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Abstract: Variable annuities contain complex guarantees, whose fair market value cannot be calculated in
closed form. To value the guarantees, insurance companies rely heavily on Monte Carlo simulation, which
is extremely computationally demanding for large portfolios of variable annuity policies. Metamodeling ap-
proaches have been proposed to address these computational issues. An important step of metamodeling
approaches is the experimental design that selects a small number of representative variable annuity poli-
cies for building metamodels. In this paper, we compare empirically several multivariate experimental de-
sign methods for the GB2 regression model, which has been recently discovered to be an attractive model
to estimate the fair market value of variable annuity guarantees. Among the experimental design methods
examined, we found that the data clustering method and the conditional Latin hypercube sampling method
produce the most accurate results.
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Multivariate experimental design, Data clustering, Latin hypercube
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1 Introduction
A variable annuity (VA) is a popular life insurance product that o�ers dynamic investment opportunities with
guarantees [21, 33]. There are twomain classes of guarantees provided by variable annuities [28]: guaranteed
minimumdeath bene�t (GMDB) and guaranteedminimum living bene�t (GMLB). The second class can be fur-
ther divided into the following three subclasses: guaranteed minimum accumulation bene�t (GMAB), guar-
anteed minimum income bene�t (GMIB), and guaranteed minimum withdrawal bene�t (GMWB). The whole
set of guarantees are often referred to as GMxB, where the letter x indicates the class of bene�ts involved.
Figure 1 shows the hierarchy of the set of guarantees mentioned above.

A basic GMDB guarantees a return of the principal upon the death of the policyholder regardless of the
performance of the investment account. One variation to the basic form is a roll-up GMDB, which guarantees
the principal accumulated at a speci�ed roll-up rate. A ratchet GMDB is another variation that locks the gains
in the account balance on each of the dates speci�ed. A GMAB is similar to a GMDB except that the guaran-
tees are not contingent on the death of the policyholder. The guarantees of a GMAB are typically triggered
on policy anniversaries. Variations of a GMAB include roll-up rates, ratchets, and resets. The reset feature
enables a policyholder to start a new GMAB by locking a higher bene�t. A GMIB guarantees a minimum in-
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come stream from a speci�ed future point in time. A GMWB guarantees that a policyholder can withdraw a
speci�ed amount for a speci�ed number of years.

GMxB

GMDB GMLB

GMAB GMIB GMWB

Figure 1: Some common guarantees provided by variable annuities.

Many insurance companies that have a VA business adopt dynamic hedging to mitigate the �nancial
risks associated with the guarantees. Dynamic hedging requires calculating the sensitivities (i.e., Greeks) of
the VA liabilities to key risk drivers [3]. Due to the complexity of the guarantees, insurance companies rely
on Monte Carlo simulation to calculate the Greeks, which are quantities that measure sensitivities of the
guarantee values to major market indices. For example, the Delta measures the sensitivity of the guarantee
value to the underlying asset and the Rho measures the sensitivity of the guarantee value to interest rates.
Under Monte Carlo simulation, the cash �ows of the guarantee are projected along many scenarios for a long
time horizon (e.g., 30 years) at some time steps (e.g., monthly). As a result, using Monte Carlo simulation to
calculate the Greeks of a large portfolio of VA policies is extremely time-consuming. Insurance companies
that have a VA business usually have a large portfolio of these products. To implement a dynamic hedging
strategy, it is essential to be able to calculate the Greeks of the whole portfolio in order to adjust the hedge
position promptly. In practice, insurance companies have used parallel computing to calculate the Greeks
[29].

Using parallel computing to address the computational issue has some limitations. First, this method
is costly. An insurance company with a large VA portfolio requires many computers in order to complete the
calculationwithin a reasonable time frame. Second, thismethod is not scalable.Whenan insurance company
grows its VA business, it needs to usemore computers in order to complete the calculationwithin the existing
time interval.

In the past few years, themetamodeling approach [1, 8] has been used to address the computational issue
from the software perspective. The metamodeling method involves four major steps:
Step 1 Select a small number of representative VA policies.
Step 2 Use Monte Carlo simulation to calculate the quantities (e.g., Greeks) of interest for the representative

VA policies.
Step 3 Build a metamodel.
Step 4 Use the metamodel to estimate the quantities of interest for the whole VA portfolio.
Here ametamodel is referred to as amodel of theMonte Carlo simulationmodel. SinceMonte Carlo simulation
is applied to only a small number of representative VA policies, the metamodeling approach is able to reduce
the runtime signi�cantly while producing accurate estimates.

Ametamodelingmethod contains two important components: an experimental designmethod for select-
ing representative VA policies and a metamodel. In [10], a kriging metamodel was proposed to estimate the
fair market value, dollar delta, and dollar rho of a large VA portfolio. In [14], a functional kriging was used to
estimate the dollar delta of a large VA portfolio under nested simulation. In these metamodeling methods, a
clustering method was used to select representative VA policies. In [11], a Latin hypercube sampling method
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was used to select representative VA policies. In [15], a two-level metamodeling method was proposed to es-
timate the dollar deltas e�ciently for dynamic hedging purpose. In [30], a metamodeling approach was used
to analyze mortality-linked contracts in stochastic mortality models. In [17], a neural network method was
proposed to calculate the Greeks of a large VA portfolio.

Recently, we developed a GB2 (generalized beta of the second kind) regression model as a metamodel
in order to capture the positive skewness typically observed in the distribution of the fair market value of
guarantees [16]. In this metamodeling approach, the conditional Latin hypercube sampling method [25, 31]
was used to select representative VA policies. Previous studies have shown that Latin hypercube sampling
works well with kriging [34]. In this paper, we investigate some experimental design methods for the GB2
regressionmodel, which is similar in concept to generalized linearmodels (GLM) [6, 23]. Amajor contribution
of this paper is to provide guidance for choosing anexperimental designmethod for theGB2 regressionmodel.

