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Abstract. Most existing clustering algorithms are slow for dividing a large

dataset into a large number of clusters. In this paper, we propose a truncated

FCM algorithm to address this problem. The main idea behind our proposed
algorithm is to keep only a small number of cluster centers during the iterative

process of the FCM algorithm. Our numerical experiments on both synthetic
and real datasets show that the proposed algorithm is much faster than the

original FCM algorithm and the accuracy is comparable to that of the original

FCM algorithm.

1. Introduction. Data clustering refers to a process of dividing a set of items
into homogeneous groups or clusters such that items in the same cluster are similar
to each other and items from different clusters are distinct [10, 1]. As one of the
most popular tools for data exploration, data clustering has found applications in
many scientific areas such as bioinformatics [21, 26], actuarial science and insurance
[11, 13], image segmentation [20, 25], to name just a few.

During the past six decades, many clustering algorithms have been developed by
researchers from different areas. These clustering algorithms can be divided into
two groups: hard clustering algorithms and fuzzy clustering algorithms. In hard
clustering algorithms, each item is assigned to one and only one cluster; In fuzzy
clustering algorithms, each item can be assigned to one or more clusters with some
degrees of membership. Examples of hard clustering algorithms include the k-means
algorithm [27], which is one of the most widely used clustering algorithm. The FCM
(Fuzzy c-means) algorithm [9, 4, 3] is a popular fuzzy clustering algorithm.
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The FCM algorithm is formulated to minimize an objective function. Let X =
{x1,x2, . . . ,xn} be a dataset containing n points. Let k be the desired number of
clusters. Then the objective function of the FCM algorithm is defined as

Q(U,Z) =

k∑
l=1

n∑
i=1

uαil‖xi − zl‖2, (1)

where U = (uil)n×k is an n × k fuzzy k partition matrix, α > 1 is the fuzzifier,
Z = {z1, z2, . . . , zk} is a set of k centers, and ‖ · ‖ is the L2-norm or Euclidean
distance. Here a fuzzy k partition of a dataset of n points is an n× k matrix that
satisfies the following conditions:

uil ∈ [0, 1], i = 1, 2, . . . , n, l = 1, 2, . . . , k, (2a)

k∑
l=1

uil = 1, i = 1, 2, . . . , n, (2b)

n∑
i=1

uil > 0, l = 1, 2, . . . , k. (2c)

Similar to the k-means algorithm, the FCM algorithm employs an iterative process
to minimize the objective function.

The FCM algorithm has some advantages over the k-means algorithm. For ex-
ample, the FCM algorithm can reduce the number of local minima of the objective
function [22]. However, the FCM algorithm is not efficient for dividing a large
dataset into many clusters. Examples of such situations include clustering millions
of web pages into a thousand categories [5] and clustering hundreds of thousands
insurance policies into a thousand clusters in order to select a thousand representa-
tive policies [11, 13]. This inefficiency is caused by the following two factors. First,
the FCM algorithm needs to store the full fuzzy partition matrix, which contains
nk elements. Second, the FCM algorithm needs to calculate nk distances at each
iteration.

In this paper, we propose a modified version of the FCM algorithm, called the
TFCM (Truncated FCM) algorithm, to address the aforementioned drawback of the
FCM algorithm. In the TFCM algorithm, a subset of the full fuzzy partition matrix
is stored and the number of distance calculations at each iteration is reduced. The
idea of the TFCM algorithm stems from the insight that when k is large, a data
point belongs to only a few clusters with high degrees of membership. As a result,
we can ignore the clusters with low degrees of membership while preserving the
overall quality of the clustering.

The remaining part of this paper is organized as follows. In Section 2, we give
a brief review of relevant work. In Section 3, we introduce the TFCM algorithm
in detail. In Section 4, we demonstrate the performance of the TFCM algorithm
using numerical experiments. Finally, we conclude the paper with some remarks in
Section 5.

2. Related work. As one of the most popular fuzzy clustering algorithms, the
FCM algorithm was originally proposed by [9] and later modified by [4]. Many
improvements of the FCM algorithm have been proposed since its introduction. In
this section, we give a brief review of research work related to the efficiency of the
FCM algorithm.



