 

(s ) , U 

(s ) , Z (s ) ) = P (U 

(s ) , Z (s ) ) . 

We see that the objective is non-increasing. As U is finite and the

objective function value is bounded below by zero, the algorithm

will terminate as the objective function value is not changed after

a finite number of iterations. 

As shown in Algorithm 1 , the KMOR algorithm requires three

main parameters k, n 0 , and γ . The first parameter k is the de-

sired number of clusters. The second parameter n 0 is the maxi-

mum number of outliers. The purpose of this parameter is to pre-

vent the algorithm from assigning all the points to the group of

outliers. The third parameter γ is used to classify normal points

and outliers. In general, when the value of γ increases, the number

of outliers decreases. The two additional parameters δ and N max 

are used to terminate the algorithm. 

The parameters n 0 and γ are used together to control the num-

ber of outliers. If we know the percentage of outliers in a dataset,

then we can set n 0 to that number and set γ to be 1 so that the

algorithm will identify a group of n 0 outliers and divide the re-

maining data points into k clusters. If we do not know the per-

centage of outliers in a dataset, then we can set n 0 to a reasonable

large number (e.g., 0.5 n ) and set γ appropriately to capture the

outliers. For example, we can set γ in such a way that the scaled

average distance D ( U, Z ) is approximately equal to the maximum

of 
∑ k 

l=1 u i,l ‖ x i − z l ‖ 2 (1 ≤ i ≤ n ). Suppose that 

L = max 
1 ≤i ≤n 

k ∑ 

l=1 

u i,l ‖ x i − z l ‖ 

and 

∑ k 
l=1 u i,l ‖ x i − z l ‖ (1 ≤ i ≤ n ) are uniformly distributed on [0,

L ]. Then such γ can be derived from the following relation: 

γ

n 1 

n 1 ∑ 

s =1 

(
s 

n 1 

L 

)2 

≈ L 2 , 

where n 1 = n − ∑ n 
j=1 u j,k +1 . Noting that 

n 1 ∑ 

s =1 

s 2 = 

n 

3 
1 

3 

+ 

n 

2 
1 

2 

+ 

n 1 

6 

, 

we get γ ≈ 3. 

If we do not know the percentage of outliers in a dataset, set-

ting γ = 3 is a good initial guess. To apply the KMOR algorithm, we

use the following default values for parameters: γ = 3 , n 0 = 0 . 1 n,

δ = 10 −6 , and N max = 100 . 

4. Numerical experiments 

In this section, we demonstrate the performance of the KMOR

algorithm using both synthetic and real datasets. We shall compare

the KMOR algorithm with the ODC algorithm [4] , the k -mean– al-

gorithm [6] , and the NEO- k -means algorithm [35] , which are clus-

tering algorithms that perform clustering and outlier detection si-

multaneously. 

To measure the performance of the KMOR algorithm, we use

the following two measures: the corrected Rand index [15,21] and

the distance of a classifier on the Receiver Operating Curve graph

from the perfect classifier [4] . The first measure, denoted by R , is

used to measure the overall accuracy of the clustering algorithm

in terms of clustering and outlier detection. The value of R ranges

from −1 to 1. A value of 1 indicates a perfect agreement between

the two partitions; while a negative value indicates agreement by
hance. The second measure, denoted by M E , is used to measure

he performance of the clustering algorithm in terms of outlier de-

ection. The measure M E ranges from 0 to 
√ 

2 . A smaller value of

 E indicates a better result. 

.1. Experiments on synthetic data sets 

To show that the proposed algorithm works, we generated two

ynthetic datasets with some outliers. The two synthetic datasets

re shown in Fig. 2 . The first synthetic dataset contains 106 data

oints, including 2 clusters and 6 outliers. The second synthetic

ataset contains 816 data points, including 7 clusters and 16 out-

iers. 