GLMs have been traditionally used in actuarial science for pricing, reserving, and solvency testing [7].
In these traditional applications, we generally work with observational data, which are readily available at
little or no cost. For example, a P&C insurance company has the information of policyholders and their claim
data, which can be used to build a GLM. Building a GLM as ametamodel for predicting the Greeks of variable
annuity guarantees is quite di�erent in that we only know the policy information but do not know the Greeks.
In order to build a GLM as a metamodel, we need to use the Monte Carlo model to calculate the Greeks of a
small set of VA policies. The small set of VA policies is referred to as an experimental design or a design. The
choice of design is an important task in the development of an adequate GLM.

The remaining part of this paper is organized as follows. In Section 2, we give a brief description of the
GB2 regression model. In Section 3, we introduce �ve experimental design methods for selecting represen-
tative VA policies: random sampling, low-discrepancy sequence, data clustering, Latin hypercube sampling,
and conditional Latin hypercube sampling. In Section 4, we present some numerical results to illustrate the
performance of the experimental design methods in terms of accuracy and speed. Section 5 concludes the
paper with some remarks.

2 The Dataset and the GB2 Regression Model
In this section, we give a brief description of the dataset, the GB2 regressionmodel proposed in [16], and how
the parameters are estimated.

2.1 The Dataset

The dataset contains 10,000 synthetic VA policies, each of which is described by 50 variables. Since many
of variables have identical value, these variables are excluded in the regression model. The policyholders of
these VA policies are allowed to choose from ten investment funds. The explanatory variables used to build
the regression model include:
• gender - Gender of the policyholder,
• prodType - Product type of the VA policy,
• gmdbAmt - GMDB amount,
• gmwbAmt - GMWB amount,
• gmwbBalance - GMWB balance,
• gmmbAmt - GMMB amount,
• withdrawal - Total withdrawal,
• FundValuei - Account value of the ith fund, for i = 1, 2, . . . , 10,
• age - Age of the policyholder, and
• ttm - Time to maturity in years.
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Table 1: Summary statistics of the explanatory variables and the dependent variable for the GB2 regression model.

(a)

Variable Category:Count

gender F:4071 M:5929
prodType DBRP:2028 DBRU:2018 MB:1959 WB:1991 WBSU:2004

(b)

Variable Min 1st Q Mean 3rd Q Max

gmdbAmt 0 0 135116.88 256528.88 986536.04
gmwbAmt 0 0 7888.8 15041.76 69403.72
gmwbBalance 0 0 94151.68 149780.98 991481.79
gmmbAmt 0 0 54715.12 0 499925.4
withdrawal 0 0 26348.89 0 418565.23
FundValue1 0 0 33325.04 49291.86 1030517.37
FundValue2 0 0 43224.12 60462.73 1094839.83
FundValue3 0 0 28623.53 41359.13 672927
FundValue4 0 0 27479.09 41113.74 547874.38
FundValue5 0 0 24225.22 36497.56 477843.32
FundValue6 0 0 35305.36 53520.34 819144.24
FundValue7 0 0 28903.78 44193.65 794470.82
FundValue8 0 0 28745.1 44971.75 726031.63
FundValue9 0 0 27191.4 41633.23 808213.6
FundValue10 0 0 26666.22 41283.93 709232.82
age 34.36 42.08 49.38 56.82 64.37
ttm 0.68 10.41 14.65 18.85 28.68

(c)

Variable Min 1st Q Median Mean 3rd Q Max

fmv -30214.7 -2593.15 7010.66 18210.98 31362.78 285182.42

The summary statistics of the explanatory variables are given in Table 1. Table 1(a) shows the categories and
their frequencies of the two categorical variables. From the table, we see that about 40% of the policyholders
are female. There are �ve types of guarantees and the percentage of each type is about 20% of the portfolio.

Table 1(b) shows the summary statistics of the continuous explanatory variables. All these variables have
nonnegative values. Except for the variables age and ttm, all variables have many zero values. In particular,
more than 75% of the values of gmmbAmt and withdrawal are zero. The reason is that only VA policies with a
GMMBmay have a positive GMMB amount and only VA policies with a GMWBmay have a positive withdrawal
amount.

The fair market values of the guarantees are calculated by a simple Monte Carlo simulation model [12].
Table 1(c) shows the summary statistics of the fairmarket values. From the table,we see that there are negative
fair market values. Since the fair market value is equal to the present value of bene�ts minus that of the fees,
it is negative when the present value of bene�ts is less than that of the fees. We also see that the median is
much lower than the mean, indicating that the distribution is skewed to the right. The positive skewness is
con�rmed in Figure 2, which shows a histogram of the fair market values.
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Figure 2: A histogram of the fair market values.

2.2 The Model

The GB2 is a four-parameter distribution for positive continuous data and can be used to model distribu-
tions characterized by fat tails [5]. With four parameters, the GB2 provides an extremely �exible functional
form and includemany other distributions as special or limiting cases. For example, the gamma distribution,
the lognormal distribution, the Weibull distribution, and the exponential distribution are special or limiting
cases of the GB2 distribution. Due to its �exibility and ability to model skewed data, the GB2 was proposed to
model the fair market values of VA guarantees that are typically observed to be positively skewed [16].

The probability density function of a GB2 random variable X is de�ned as [5, 19]:

f (x) = |a|
bB(p, q)

( x
b

)ap−1 [
1 +
( x
b

)a]−p−q
, x > 0, (1)

where a = ̸ 0, p > 0, q > 0, b > 0, and B(p, q) is the Beta function. The parameters a, p, and q are referred
to as the shape parameters of the GB2 distribution. The parameter b is called the scale parameter of the GB2
distribution. The expectationof theGB2 randomvariable X exists if the shapeparameters satisfy the following
condition:

−p < 1
a < q. (2)

If the above condition is satis�ed, the expectation is given by

E[X] =
bB
(
p + 1

a , q −
1
a
)

B(p, q) . (3)

Let Y denote the fair market value of guarantees embedded in a VA policy. Since Y can be negative, the
shifted fair market value

X = Y + c

is modeled with a GB2 distribution with parameters a, b, p, and q. The shift parameter c will be estimated
from the data.
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Independent or regressor variables can be incorporated in several ways: through the shape parameter a
by using a(zi) = zTi β, through the scale parameter b by using b(zi) = exp(zTi β), or through both the shape
parameter a and the scale parameter b. Since the GB2 model is constructed for the purpose of predicting the
fair market values of guarantees embedded in new VA policies, incorporating independent variables through
the shape parameter a is not suitable. The reason is that 1a can be out of the interval (−p, q) and the resulting
expectation, which is used for prediction, will not exist.