SCALABLE CLUSTERING BY TRUNCATED FUZZY c-MEANS 249

[6] proposed the AFCM (Approximate FCM) algorithm by replacing some vari-
ates in the FCM equations with integer-valued or real-valued estimates. The AFCM
algorithm was developed to process digital images interactively. In the implementa-
tion of the AFCM algorithm, the fuzzy memberships uil are approximated by real
numbers with three decimal places and stored as integers in [0, 1000] in memory. In
addition, the AFCM algorithm stores six internal tables in memory and uses a table
lookup approach to eliminate the use of exponentiation operators in the updating
of the cluster centers and fuzzy memberships. Experimental results show that the
runtime of each iteration of the AFCM algorithm is reduced approximately to one
sixth of that of a literal implementation of the FCM algorithm.

[7] proposed a multistage random sampling FCM algorithm, called the mrFCM
algorithm, to reduce the runtime of the FCM algorithm. The mrFCM algorithm
consists of two phases. In the first phase, the FCM algorithm is applied to a
series of subsamples selected randomly from the whole dataset in order to find good
initial cluster centers. In the second phase, the standard FCM algorithm with the
initial cluster centers obtained from the first phase is applied to partition the whole
dataset.

[19] proposed the psFCM (partition simplification FCM) algorithm to speed up
the FCM algorithm by simplifying the computation at each iteration and reducing
the number of iterations. Similar to the mrFCM algorithm [7], the psFCM algorithm
also consists of two phases. In the first phase, the kd-tree method is first used to
partition the whole dataset into small blocks. All points in a block are represented
by the centroid of the block. In this way, a large dataset is reduced to a simplified
dataset that is much smaller than the original dataset. Then the FCM algorithm is
applied to the simplified dataset to obtain the actual cluster centers. In the second
phase, the FCM algorithm with the cluster centers obtained from the first phase is
applied to partition the original dataset.

[23] proposed a modified version of the FCM algorithm by eliminating the need
to store the fuzzy partition matrix U . In the modified version, updating the cluster
centers and updating the fuzzy memberships are combined into a single step. The
original FCM algorithm has a time complexity of O(nk2d), but this modified version
reduces the time complexity to O(nkd), where n, k, and d denote the number of data
points, the desired number of clusters, and the number of attributes, respectively.

[24] proposed the PFCM (Parallel FCM) algorithm for clustering large datasets
by using the Message Passing Interface (MPI). In the PFCM algorithm with P
processors, a dataset of n points is divided into P blocks of equal size so that each
processor processes n/P data points. The fuzzy partition matrix is also divided into
P sections so that the memberships of local data points of a processor are stored
in the processor’s memory. An MPI call is used to pass messages if a computation
requires data points stored in other processes. The PFCM algorithm is an example
of speeding up the FCM algorithm through hardware. Another example of speeding
up the FCM algorithm through hardware is to use the graphics-processing unit
(GPU) [28].

[17] proposed the geFFCM (generalized extensible fast fuzzy c-means) algorithm
to cluster very large datasets. The geFFCM algorithm is similar to the mrFCM
algorithm [7] and the psFCM algorithm [19] in the sense that divide-and-conquer
strategy is used by all three algorithms. In the geFFCM algorithm, a subsample
XSS is drawn from the original datasetX without replacement such that the number
of features for which XSS and X agree is not less than a specified number. Then the
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standard FCM algorithm is applied to XSS to obtain the cluster centers. Finally,
the cluster centers are used to obtain the fuzzy partition matrix of the original
dataset.

[18] compared three different implementation of the FCM algorithm for clustering
very large datasets. In particular, [18] compared the random sample and extension
FCM, single-pass FCM, and on-line FCM. In addition, kernelized versions of the
three algorithms were also compared. [29] proposed the FCM++ algorithm to
improve the speed of the FCM algorithm by using the seeding mechanism of the
K-means++ [2].

Almost all of the aforementioned algorithms aim at speeding up the FCM al-
gorithm for large datasets. These algorithms do not scale well when the desired
number of clusters is large. The algorithm proposed by [23] reduces the time com-
plexity of the FCM algorithm from O(nk2d) to O(nkd). However, the algorithm still
needs to calculate nk distances at each iteration. In the next section, we propose
the truncated fuzzy c-means algorithm to approximate the FCM algorithm when
the desired number of clusters is large.

