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The financial risk associated with the guarantees embedded in variable annuities cannot be addressed adequately by traditional
actuarial techniques. Dynamical hedging is used in practice to mitigate the financial risk arising from variable annuities. However, a
major challenge of dynamical hedging is to calculate the dollar Deltas of a portfolio of variable annuities within a short time interval so
that rebalancing can be done on a timely basis. In this article, we propose a two-level metamodeling approach to efficiently estimating
the partial dollar Deltas of a portfolio of variable annuities under a multiasset framework. The first-level metamodel is used to estimate
the partial dollar Deltas at some well-chosen market levels, and the second-level metamodel is used to estimate the partial dollar Deltas
at the current market level based on the precalculated partial dollar Deltas. Our numerical results show that the proposed approach
performs well in terms of accuracy and speed.

1. INTRODUCTION
A variable annuity (VA) is an annuity policy issued by an insurance company, under which the policyholder agrees to make a

lump-sum purchase payment or a series of purchase payments to the company and in return the company makes benefit payments
to the policyholder, beginning either immediately or on a future date. Purchasing a VA is similar to investing in a portfolio of mutual
funds because the policyholder may allocate his or her money to one or more investment funds provided by the issuer. However,
a VA differs from mutual funds in the way that a VA provides certain benefit guarantees or riders. Common types of guarantees
include guaranteed minimum death benefits (GMDBs) and guaranteed minimum living benefits (GMLBs). There are several types
of GMLBs: guaranteed minimum accumulation benefits (GMABs), guaranteed minimummaturity benefits (GMMBs), guaranteed
minimum income benefits (GMIBs), guaranteed minimumwithdrawal benefits (GMWBs), and guaranteed life withdrawal benefits
(GLWBs). For details about these guarantees, readers are referred to Milevsky and Posner (2001), Gerber and Shiu (2003), Bauer
et al. (2008), Lin et al. (2009), Bélanger et al. (2009), Ng and Li (2013), Bacinello et al. (2014), and Huang et al. (2014).

Variable annuities have grown rapidly in popularity in the past decade. According to LIMRA, the sales of VAs in the United State
in 2013 and 2014 were $145 and $140 billion, respectively.1 As a result, almost every insurance company that has a VA business is
managing a large VA portfolio. The exposure to the aforementioned guarantees embedded in VAs is posing a significant financial
risk to these insurers, and the risk management is a critical issue to these VA providers.

Unlike the mortality risk associated with the traditional annuity policies, the financial risk associated with the guarantees embed-
ded in VAs cannot be derisked by underwriting as many policies as possible. To hedge the financial risk, insurers use a dynamical
hedging approach in which a hedge portfolio consisting of highly liquid equity index futures (such as S&P500 futures) is con-
structed and dynamically rebalanced such that the change of the hedge portfolio offsets the change of the guarantee value of the
VA portfolio. For such a hedge program to be successful, one needs to first map each of the investment funds in the pool to a
common set of tradable equity indices by analyzing the historical returns of the investment funds and the tradable indices, because
the investment funds are normally not tradable. Examples of fund mapping are given in Table 2. One then needs to accurately and
efficiently calculate the partial dollar Deltas of the VA portfolio, the sensitivities of the guarantee value of the VA portfolio with
respect to tradable equity indices, at rebalancing times to determine the position of the futures of each tradable equity index in the
hedge portfolio.

Address correspondence to X. Sheldon Lin, Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada.
E-mail: sheldon@utstat.utoronto.ca
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The calculation of partial dollar Deltas is challenging. The payoff function of the guarantees is often path-dependent so no
closed-form formulas are available for calculating the fair market value of the guarantees. A VA portfolio is highly nonhomoge-
neous because each policy in the portfolio is different in terms of age, gender, time to maturity, guarantee type, etc. In practice,
insurers rely heavily on Monte Carlo simulation to calculate the fair market value and the partial dollar Deltas of a VA portfolio
by simulation. In a dynamical hedging program with intraday rebalancing, however, the calculation must not only be accurate but
also be very fast to effectively hedge a VA portfolio. For example, an insurer plans to rebalance the hedge portfolio at 1:00 pm: the
partial dollar Deltas must be calculated based on the levels of the equity indices at 1:00 pm, and the calculation must be completed
within a very short time interval (e.g., a few minutes or less) so that the insurer can rebalance the hedge portfolio under the current
market condition. Otherwise, the calculated partial dollar Deltas based on the market condition when the calculation started may be
very different from the partial dollar Deltas of the VA portfolio at the time the calculation is completed. This is especially true when
the market moves fast. For a large VA portfolio it is extremely challenging to calculate the partial dollar Deltas accurately and in
a timely manner through complete simulation. See Gan and Lin (2015) in which we discuss computational time when performing
a complete simulation on a large VA portfolio.