Themethod ofmaximum likelihood is used to estimate the parameters. Let s be the number of VApolicies
in the experimental design. For i = 1, 2, . . . , s, let vi be the fair market value of the guarantees embedded
in the ith VA policy in the experimental design. Then the log-likelihood function of the model is de�ned as
follows:

L(θ) = s ln |a|
B(p, q) − ap

s∑
i=1

zTi β + (ap − 1)
s∑
i=1

ln(vi + c) −

(p + q)
s∑
i=1

ln
[
1 +
(

vi + c
exp(zTi β)

)a]
, (4)

where θ = (a, p, q, c, β) and zi is a numerical vector representing the ith VA policy in the experiment design.
Using the �tted GB2 regression model to predict the fair market values of guarantees for the portfolio is

straightforward. Let n be the number of VA policies in the portfolio and xi the numeric vector characteriz-
ing the ith VA policy in the portfolio. Then the fair market value of guarantees for the ith VA policy can be
estimated as follows:

ŷi =
exp(xTi β̂)B

(
p̂ + 1

â , q̂ −
1
â
)

B(p̂, q̂)
− ĉ, i = 1, 2, . . . , n, (5)

where â, p̂, q̂, ĉ, and β̂ are parameters estimated from the data.

2.3 Parameter Estimation

Estimating the parameters of the GB2 model poses some challenges due to the following reasons:
• The log-likelihood function given in Equation (4) is highly nonlinear and maximizing it cannot be done

in closed form.
• The log-likelihood function has multiple local maxima.
Since maximizing the log-likelihood function cannot be done in closed form, a numerical procedure is re-
quired to �nd the optimumparameters. Numerical procedures are usually iterative procedures that start with
an initial set of parameters supplied by the users and then repeat improving the parameters until some stop
criterion is met. Since the log-likelihood function has multiple local maxima, di�erent sets of initial param-
eters might lead to di�erent optimum parameters. As a result, choosing the set of initial parameters is an
essential step in the optimization process. In [16], a four-stage optimization approach was proposed to es-
timate the parameters of the GB2 regression model. The �rst three stages are used to �nd an set of initial
parameters, which are used in the last stage to �nd optimum parameters.

In this section, we give a brief review of the four-stage optimization method. For detailed description,
readers are referred to [16].

In the�rst stage, the followingpro�le log-likelihood functionof the three shapeparameters ismaximized:

L1(a, p, q) = L(a, p, q, c0, β0), (6)

where c0 = −min{v1, . . . , vs} + 10−6 and

β0 =
(
ln
(
1
s

s∑
i=1

vi + c0

)
, 0, 0, . . . , 0

)T
. (7)
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In the second stage, the following pro�le log-likelihood function of the shift parameter is maximized:

L2(c) = L(â, p̂, q̂, c, β0), (8)

where â, p̂, and q̂ are obtained from the �rst stage and β0 is de�ned in Equation (7). In the third stage, the
following pro�le log-likelihood function of regression coe�cients is maximized:

L3(β) = L(â, p̂, q̂, ĉ, β), (9)

where â, p̂, and q̂ are obtained from the �rst stage and ĉ is obtained from the second stage. In the last stage,
the full log-likelihood function is maximized using the R function optim with the following initial set of pa-
rameters:

θ0 = (â, p̂, q̂, ĉ, β̂), (10)

where â, p̂, and q̂ are obtained from the �rst stage, ĉ is obtained from the second stage, and β̂ are obtained
from the third stage.

3 Experimental Design
Ametamodel is also referred to as a response surface. The choice of design and the subsequent evaluation of
a metamodel �tted by the data generated by the design have been developed in an area known as response
surface methodology (RSM) [2, 26, 27, 32]. Most design methods for RSM models were developed around
agricultural, industrial, and laboratory experiments. These design methods include factorial designs, frac-
tional factorial designs, central composite designs, sequential bifurcation designs, Latin hypercube designs,
frequency-based designs, and combined designs. A discussion of these designs and how to select a design
based on the number of factors and the complexity of the metamodel can be found in [20].

Most designmethods for RSMmodels are based on standard linear models where the responses are often
assumed to be normally distributed with uncorrelated errors and homogeneous variances. GLMs are usually
used for data that do not satisfy the above assumptions. Unlike the case for linear models, there are not many
designmethodsdeveloped forGLMsdue to thedependenceproblem that thedesign thatminimizes themean-
squared error of prediction depends on the unknown parameters [18]. Common approaches to addressing the
dependence problem include:
• The locally optimal designmethod, which starts with best guesses of initial values of the parameters and

then determines a design that minimizes the mean-squared error of prediction.
• The sequential method, which starts with initial values of the parameters and then updates the estimates

of the parameters successively.
• The Bayesianmethod, which assumes a prior distribution that is incorporated into an appropriate design

criterion by integration.
• The quantile dispersion graphs method, which compares di�erent designs based on quantile dispersion

pro�les.
A review of the above design methods can be found in [18].

The above experimental design methods developed for GLMs are not suitable in our situation because
these design methods require running the Monte Carlo simulation model. Since the Monte Carlo simulation
model is computationally expensive, it is not practical to run it in order to �nd an optimal design.

Since many factors (i.e., independent variables) a�ect the fair market values of the guarantees, some
of the experimental design methods for RSM models are not suitable. For example, the number of points
contained in a factorial design is an exponential function of the number of factors. Running the Monte Carlo
simulation model for a large number of VA policies in such a design is time consuming. Latin hypercube
designs are recommended when there are many factors and the metamodel is complex [20].