3. The TFCM algorithm. In this section, we introduce the TFCM (Truncated
Fuzzy c-means) algorithm.

Let X = {x1,x2, . . . ,xn} be a dataset containing n points. Let k be the desired
number of clusters. A fuzzy partition matrix U = (uil)n×k of dividing X into k
clusters is an n× k matrix that satisfies the following conditions

uil ∈ [0, 1], i = 1, 2, . . . , n, l = 1, 2, . . . , k,

and
k∑
l=1

uil = 1, i = 1, 2, . . . , n.

Let T be an integer such that 1 ≤ T ≤ k. Let UT be the set of fuzzy partition
matrices U such that each row of U has at most T nonzero entries. In other words,
U ∈ UT if U is a fuzzy partition matrix such that for each i = 1, 2, . . . , n,

|{l : uil > 0}| ≤ T, (3)

where | · | denote the number of elements in a set.
Then the objective function of the TFCM algorithm is defined as

P (U,Z) =

n∑
i=1

k∑
l=1

uαil
(
‖xi − zl‖2 + ε

)
, (4)

where α > 1 is the fuzzifier, U ∈ UT , Z = {z1, z2, . . ., zk} is a set of cluster centers,
‖ · ‖ is the L2-norm or Euclidean distance, and ε is a small positive number used
to prevent division by zero. Let Ii = {l : uil > 0} for i = 1, 2, . . . , n. Then we can
rewrite the objective function (4) as

P (U,Z) =

n∑
i=1

∑
l∈Ii

uαil
(
‖xi − zl‖2 + ε

)
. (5)

From Equation (5) we see that the main difference between the TFCM algorithm
and the fuzzy c-means algorithm is the constraint given in Equation (3). If T = 1,
then the TFCM algorithm becomes the k-means algorithm. If T = k, then the
TFCM algorithm becomes the fuzzy c-means algorithm.
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Theorem 3.1. Given a set of centers Z. The fuzzy partition matrix U ∈ UT that
minimizes the objective function (4) is given by

uil =

(
‖xi − zl‖2 + ε

)− 1
α−1∑

s∈Ii (‖xi − zs‖2 + ε)
− 1
α−1

, 1 ≤ i ≤ n, l ∈ Ii, (6)

where Ii is the set of indices of the T centers that are closest to xi, i.e.,

Ii = {l1, l2, . . . , lT } (7)

with (l1, l2, . . . , lk) being a permutation of (1, 2, . . . , k) such that

‖xi − zl1‖ ≤ ‖xi − zl2‖ ≤ · · · ≤ ‖xi − zlk‖.

Proof. For each i = 1, 2, . . . , n, let Ii be the set of indices defined in Equation (7).
We first show that for these Ii, the optimal weights are given in Equation (6). Since
the rows of a fuzzy partition matrix are independent of each other, the objective
function (4) is minimized if for each i = 1, 2, . . . , n, the following function

Pi(ui, Ii) =
∑
l∈Ii

uαil
(
‖xi − zl‖2 + ε

)
(8)

is minimized subject to
∑
l∈Ii uil = 1, where ui = (ui1, ui2, . . . , uik). Using the

method of Lagrange multipliers, we can obtain the optimal weights by minimizing
the following function

Pi(ui, λ, Ii) =
∑
l∈Ii

uαil
(
‖xi − zl‖2 + ε

)
+ λ

(∑
l∈Ii

uil − 1

)
.

We can obtain the optimal weights given in Equation (6) by solving the equations
obtained by taking derivatives of Pi(ui, λ, Ii) with respect to λ and uil for l ∈ Ii
and equating the derivatives to zero.

Now we show that
Pi(u

∗
i , Ii) ≤ Pi(v∗i , Ji), (9)

where Ji is an arbitrary subset of {1, 2, . . . , k} such that |Ji| ≤ T , and u∗i and v∗i
are the optimal weights obtained from Equation (6) when the underlying index sets
are Ii and Ji, respectively.