The KMOR algorithm has two main parameters: n 0 and γ . The

arameter n 0 specifies the maximum number of outliers. The pa-

ameter γ specifies the multiplier of the average squared distance

or outlier detection. In our experiments, we used n 0 = 0 . 5 n and

= 3 as discussed in the end of Section 3 . For the ODC algo-

ithm, the parameter p is used to control the number of outliers.

 smaller value of p leads to more outliers. In our experiments,

e set p = 6 for ODC. For the k -mean– algorithm, the parame-

er l refers to the top number of outliers. In our experiment, we

et l = 0 . 5 n for k -means– that is the same as the parameter n 0 in

MOR. In the NEO- k -means algorithm, α captures the degree of

verlap and βn is the maximum number of outliers. For compari-

on purpose, we set α = 0 and β = 0 . 5 for NEO- k -means. Since all

our algorithms can be affected by the cluster center initialization

roblem, we run each algorithm 100 times with different initial

luster centers selected randomly from the datasets. 

Table 1 summarizes the average accuracy and runtime when

he four algorithms are applied to the two synthetic datasets. From

able 1 (a), we see that the KMOR algorithm performs the best

mong the four algorithms in terms of overall accuracy as mea-

ured by the corrected Rand index. The k -means– algorithm and

he NEO- k -means algorithm produced similar results. In addition,

he KMOR algorithm identified 6.14 outliers on average, which is

lose to the actual number of outliers in the first synthetic dataset.

he average number of outliers identified by the k -means– algo-

ithm and the NEO- k -means algorithm is close to the specified

umber of outliers. 

Table 1 (b) shows the average statistics of 100 runs of the four

lgorithms on the second synthetic dataset. For the second syn-

hetic dataset, the ODC algorithm achieved the best overall per-

ormance. However, the ODC algorithm did not identify any out-

iers as the average number of identified outliers is zero. Again,

he number of outliers identified by the k -means– algorithm and

he NEO- k -means algorithm is close to the specified number of

utliers. The KMOR algorithm identified 272.37 outliers on aver-
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Fig. 2. Two synthetic datasets with outliers. 
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Table 2 

Average statistics of 100 runs of the four algorithms on real 

datasets. (a) Results on the WBC dataset with k = 1 . (b) Results 

on the Shuttle dataset with k = 3 . 

KMOR ODC k -means– NEO- k -means 

R 0.695 0 0.477 0.481 

M E 0.127 1 0.236 0.234 

Outliers 299 0 349 348 

Runtime 0.023 0.009 0.037 0.021 

(a) 

KMOR ODC k -means– NEO- k -means 

R 0.46 0.44 0.36 0.36 

M E 0.99 1.002 1.009 1.009 

Outliers 1106.7 72.07 4350 4349.96 

Runtime 1.262 1.646 2.689 5.26 

(b) 
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ge, which is less than the specified number of outliers n 0 . We can

ncrease γ to decrease the number of outliers. 

In term of runtime, the k -means– algorithm and the NEO- k -

eans algorithm were slower than the KMOR algorithm and the

DC algorithm. For the second synthetic dataset, the NEO- k -means

lgorithm is the slowest because it needs to sort the distances be-

ween all points and all cluster centers. 

.2. Experiments on real data sets 

To test the performance of the proposed algorithm, we also ob-

ained real datasets from UCI machine learning Repository [10] : the

BC dataset and the Shuttle dataset. The WBC dataset contains

99 records, each of which is described by 9 numerical attributes.

he WBC dataset contains 2 clusters: malignant and benign. The

enign cluster contains 458 records and the malignant cluster con-

ains 241 records. We treat the benign records as normal and the

alignant records are outliers. The WBC dataset was used to study

utlier detection by He et al. [19] , Jiang and An [26] , and Duan

t al. [8] . The shuttle dataset contains 58,0 0 0 records, which are

escribed by 9 numerical features. The shuttle dataset consists of

 training set and a test set. We use the training set in our ex-

eriments. The training set contains 43,500 records and 7 classes.

he largest three classes contain 99.57% of the points. We treat the

oints in the three largest classes as normal points and points in

he reset four classes as outliers. The shuttle dataset was used to

tudy outliers by Chawla and Gionis [6] . 