In this section, we introduce several experimental designmethods that do not require running theMonte
Carlo simulationmodel. In all these experimental designmethods except for the conditional Latin hypercube
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method, we work with the n × m matrix A, where n is the number VA policies in the portfolio and m is the
number of independent variables after categorical variables are converted to binary dummy variables. For ex-
ample, the variable prodType, which has four distinct values, is converted to three binary dummy variables.
Each row of A is a numeric vector representing a VA policy. Each column of A is normalized to [0, 1]. Math-
ematically, A is de�ned as follows. Let V1, V2, . . . , Vm be the independent variables, including the binary
dummy variables converted from the two categorical variables gender and prodType. For i = 1, 2, . . . , n and
j = 1, 2, . . . ,m, let Vij be the value of the ith VA policy in the jth variable. Then A is de�ned as

Aij =


Vij , if Vj is a binary dummy variable,

Vij − Lj
Uj − Lj

, if Vj is a continuous variable,
(11)

where Lj and Uj are the minimum and maximum values of Vj, respectively.

3.1 Random Sampling

Let s be the size of the experimental design, i.e., the number of VA policies in the design. The main steps of
the random sampling method are as follows:
Step 1 Generate an s × m matrix B, where each entry Bij is sampled uniformly from the interval [0, 1].
Step 2 Let S = ∅ and I = {1, 2, . . . , n}.
Step 3 For l = 1, 2, . . . , s, let S = S ∪ {Sl}, where

Sl = arg min
i∈I\S

m∑
j=1

(Aij − Blj)2.

Then set S contains s distinct indices of the selected VA policies. In the �rst step, we use the R function runif
to generate uniform random numbers.

In this experimental design method, we �rst generate s points from the m-dimensional space [0, 1]m.
Then we select sequentially s VA policies from the portfolio that are closest to these s points. If a VA policy is
selected, it will not be considered in the next selection. This ensures that we get s distinct VA policies from
the portfolio.

3.2 Low-Discrepancy Sequence

Low-discrepancy sequences, also called quasi-random sequences ,are sequences of points with the property
that for each i, the points {p1, p2, . . . , pi} have a low discrepancy [4]. A sequence of points is said to have
a low discrepancy if the proportion of points in the sequence falling into an arbitrary set is approximately
proportional to the measure of the set. There are several de�nitions for the discrepancy, depending on the
shape of the subset and the measure that is used.

We use Sobol sequences as low-discrepancy sequences and use the function sobol from the R package
randtoolbox to generate Sobol sequences. Themain steps of the low-discrepancy sequencemethod are sim-
ilar to those of the random sampling method:
Step 1 Generate an s × m matrix B, where the entries B11, B21, . . ., Bnm are from a Sobol sequence.
Step 2 Let S = ∅ and I = {1, 2, . . . , n}.
Step 3 For l = 1, 2, . . . , s, let S = S ∪ {Sl}, where

Sl = arg min
i∈I\S

m∑
j=1

(Aij − Blj)2.
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3.3 Data Clustering

Data clustering is a form of unsupervised learning and refers to the process of dividing a dataset into groups
or clusters such that points from the same cluster are more similar to each other than points from di�erent
clusters [9]. The main steps of using data clustering to create a design are described below:
Step 1 Apply a clustering algorithm to divide A into s clusters. Let B be an s × m matrix such that the rows

correspond to the cluster centers.
Step 2 Let S = ∅ and I = {1, 2, . . . , n}.
Step 3 For l = 1, 2, . . . , s, let S = S ∪ {Sl}, where

Sl = arg min
i∈I\S

m∑
j=1

(Aij − Blj)2.

In the �rst step, we apply the TFCM (truncated fuzzy c-means) algorithm [13] to divide the dataset into s
clusters. The TFCMalgorithm is a k-means-type clustering algorithm that is e�cient in dividing a large dataset
into many clusters by minimizing the following objective function:

P(U, B) =
n∑
i=1

s∑
l=1

uαil

 m∑
j=1

(Aij − Blj)2 + ϵ

 ,

where α > 1 is the fuzzi�er, U is a truncated fuzzy partition matrix, B is a matrix representing cluster centers,
and ϵ is a small positive number used to prevent division by zero. Details of the TFCM algorithm can be found
in [13].

3.4 Latin Hypercube Sampling

Latin hypercube sampling [34] is a popular method for generating experimental designs. A Latin hypercube
with s points is constructed by dividing each dimension in the design space into s equally sized intervals,
and placing exactly one point in each interval for each dimension. There are many Latin hypercubes for �xed
number of points anddimensions. In fact, when the required number of points and the number of dimensions
increase, the number of Latin hypercubes increases exponentially [24].
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Figure 3: Two two-dimensional Latin hypercube designs created by the function maximinLHS.
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We use the function maximinLHS from the R package lhs to create Latin hypercubes. Figure 3 shows
two examples of Latin hypercube designs created by the function maximinLHS. The main steps of this design
method are similar to those of the previous design methods:
Step 1 Generate a Latin hypercube B with s points in an m-dimensional space.
Step 2 Let S = ∅ and I = {1, 2, . . . , n}.
Step 3 For l = 1, 2, . . . , s, let S = S ∪ {Sl}, where

Sl = arg min
i∈I\S

m∑
j=1

(Aij − Blj)2.

3.5 Conditional Latin Hypercube Sampling

The Latin hypercube sampling method presented in the previous subsection is referred to as the uncondi-
tional Latin hypercube sampling method. It provides a full coverage of the range of each variable. A con-
ditional Latin hypercube sampling method is di�erent in that it selects a sub-sample from a dataset with
ancillary variables in such a way that the sub-sample forms a Latin hypercube and the distribution of the
sub-sample is close to that of the dataset [25, 31].

We use the function clhs from the R package cLHS to create conditional Latin hypercubes. Since the
function clhs returns a set of indices of the VA policies, we do not need to select VA policies that are closest
to the design points.

4 Numerical Results
In this section, we illustrate and compare the performance of the experimental design methods described in
the previous section for the GB2 regression model.

4.1 Validation Measures

Weuse the three validationmeasures used in [16] to assess the accuracy of various experimental designmeth-
ods. These validationmeasures are the percentage error at the portfolio level, the R2, and the average absolute
percentage error.

For i = 1, 2, . . . , n, let yi and ŷi be the fair market values of the ith VA contract obtained from the Monte
Carlo simulationmodel and the GB2 regressionmodel, respectively. Then the percentage error at the portfolio
level is de�ned as

PE =
∑n

i=1(ŷi − yi)∑n
i=1 yi

. (12)

The R2 is de�ned as
R2 = 1 −

∑n
i=1(ŷi − yi)

2∑n
i=1(yi − µ)2

, (13)

where µ is the average fair market value given by

µ = 1
n

n∑
i=1

yi .