Since u∗i is the vector of optimal weights, we have

Pi(u
∗
i , Ii) =

∑
l∈Ii

(u∗il)
α
(
‖xi − zl‖2 + ε

)
=

∑
l∈Ii

(
‖xi − zl‖2 + ε

)− α
α−1(∑

s∈Ii (‖xi − zs‖2 + ε)
− 1
α−1

)α (‖xi − zl‖2 + ε
)

=
∑
l∈Ii

(
‖xi − zl‖2 + ε

)− 1
α−1(∑

s∈Ii (‖xi − zs‖2 + ε)
− 1
α−1

)α
=

1(∑
s∈Ii (‖xi − zs‖2 + ε)

− 1
α−1

)α−1 .
Similarly, we have

Pi(v
∗
i , Ji) =

1(∑
s∈Ji (‖xi − zs‖2 + ε)

− 1
α−1

)α−1 .
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Since α > 1, Ii contains the indcies of the T centers that are closest to xi, and
|Ji| ≤ T , we have∑

s∈Ii

(
‖xi − zs‖2 + ε

)− 1
α−1 ≥

∑
s∈Ji

(
‖xi − zs‖2 + ε

)− 1
α−1 ,

which shows that the inequality given in Equation (9) is true. This completes the
proof.

Theorem 3.2. Given a fuzzy partition matrix U ∈ UT . The set of centers Z that
minimizes the objective function (4) is given by

zlj =

∑n
i=1 u

α
ilxij∑n

i=1 u
α
il

=

∑
i∈Cl u

α
ilxij∑

i∈Cl u
α
il

, (10)

for l = 1, 2, . . . , k and j = 1, 2, . . . , d, where d is the number of features, zlj is the
jth component of zl, and Cl = {i : uil > 0}.

The proof of Theorem 3.2 is omitted as it is similar to the result of the FCM
algorithm.

Algorithm 1: Pseudo-code of the TFCM Algorithm.

Input: X = {x1,x2, . . . ,xn}, k, T , δ, Nmax, α
Output: U , Z

1 Initialize the set of cluster centers Z(0) by selecting k data points from X

randomly;

2 for i = 1 to n do
3 Calculate the distance between xi and all k centers;

4 Let Ii be the subset of {1, 2, . . . , k} such that the corresponding T centers

are closest to xi;

5 Update the weights u
(0)
il for l ∈ Ii according to Equation (6);

6 end

7 s← 0;

8 P (0) ← 0;

9 while True do
10 Update the set of cluster centers Z(s+1) according to Equation (10);

11 for i = 1 to n do
12 Select T centers with indices in {1, 2, . . . , k}/Ii randomly;

13 Calculate the distance between xi and centers with indices in Ii ∪ Ji;
14 Update Ii with the indices of the T centers that are closest to xi;

15 Update the weights u
(s+1)
il for l ∈ Ii according to Equation (6);

16 end

17 P (s+1) ← P
(
U (s+1), Z(s+1)

)
;

18 if
∣∣P (s+1) − P (s)

∣∣ < δ or s ≥ Nmax then
19 Break;

20 end

21 s← s+ 1;

22 end
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The pseudo-code of the TFCM algorithm is given in Algorithm 1. The TFCM
algorithm consists of two phases: the initialization phase and the iteration phase. In
the initialization phase, we initialize the cluster centers to be k data points randomly
selected from the dataset. We also calculate the distances between all data points
and all initial centers in order to calculate the weights U . In the iteration phase,
for each data point xi, we only calculate the distances between the data point and
2 ∗ T cluster centers, which include the T existing centers saved in Ii and T centers
randomly selected from the remaining k − T centers. Among the 2 ∗ T centers, we
only keep the T centers that are closest to the point xi and save them for the next
iteration. The advantage of selecting some centers from the remaining centers is
that it helps us to find the true center for a data point if the true center was not
selected in the initialization phase or previous iterations.

Regarding how to choose a value for the parameter T , a good starting point
is d + 1, where d is the dimension of the underlying dataset. The reason to use
T = d + 1 is that d + 1 is the number of vertices of a d-dimensional simplex. In a
d-dimensional dataset, a point can be surrounded by d+ 1 sphere-shaped clusters.
For example, in an one-dimensional dataset, a data point has two closest clusters.
In a two-dimensional dataset, a data point has three closest clusters.