We applied KMOR, ODC, k -means–, and NEO- k -means to the

eal datasets 100 times with different initial cluster centers, which

re selected randomly from the datasets. The average corrected

and index, the average M E measure, the average number of out-

iers, and the average runtime of these 100 runs on the real

atasets are summarized in Table 2 (a) and (b). For the WBC

ataset, we used the parameter values mentioned before. Since the

huttle dataset is a large dataset, we used a larger value for γ and

 smaller value for n 0 in order to control the number of outliers.

n particular, we use n = 0 . 1 n and γ = 9 for KMOR. Similar to
0 
he way we select parameter values for the synthetic datasets, we

se p = 9 for ODC, l = 0 . 1 n for k -means–,and α = 0 and β = 0 . 1 for

EO- k -means. 

From Table 2 (a), we see that each of the four algorithms pro-

uced identical clustering results for the 100 runs. Since the de-

ired number of clusters is 1 for the WBC dataset, all the 100 runs

roduced the same results. The standard deviations of the cor-

ected Rand index, the M E measure, and the number of outliers

re zero. The runtime of each run was different due to the op-

rating system. By comparing the average corrected Rand indices

nd the average classifier distances, we see that the KMOR algo-

ithm achieved the best performance in terms of overall accuracy

nd outlier detection. 

Table 2 (b) summarizes the performance of the four algorithms

n the shuttle dataset. From this table we see that the KMOR algo-

ithm achieved the best performance in terms of overall accuracy.

his test shows the KMOR algorithm is able to converge fast for

arge datasets. The NEO- k -means algorithm was the slowest algo-

ithm due to the fact that it needs to sort nk distances for record

ssignments. 
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In summary, the tests on both synthetic data and real data have

shown that the KMOR algorithm is able to cluster data and de-

tect outliers simultaneously. In addition, the tests also show that

the KMOR algorithm is able to outperform the ODC algorithm,

the k -means– algorithm, and the NEO- k -means algorithm in terms

of overall accuracy and outlier detection. For large datasets, the

KMOR algorithm is also able to outperform other algorithms in

term of speed. 

5. Conclusions 

Both clustering and outlier detection are important data analy-

sis tasks. In this paper, we proposed the KMOR algorithm by ex-

tending the k -means algorithm to provide data clustering and out-

lier detection simultaneously. In the KMOR algorithm, two param-

eters n 0 and γ are used to control the number of outliers. The pa-

rameter n 0 is the maximum number of outliers the proposed algo-

rithm will produce regardless the value of γ . For fixed n 0 , a larger

value of γ leads to less number of outliers. We can also estimate

the two parameters within the algorithm. For example, we can fol-

low the approach proposed in [35] by running the traditional k -

means algorithm on a dataset to estimate n 0 and γ . 

We compared the KMOR algorithm, the ODC algorithm [4] , the

k -means– algorithm [6] , and the NEO- k -means algorithm [35] . The

experiments on both synthetic data and real data have shown that

the KMOR algorithm is able to cluster data and detect outliers at

the same time. The tests have also shown that the KMOR algo-

rithm was able to outperform other algorithms in terms of accu-

racy and runtime. Since outlier detection in the KMOR algorithm

is natural part of the clustering process, points can move between

normal clusters and the outlier cluster. In the ODC algorithm, how-

ever, points assigned to the outlier cluster cannot be reassigned to

a normal cluster. 

In future, we would like to extend the KMOR algorithm in the

following directions. First, we would like to investigate other ways

to control the number of outliers. Currently we control the num-

ber of outliers by the parameter n 0 . Second, we would like to

extend the KMOR algorithm for subspace clustering [13,15–17,20] .

Currently the KMOR algorithm was not designed to identify clus-

ters embedded in subspaces of the original data space. Finally, it is

also interesting to investigate how to select an appropriate value

for the parameter k required by the KMOR algorithm [28,29] . In

the current version of the algorithm, we assume that k is given. 
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