The average absolute percentage error is de�ned as

AAPE = 1
n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ . (14)

Using these validation measures to compare two experimental designs is straightforward:
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• The one that results in a lower absolute PE is better.
• The one that results in a higher R2 is better.
• The one that results in a lower AAPE is better.

4.2 Results

In this subsection, we present the numerical results to demonstrate the performance of the �ve experimen-
tal design methods described in Section 3. For the sake of simplicity, we use the following abbreviations to
represent the experimental design methods in tables and �gures:
• RS - The random sampling method.
• LDS - The low-discrepancy sequence method.
• DC - The data clustering method.
• LHS - The Latin hypercube sampling method.
• cLHS - The conditional Latin hypercube sampling method.
Since all the �ve experimental design methods depend on some random initial values to create the designs,
we run all the design methods 10 times with di�erent seeds in order to mitigate the impact of the random
initial values.

In terms of the design size (i.e., how many points in the design), we follow the rule of thumb suggested
in [22] that the number of design points should be 10 times the number of independent variables. Since the
dataset has 22 independent variables, we start with a design size of s = 220. To assess the impact of the design
size, we also test the experimental design methods with design sizes of s = 440 and s = 880.

The process to calculate the performance measures of an experimental design method is as follows:
Step 1 Use the experimental design method to select s VA policies from the portfolio.
Step 2 Fit the GB2 regression model based on the s selected VA policies and their fair market values.
Step 3 Use the the GB2 regression model to predict the fair market values of all VA policies in the portfolio.
Step 4 Calculate the validation measures using the predicted fair market values and those calculated by the

Monte Carlo simulation model.
Since we focus on the performance of the experimental design methods, we use exactly the same code in
Steps 2-4 to make sure these steps are the same for di�erent experimental design methods.

Table 2 shows the average accuracy and speed of the �ve experimental design methods when s = 220.
From the table, we see that the data clusteringmethod and the conditional Latin hypercube samplingmethod
are the best methods in terms of the three validationmeasures. The accuracy of the data clusteringmethod is
similar to that of the conditional Latin hypercube sampling method although the former has a lower R2 and
a higher AAPE. The random sampling method and the Latin hypercube sampling method produce negative
R2, indicating that the variation of the predicted values is larger than that of the benchmark values obtained
from Monte Carlo simulation.

In terms of runtime, the data clustering method and the conditional Latin hypercube sampling method
are the slowest among the �ve methods. The other three design methods are much faster.

If we examine the standard deviations of the runtime, we �nd that the runtime of the data clustering
method is more volatile than that of the conditional Latin hypercube sampling method. This indicates that
the convergence of the data clustering method is a�ected by the random initial values.

Figure 4 shows the box plots of the three validation measures and the runtime from the 10 runs of the
�ve experimental designmethods when s = 220. From the �gure, we see that the data clusteringmethod and
the conditional Latin hypercube samplingmethod produce stable validationmeasures. However, Figure 4(d)
shows that the runtime of the two methods is much higher.

Table 3 shows the performance measures of the �ve experimental design methods when s = 440. From
this table, we see that in terms of accuracy, the best design method is the data clustering method. Among
the �ve methods, the data clustering method has the lowest absolute percentage error, the lowest average
absolute percentage error, and the highest R2. Theworstmethod in terms of accuracy is the random sampling
method as it has negative R2, the highest AAPE, and the highest absolute PE.
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Table 2: Average accuracy and speed (in seconds) of the experimental design methods over 10 runs when s = 220. The num-
bers in parentheses are the corresponding standard deviations.

RS LDS DC LHS cLHS

PE 0.48 (0.83) 0.07 (0.38) 0.02 (0.08) 0.55 (0.91) -0.03 (0.1)
R2 -1.96 (5.29) 0.18 (0.27) 0.45 (0.14) -1.92 (3.72) 0.52 (0.12)
AAPE 10.78 (4.63) 8.38 (2.3) 2.95 (0.45) 12.77 (10.72) 2.58 (0.25)
Runtime 8.56 (0.08) 9.08 (0.09) 60.49 (13.97) 9.59 (0.97) 76.25 (0.53)
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Figure 4: Box plots of the performance measures from 10 runs of the experimental design methods when s = 220.
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Table 3: Average accuracy and speed (in seconds) of the experimental design methods over 10 runs when s = 440. The num-
bers in parentheses are the corresponding standard deviations.

RS LDS DC LHS cLHS

PE 0.32 (0.53) 0.16 (0.15) 0.01 (0.05) 0.01 (0.25) -0.02 (0.05)
R2 -0.56 (2.17) 0.31 (0.21) 0.58 (0.09) 0.18 (0.82) 0.57 (0.06)
AAPE 10.06 (5.25) 7.38 (3.03) 2.54 (0.3) 6.79 (2.39) 2.61 (0.28)
Runtime 17.15 (0.28) 17.84 (0.09) 104.48 (20.17) 18.19 (0.17) 100.35 (0.35)
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Figure 5: Box plots of the performance measures from 10 runs of the experimental design methods when s = 440.
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Table 4: Average accuracy and speed (in seconds) of the experimental design methods over 10 runs when s = 880. The num-
bers in parentheses are the corresponding standard deviations.

RS LDS DC LHS cLHS

PE 0.16 (0.34) 0.39 (0.49) 0.02 (0.05) 0.14 (0.4) -0.03 (0.03)
R2 0.35 (0.25) -0.08 (1.06) 0.63 (0.02) 0.26 (0.58) 0.61 (0.03)
AAPE 7.58 (3.23) 8.95 (5.73) 3 (0.54) 7.56 (4.44) 2.6 (0.18)
Runtime 33.74 (0.66) 33.26 (1.28) 222.9 (59.28) 38.11 (0.34) 150.26 (1.73)
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Figure 6: Box plots of the performance measures from 10 runs of the experimental design methods when s = 880.
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If we look at the runtime of the �ve experimental designmethods, we see that the data clusteringmethod
is the slowest method. Improving the data clustering algorithm can help reduce the runtime. The conditional
Latin hypercube sampling method is comparable to the data clustering method in terms of accuracy and
speed.