Parameter Default Value

ε 10−6

T d+ 1
δ 10−6

Nmax 1000
α 2

Table 1. Default values for some parameters required by the
TFCM algorithm.

A list of default values for the parameters required by the TFCM algorithm is
given in Table 1. The parameters Nmax and δ are used to terminate the algorithm.
The FCM algorithm usually converges in a few iterations. Since the TFCM algo-
rithm only calculates the distances between data points and a small subset of the
centers, it may need more iterations to converge. Hence we suggest setting the
default value of the maximum number of iterations to 1000. The parameter α is
the fuzzifier, which should be larger than 1.

4. Experimental evaluation. In this section, we present some numerical results
to demonstrate the performance of the TFCM algorithm in terms of speed and
accuracy. We also compare the performance of the TFCM algorithm to that of
the FCM algorithm. We implemented both the TFCM algorithm and the FCM
algorithm in Java. In order to make relatively fair comparison between the TFCM
algorithm and the FCM algorithm, we used the same sets of initial cluster centers
and the same criteria to terminate the algorithms.

4.1. Results on synthetic data. To show that the TFCM algorithm works, we
created two synthetic datasets, which are summarized in Table 2. Both synthetic
datasets are two-dimensional datasets. One dataset contains four clusters and the
other dataset contains 100 clusters. Figure 1 shows the two datasets.
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Dataset Size Dimension Clusters

S1 400 2 4 clusters, each has 100 points
S2 5000 2 100 clusters, each has 50 points

Table 2. Summary of the two synthetic datasets.
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5
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(b)

Figure 1. Two synthetic datasets. The first dataset contains 4
clusters and the second dataset contains 100 clusters.

Since we know the labels of the data points of the two synthetic datasets, we use
the corrected Rand index [8, 14, 15, 16] to measure the accuracy of the clustering
algorithms. The corrected Rand index, denoted by Rc, ranges from 0 to 1. A higher
value of the corrected Rand index indicates a more accurate clustering result.

k Runtime Rc

2 0.103(0.139) 0.433(0)
4 0.058(0.114) 1(0)
8 0.106(0.154) 0.682(0.023)

(a) TFCM

k Runtime Rc

2 0.044(0.061) 0.498(0)
4 0.05(0.058) 1(0)
8 0.176(0.143) 0.726(0.038)

(b) FCM

Table 3. Runtime and accuracy of the TFCM algorithm and the
FCM algorithm when applied to the first synthetic dataset 10 times
with different initial cluster centers. In the TFCM algorithm, T = 3
and other parameters were set to default values given in Table 1.
The runtime is measured in seconds. The numbers in the paren-
theses are the corresponding standard deviations.

Table 3 shows the speed and accuracy of the TFCM algorithm and the FCM
algorithm when applied to the first synthetic dataset. Since both algorithms use
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random initial cluster centers, we run the two algorithms 10 times to alleviate the
impact of initial cluster centers on the performance measures.

The first synthetic dataset contains 400 data points and four clusters of equal
size. When the number of clusters k was set to small numbers (e.g., 2 and 4), the
TFCM algorithm was slower than the FCM algorithm on average. However, when
k was set to 8, the TFCM algorithm outperformed the FCM algorithm on average
in terms of speed. In terms of accuracy, both the TFCM algorithm and the FCM
algorithm produced a corrected Rand index of 1 when k was set to the true number
of clusters. In addition, the standard deviations of the corrected Rand index are
zero when k = 2 and 4, indicating that the clustering results were not affected by
the initial cluster centers. However, when k = 8, the standard deviations become
positive, indicating that the clustering results were affected by the initial cluster
centers.

The test results on the first synthetic dataset show that when k is small, the
TFCM algorithm is slower than the FCM algorithm. This is expected as the im-
plementation of TFCM involves sorting distances. The additional runtime caused
by sorting is more than the reduced runtime resulted from less number of distance
calculations.

k Runtime Rc

50 6.869(6.65) 0.502(0.007)
100 5.084(1.97) 0.797(0.029)
200 20.639(7.879) 0.776(0.008)

(a) TFCM with T = 3

k Runtime Rc

50 5.269(1.574) 0.483(0.007)
100 4.348(1.887) 0.848(0.03)
200 20.184(9.307) 0.777(0.008)

(b) TFCM with T = 6

k Runtime Rc

50 71.877(16.729) 0.526(0.006)
100 26.341(18.1) 0.819(0.025)
200 53.683(26.543) 0.799(0.015)

(c) FCM

Table 4. Runtime and accuracy of the TFCM algorithm and the
FCM algorithm when applied to the second synthetic dataset 10
times. The runtime is measured in seconds. The numbers in the
parentheses are the corresponding standard deviations.

Table 4 shows the speed and accuracy of the two algorithms when applied to the
second synthetic dataset 10 times. The second synthetic dataset contains 5000 data
points, which are contained in 100 clusters. Each cluster contains 50 points. Table
4(a) shows the speed and accuracy of the TFCM algorithm when T = 3. Comparing
Tables 4(a) and 4(c), we see that the TFCM algorithm was significantly faster than
the FCM algorithm. For example, it only took the TFCM algorithm about 6.869
seconds to finish clustering the dataset when k = 50 and T = 3, while it took the
FCM algorithm 71.877 seconds to finish clustering the dataset when k = 50. For
k = 50, 100, and 200, the average accuracy of the TFCM algorithm when T = 3 is
close to that of the FCM algorithm.

If we increased T from 3 to 6, the average accuracy of the TFCM algorithm
increased a little bit when k = 100 and 200. This is reasonable because when k is
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large, increasing T helps find the true cluster centers. Comparing Table 4(b) and
Table 4(c), we see that the average corrected Rand index of the TFCM algorithm
is higher than that of the FCM algorithm when k was set to the true number of
clusters. This might be caused by the fact that we only used 10 runs to calculate
the average accuracy. If we use 100 runs to calculate the average corrected Rand
index, the FCM algorithm may be more accurate than the TFCM algorithm.

If we look at the average runtime for different k at Tables 4(a), 4(b), and 4(c), we
see that the average runtime when k was set to the true number of clusters is lower
than that when k was set to other numbers. For example, the average runtime of
the TFCM algorithm when k = 100 and T = 3 was 5.084 seconds, which is lower
than the average runtime when k = 50 and k = 200. We see a similar pattern
of runtime for the FCM algorithm. This is caused by the fact that when k is not
set to the true number of clusters, it takes both the algorithms more iterations to
converge on average.

4.2. Results on real data. As we mentioned in the introduction section of this
article, data clustering was used to divide a large portfolio of variable annuity
contracts into hundreds of clusters in order to find representative contracts for
metamodeling [11, 13]. Existing clustering algorithms are slow for dividing a large
dataset into hundreds of clusters. In this subsection, we apply the TFCM algorithm
to divide a large portfolio of variable annuity contracts into hundreds of clusters.

The variable annuity dataset was simulated by a Java program [12]. The dataset
contains 10,000 variable annuity contracts. The original dataset contains categorical
variables. We converted the categorical variables into binary dummy variables and
normalized all numerical variables to the interval [0,1]. The resulting dataset has
22 numerical features. Since the dataset has no labels, we cannot use the corrected
Rand index to measure the accuracy of the clustering results. To compare the
clustering results of this dataset, we use the within-cluster sum of squares defined
as

WSS =

k∑
l=1

∑
x∈Cl

d∑
j=1

(xj − zlj)2 , (11)

where C1, C2, . . . , Ck are k hard clusters obtained from the fuzzy membership matrix
U and zl is the average of the data points in the cluster Cl. For fixed k, a lower
value of WSS indicates a better clustering result.

We applied the TFCM algorithm to this dataset with different values of T . The
default value of T for this dataset is 23 because the dimension of this dataset is
22. We also tested the TFCM algorithm with T = 3, 6, 12, and 46. The results are
shown in Table 5.

Table 5(f) shows the result of the FCM algorithm when applied to the variable
annuity dataset. From this table we see that it took the FCM algorithm about
756.378 seconds to divide the dataset into k = 200 clusters. The standard deviation
of the runtime is also large, indicating that the convergence of the FCM algorithm
is sensitive to the initial cluster centers.