Figure 5 shows the box plots of the performance measures of the �ve design methods when s = 440.
From Figures 5(a), 5(b), and 5(c), we see that the validation measures of the random sampling method, the
low-discrepancy sequence method, and the Latin hypercube sampling method are more volatile than those
of the data clustering method and the conditional Latin hypercube sampling method. Figure 5(d) shows that
the runtime of the data clustering method is more volatile than that of the other methods. This reason is that
the convergence of the data clustering method depends on the random initial values used by the algorithm.
Improving initial values used by the data clustering algorithm can make the convergence more stable.

Table 4 shows the performance measures of the �ve experimental design methods when we increase
the design size to 880. We again see that the data clustering method and the conditional Latin hypercube
sampling are much better than the other three experimental design methods in terms of accuracy. When the
design size is large, the data clustering method will become very slow as we can see from the runtime. In
fact, dividing a large dataset intomany (e.g., one thousand) clusters is a challenging problem due to the huge
number of distance calculations. The TFCM algorithm used here is already a big improvement of the k-means
algorithm, which is extremely slow when used to divide a large dataset into many clusters.

Table 5: The average and standard deviation of the estimated parameters of the GB2 model over 10 runs when s = 220.

Parameter RS LDS DC LHS cLHS

a 8.23 (0.75) 9.11 (2.43) 6.78 (2.21) 8 (0.99) 9.63 (2.96)
p 0.29 (0.04) 0.29 (0.07) 0.72 (0.21) 0.29 (0.06) 0.51 (0.1)
q 0.54 (0.13) 0.57 (0.3) 1.14 (0.95) 0.62 (0.23) 0.67 (0.23)
c 31.23 (0.49) 31.44 (0.93) 22.95 (3.43) 30.93 (0.79) 27.71 (5.38)
β0 (Intercept) 3.91 (0.36) 3.58 (0.59) 3.12 (0.17) 3.84 (0.74) 3.29 (0.24)
β1 (gmdbAmt) 0.69 (0.84) 1.3 (1.53) 1.04 (0.69) 0.72 (1.35) 1.24 (1.08)
β2 (gmwbAmt) 0.59 (3.07) 2.01 (1.6) 2.46 (2.12) 2.61 (1.66) 1.48 (2.4)
β3 (gmwbBalance) 3.14 (3.12) 1.76 (2.08) 1.4 (2.13) 1.23 (1.71) 2.14 (2.77)
β4 (gmmbAmt) 0.88 (1.39) 1.28 (0.95) 2.14 (0.38) 0.66 (1.09) 2.05 (0.69)
β5 (withdrawal) -0.12 (1.25) -0.82 (0.76) -0.73 (1) -0.95 (0.71) -0.52 (0.82)
β6 (FundValue1) -2.36 (0.52) -2.34 (0.55) -1.97 (0.87) -2.21 (0.47) -1.94 (0.97)
β7 (FundValue2) -1.08 (0.42) -1 (0.5) -0.88 (0.6) -1.13 (0.58) -1.14 (0.95)
β8 (FundValue3) -1.34 (0.4) -1.37 (0.33) -1.42 (0.79) -1.47 (0.44) -1.11 (0.86)
β9 (FundValue4) -1.88 (0.47) -1.99 (0.55) -1.92 (0.95) -1.85 (0.53) -1.63 (0.8)
β10 (FundValue5) -1.21 (0.35) -1.09 (0.44) -0.93 (0.47) -1.18 (0.51) -0.83 (0.76)
β11 (FundValue6) -1.5 (0.28) -1.47 (0.43) -1.06 (0.64) -1.45 (0.46) -1.17 (1.08)
β12 (FundValue7) -1.4 (0.27) -1.45 (0.46) -1.71 (1.58) -1.49 (0.69) -1.41 (0.95)
β13 (FundValue8) -1.93 (0.4) -1.98 (0.54) -1.48 (0.91) -1.9 (0.69) -1.84 (0.72)
β14 (FundValue9) -1.13 (0.42) -1.32 (0.65) -1.05 (0.7) -1.05 (0.58) -0.95 (1.24)
β15 (FundValue10) -1.52 (0.39) -1.52 (0.37) -1.25 (0.61) -1.59 (0.52) -1.59 (0.59)
β16 (age) 0.2 (0.12) 0.17 (0.2) 0.24 (0.07) 0.2 (0.14) 0.15 (0.1)
β17 (ttm) 0.53 (0.17) 0.48 (0.2) 0.29 (0.11) 0.57 (0.18) 0.22 (0.17)
β18 (genderM) -0.01 (0.05) -0.05 (0.05) -0.06 (0.04) -0.02 (0.05) -0.03 (0.05)
β19 (prodTypeDBRU) 0.09 (0.34) 0.13 (0.4) 0.05 (0.17) 0.24 (0.41) -0.08 (0.21)
β20 (prodTypeMB) 0.33 (1.35) 0.33 (1.27) 0.07 (0.22) 0.56 (1.1) 0.05 (0.16)
β21 (prodTypeWB) -1.19 (0.59) -0.67 (0.81) -0.23 (0.16) -1.05 (0.81) -0.18 (0.1)
β22 (prodTypeWBSU) -0.42 (0.75) -0.05 (0.78) 0.27 (0.22) -0.41 (0.8) 0.29 (0.14)
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Figure 6 shows the box plots of the performance measures of the �ve design methods when s = 880. We
see similar patterns as in previous cases. In terms of accuracy, the data clusteringmethod and the conditional
Latin hypercube sampling are the best among the �ve design methods. In terms of speed, the data clustering
is the slowest and the conditional Latin hypercube sampling method is the second slowest.

If we look at Tables 2, 3, and 4, we can see how the accuracy improves when the design size increases.
Considering the random sampling method, for example, the PE decreases from 0.48 to 0.16 when s increases
from 220 to 880. The R2 changes from -1.96 to 0.35. For the data clustering method, the PE does not change
muchwhen s increases from 220 to 880. However, the R2 increases from 0.45 to 0.63. The increase of R2 when
s increases from440 to 880 is smaller than thatwhen s increases from 220 to 440. In otherwords, the increase
in R2 is marginal when s increases further.