Tables 5(a) - 5(e) give the results of the TFCM algorithm when applied to the
variable annuity dataset with different values of T . From these tables we see that
the runtime of the TFCM algorithm increases when T increases. The tables also
show that the TFCM algorithm achieved the best result when T = 6. For example,
when T = 6 and k = 200, the within-cluster sum of squares (WSS) produced by
the TFCM algorithm is 721.29, which is close to WSS = 697.841 produced by
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k Runtime WSS

100 6.417(1.9) 944.636(14.574)
200 16.167(5.565) 735.001(6.37)

(a) TFCM with T = 3

k Runtime WSS

100 16.734(5.133) 930.14(15.614)
200 31.871(19.216) 721.291(5.3)

(b) TFCM with T = 6

k Runtime WSS

100 71.185(22.023) 958.137(15.234)
200 87.918(22.641) 740.548(6.688)

(c) TFCM with T = 12

k Runtime WSS

100 164.02(57.612) 994.111(18.829)
200 219.695(51.104) 783.113(7.156)

(d) TFCM with T = 23

k Runtime WSS

100 280.137(70.577) 1049.864(24.202)
200 339.216(80.694) 822.988(8.866)

(e) TFCM with T = 46

k Runtime WSS

100 597.828(193.2) 895.205(16.264)
200 756.378(382.952) 697.841(6.736)

(f) FCM

Table 5. Speed and accuracy of the TFCM algorithm and the
FCM algorithm when applied to the variable annuity dataset 10
times. The runtime is in seconds. The numbers in the parentheses
are the corresponding standard deviations.

the FCM algorithm. When T increases from 6 to 46, the WSS measure increases.
This is counterintuitive because we expect WSS to decrease when T increases.
The reason we see that WSS decreased when T increased from 6 to 46 is that we
used two criteria to terminate the algorithm: δ and Nmax. When T is large, we
expect that it takes the TFCM algorithm more iterations to get the change of the
objective function to be less than δ. Since we terminated the TFCM algorithm
when the number of iterations reaches Nmax = 1000, the clustering result was still
suboptimal.

If we compare Table 5(b) and Table 5(f), we see that the TFCM algorithm is
more than 20 times faster than the FCM algorithm. For example, it took the FCM
algorithm about 756 seconds on average to divide the dataset into 200 clusters, but
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it only took the TFCM algorithm about 32 seconds on average to divide the dataset
into 200 clusters.

In summary, the numerical experiments show that the TFCM algorithm outper-
formed the FCM algorithm in terms of speed when the desired number of clusters is
large. The accuracy of the TFCM algorithm is close to that of the FCM algorithm.

5. Concluding remarks. In some situations, we need to divide a large dataset
into a large number of clusters. For example, we need to divide millions of web pages
into thousands of categories [5] and divide a large portfolio of insurance policies into
hundreds of clusters in order to select representative policies [11, 13]. Most existing
algorithms are not efficient when used to divide a large dataset into a large number
of clusters.

In this paper, we proposed a truncated fuzzy c-means (TFCM) algorithm to
address the problem when both the number of data points and the desired number
of clusters are large. The TFCM algorithm is similar to the FCM algorithm in
the initialization phase. However, the TFCM algorithm is different from the FCM
algorithm in the iteration phase where the TFCM algorithm only keeps a subset of
cluster centers for each data point and only calculates the distances between each
data point and a subset of cluster centers. Our numerical experiments on both
synthetic and real datasets show that the TFCM algorithm outperforms the FCM
algorithm significantly in terms of speed when the desired number of clusters is
large. In addition, the accuracy of the TFCM algorithm is comparable to that of
the FCM algorithm.

We implement the TFCM algorithm in a straightforward way according to the
pseudo-code given in Algorithm 1. The speed of the TFCM algorithm can be
further improved by using the technique introduced by [23]. This technique allows
us to combine the step of updating the cluster centers and the step of updating the
fuzzy memberships into a single step. In future, we would like to incorporate this
technique into the TFCM algorithm and compare the TFCM algorithm with other
algorithms mentioned in Section 2.
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