Table 6: The average and standard deviation of the estimated parameters of the GB2 model over 10 runs when s = 440.

Parameter RS LDS DC LHS cLHS

a 6.96 (0.99) 6.34 (1.35) 7.18 (1.99) 6.42 (1.3) 8.13 (1.2)
p 0.42 (0.06) 0.52 (0.14) 0.62 (0.11) 0.44 (0.08) 0.55 (0.08)
q 0.57 (0.07) 0.71 (0.23) 0.7 (0.15) 0.67 (0.19) 0.65 (0.15)
c 31.12 (0.56) 30.92 (0.68) 23.79 (3.29) 30.96 (0.32) 26.68 (2.63)
β0 (Intercept) 3.9 (0.48) 3.66 (0.36) 3.01 (0.23) 3.52 (0.48) 3.18 (0.19)
β1 (gmdbAmt) 0.61 (0.7) 1.24 (0.91) 1.11 (0.66) 0.84 (0.53) 1.08 (0.56)
β2 (gmwbAmt) 1.25 (2.2) 0.93 (3.14) 1.7 (2.3) 1.31 (1.91) 2.47 (1.62)
β3 (gmwbBalance) 2.86 (2.11) 3.23 (3.17) 1.9 (1.99) 2.37 (1.59) 0.99 (1.23)
β4 (gmmbAmt) 1.03 (0.95) 1.24 (0.6) 2.07 (0.3) 0.83 (0.8) 1.89 (0.33)
β5 (withdrawal) -0.36 (0.92) -0.24 (1.23) -0.49 (0.92) -0.34 (0.74) -0.94 (0.69)
β6 (FundValue1) -2.07 (0.43) -2.38 (0.6) -2.04 (1.05) -1.85 (0.6) -1.66 (0.73)
β7 (FundValue2) -1.09 (0.35) -1.25 (0.58) -0.64 (0.54) -0.81 (0.43) -0.68 (0.71)
β8 (FundValue3) -1.43 (0.32) -1.58 (0.44) -1.13 (0.39) -1.17 (0.34) -1.01 (0.54)
β9 (FundValue4) -1.92 (0.28) -2.17 (0.39) -1.62 (0.5) -1.65 (0.38) -1.61 (0.37)
β10 (FundValue5) -1.13 (0.38) -1.35 (0.51) -0.96 (0.56) -0.88 (0.44) -0.85 (0.72)
β11 (FundValue6) -1.45 (0.3) -1.52 (0.51) -0.91 (0.39) -1.21 (0.39) -0.96 (0.31)
β12 (FundValue7) -1.5 (0.39) -1.55 (0.53) -1.03 (0.46) -1.21 (0.45) -1.34 (0.7)
β13 (FundValue8) -2.04 (0.35) -2.18 (0.47) -1.62 (0.47) -1.66 (0.36) -1.73 (0.69)
β14 (FundValue9) -1.33 (0.41) -1.47 (0.54) -1.02 (0.68) -0.94 (0.51) -0.7 (0.62)
β15 (FundValue10) -1.55 (0.31) -1.69 (0.46) -1.34 (0.5) -1.24 (0.38) -1.03 (0.74)
β16 (age) 0.19 (0.04) 0.18 (0.1) 0.23 (0.09) 0.21 (0.07) 0.17 (0.04)
β17 (ttm) 0.46 (0.12) 0.52 (0.12) 0.3 (0.12) 0.5 (0.1) 0.21 (0.06)
β18 (genderM) -0.03 (0.04) -0.03 (0.04) -0.05 (0.02) -0.04 (0.02) -0.03 (0.04)
β19 (prodTypeDBRU) 0.09 (0.22) -0.05 (0.29) 0.03 (0.11) 0.03 (0.14) 0.03 (0.13)
β20 (prodTypeMB) 0.19 (1.07) 0.34 (0.53) 0.1 (0.15) 0.5 (0.88) 0.11 (0.16)
β21 (prodTypeWB) -1.22 (0.46) -0.95 (0.53) -0.14 (0.08) -0.89 (0.45) -0.09 (0.14)
β22 (prodTypeWBSU) -0.61 (0.55) -0.31 (0.69) 0.37 (0.12) -0.21 (0.56) 0.31 (0.19)

From Tables 2, 3, and 4, we can also see how the runtime changes when the design size increases. The
runtime of the random samplingmethod, the low-discrepancy sequencemethod, the data clusteringmethod,
and the Latin hypercube sampling method increases almost linearly. The runtime of the conditional Latin
hypercube sampling method increases slower than a linear term.

Tables 5, 6, and 7 show the average and standard deviation of parameters of theGB2modelwhendi�erent
experimental designs are used. These numbers are calculated from 10 sets of the estimated parameters of the
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GB2 regression model, where each set of the estimated parameter is based on one run of the experimental
design method.

Table 5 shows the average and standard deviation of the estimated parameters when s = 220. Overall
the estimated parameters based on di�erent experimental designmethods have similar values. However, the
estimated parameters based on the random sampling method are similar to those based on the Latin hyper-
cube sampling method. For example, the average regression coe�cients of the variable protTypeWB based
on the random sampling method and the Latin hypercube sampling method are -1.19 and -1.05, respectively.
But the average regression coe�cients of protTypeWB based on other design methods are much lower.

If we look at Tables 5, 6, and 7 together, we see that the standard deviations of the estimated parameters
decrease in general when the design size increases. Considering the data clusteringmethod, for example, the
standard deviation of the estimated parameter of a decreases from 2.21 to 1.21 when s increases from 220 to
880.

If we examine Figures 4(a), 5(a), and 6(a), we see that the average PEs obtained by the random sampling
method, the low-discrepancy method, and the Latin hypercube sampling method are biased positively. The
reason is that the three methods work well for uniform portfolios of VA policies.

In summary, the numerical results show that the data clustering method and the conditional Latin hy-
percube sampling method are better than the other three experimental design methods in terms of accuracy.
However, the two methods are slower than the other three methods. The estimated parameters based on dif-
ferent experimental design methods are somewhat similar. However, the accuracies of the resulting models
are quite di�erent for the various experimental design methods as indicated in Tables 2, 3, and 4. To illus-
trate, the estimated parameters based on RS and DC methods in Table 7 are close in values, but the resulting
R2 measures in Table 4 are quite di�erent. This indicates that the GB2 regression model is sensitive to small
changes of the parameters.

5 Concluding Remarks
Variable annuities are life insurance products that contain complex guarantees. Calculating the fair market
value of the guarantees cannot in general be done in closed form. Insurance companies resort to Monte Carlo
simulation to value these guarantees. However, Monte Carlo simulation is extremely time-consuming when
applied to large portfolio of variable annuity policies. Metamodeling approaches have been proposed to ad-
dress the computational issues associated with the valuation of variable annuity products. The experimental
design is an important step of themetamodeling process because it is the �rst step of the process and its result
a�ects the accuracy of the metamodel to be built in the subsequent steps.

In this paper, we compare empirically �ve experimental design methods for the GB2 regression model,
which was developed recently as a metamodel to estimate the fair market value of variable annuity guar-
antees. The GB2 regression model has the capability to capture the skewness of the distribution of the fair
market values [16]. In particular, we compared the random sampling method, the low-discrepancy sequence
method, the data clustering method, the Latin hypercube sampling method, and the conditional Latin hy-
percube samplingmethod. None of these experimental designmethods require running the time-consuming
Monte Carlo simulation model.

Our numerical results demonstrated that in terms of accuracy, the data clusteringmethod and the condi-
tional Latin hypercube samplingmethod are the best among the �ve experimental designmethods. However,
the data clustering method and the conditional Latin hypercube sampling method are more time-consuming
than the other three experimental designmethods. The performance of the data clusteringmethod is compa-
rable to that of the conditional Latin hypercube sampling method in terms of both accuracy and speed. Both
methods use an iterative procedure to optimize an objective function in order to �nd the optimal design. On-
going research in data clustering may provide us with e�cient clustering algorithms to create experimental
designs.
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Table 7: The average and standard deviation of the estimated parameters of the GB2 model over 10 runs when s = 880.

Parameter RS LDS DC LHS cLHS

a 5.35 (1.21) 6.55 (1.34) 7.71 (1.21) 6.45 (1.17) 7.91 (0.94)
p 0.73 (0.2) 0.59 (0.17) 0.77 (0.15) 0.53 (0.09) 0.64 (0.08)
q 0.9 (0.47) 0.62 (0.11) 0.64 (0.13) 0.65 (0.15) 0.69 (0.1)
c 31.2 (0.79) 31.42 (0.83) 28.59 (1.18) 31.32 (0.74) 28.52 (1.56)
β0 (Intercept) 3.82 (0.37) 3.83 (0.47) 3.36 (0.15) 3.8 (0.46) 3.3 (0.13)
β1 (gmdbAmt) 0.67 (0.7) 0.88 (0.5) 1.24 (0.38) 0.81 (0.72) 1.43 (0.67)
β2 (gmwbAmt) 1.87 (1.45) 1.82 (2.8) 2.25 (1.78) 1.82 (1.88) 2.38 (1.97)
β3 (gmwbBalance) 2.15 (1.77) 2.19 (3.18) 1.42 (1.48) 2.19 (2.04) 1.25 (2.07)
β4 (gmmbAmt) 1.36 (0.73) 0.95 (0.73) 2.07 (0.28) 1.4 (0.79) 2.06 (0.47)
β5 (withdrawal) -0.59 (0.74) -0.82 (1.2) -0.79 (0.74) -0.57 (0.86) -0.82 (0.71)
β6 (FundValue1) -2.12 (0.57) -2.31 (0.63) -2.01 (0.37) -2.18 (0.31) -1.95 (0.87)
β7 (FundValue2) -1.09 (0.66) -1.26 (0.5) -0.92 (0.43) -1.07 (0.28) -0.82 (0.57)
β8 (FundValue3) -1.33 (0.44) -1.53 (0.41) -1.24 (0.37) -1.29 (0.26) -1.31 (0.51)
β9 (FundValue4) -1.93 (0.47) -1.99 (0.41) -1.95 (0.35) -1.87 (0.26) -1.72 (0.61)
β10 (FundValue5) -1.09 (0.51) -1.25 (0.41) -1.16 (0.23) -1.12 (0.23) -1.09 (0.52)
β11 (FundValue6) -1.36 (0.44) -1.45 (0.45) -1.25 (0.2) -1.33 (0.21) -1.1 (0.54)
β12 (FundValue7) -1.46 (0.57) -1.6 (0.46) -1.33 (0.37) -1.5 (0.27) -1.59 (0.55)
β13 (FundValue8) -2.02 (0.52) -2.15 (0.48) -1.8 (0.34) -1.98 (0.25) -1.98 (0.67)
β14 (FundValue9) -1.32 (0.52) -1.38 (0.5) -1.13 (0.33) -1.28 (0.24) -1.29 (0.62)
β15 (FundValue10) -1.46 (0.58) -1.64 (0.39) -1.38 (0.32) -1.5 (0.29) -1.34 (0.66)
β16 (age) 0.2 (0.06) 0.21 (0.1) 0.13 (0.04) 0.16 (0.03) 0.14 (0.04)
β17 (ttm) 0.41 (0.1) 0.39 (0.08) 0.16 (0.07) 0.39 (0.07) 0.23 (0.12)
β18 (genderM) -0.06 (0.03) -0.07 (0.03) -0.04 (0.03) -0.05 (0.02) -0.04 (0.02)
β19 (prodTypeDBRU) 0 (0.2) -0.1 (0.16) -0.07 (0.08) -0.01 (0.21) -0.08 (0.09)
β20 (prodTypeMB) -0.03 (0.62) 0.38 (0.78) -0.04 (0.1) -0.02 (0.61) 0.02 (0.08)
β21 (prodTypeWB) -1 (0.41) -0.89 (0.67) -0.19 (0.09) -0.94 (0.58) -0.13 (0.08)
β22 (prodTypeWBSU) -0.47 (0.38) -0.37 (0.65) 0.2 (0.15) -0.42 (0.62) 0.27 (0.11)
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