In this article, we propose a two-level metamodeling approach to deal with the aforementioned computational issue arising
from dynamically hedging large VA portfolios. The idea is to precalculate the partial dollar Deltas of a VA portfolio at a number
of well-chosen market levels at a time before the rebalancing time (e.g., at the market closing time of the previous day). We then
estimate the partial dollar Deltas at the current market level at the rebalancing time using the precalculated partial dollar Deltas.
The approach involves two metamodels: the first metamodel, called the level-one metamodel, is used to estimate the partial dollar
Deltas of the portfolio at the prechosen market levels; the second metamodel, called the level-two metamodel, is used to estimate
the partial dollar Deltas of the portfolio at any market level based on the precalculated dollar Deltas obtained from the level-one
metamodel. The changes of dollar Deltas of a VA portfolio within a short period of time (e.g., one night) are mainly drived by
market changes. The changes in actuarial assumptions (e.g., mortality, lapse) can be ignored. As a result, it is reasonable to estimate
the dollar Deltas of the portfolio based on market levels.

The rest of the article is organized as follows. In Section 2 we give a brief review of simulation metamodeling. In Section 3
two Latin hypercube sampling methods are introduced to select a number of well-chosen market levels of the tradable indices and
representative VA policies. In Section 4 we present two kriging methods and the two-level metamodeling approach for partial dollar
Delta calculation. In Section 5 we demonstrate the performance of the proposed approach using a portfolio of 100,000 synthetic
VA policies. We conclude the article with some remarks in Section 6.

2. SIMULATION METAMODELING
In simulation metamodeling, a metamodel refers to a model of a simulation model as described in Friedman (1996). In many

practical situations, an underlying simulation model in use is very complex and too computationally intensive. A metamodel of the
simulationmodel relates the inputs to the outputs of the simulationmodel and is simple and computationally efficient. Ametamodel
is constructed by running a small number of expensive simulations and used in place of the simulation model for further analysis.

Since Kleijnen (1975) introduced the concept of metamodels for simulationmodels, many papers onmetamodeling and its appli-
cations have been published. Kleijnen (2009) presented a review of the kriging metamodel. Among other applications, Ankenman
et al. (2010) extended the basic theory of kriging in a stochastic simulation setting. There are also several books on metamodels.
Friedman (1996) provides comprehensive coverage of simulation metamodeling and discusses methodology, usage, and applica-
tions of metamodels. Box and Draper (2007) cover many topics on response surface methodology, which is related to metamod-
eling. Das (2014) is devoted to robust response surface methodology and contains a review of the existing literature on response
surface methodology.

Recently, the idea of metamodeling has been applied to address the computational problems related to the valuation and risk
management of variable annuities. Gan (2013) proposed a clustering method (Gan 2011) and an ordinary kriging method (Isaaks
and Srivastava 1990) to estimate the Greeks of a large VA portfolio. In Gan and Lin (2015), a clustering method and a universal
kriging for the functional data method (Caballero et al. 2013) are proposed to estimate the partial dollar Deltas of a portfolio of
VA policies under a nested simulation or stochastic-on-stochastic framework (Reynolds and Man 2008).

Building a metamodel of a simulation model involves two steps: first, one needs to select a small set of sample points from the
input space of the simulation model by using some experimental design methods (Alam et al. 2004); second, a metamodel is built
based on the input-output relationships generated by running the simulation model on the selected sample points. For example,
Latin hypercube sampling is a popular experimental design method (Viana 2013) that can be used to select sample points in the
first step. In the second step, we can choose a metamodel form and use the input-output information of the simulation model to
estimate the parameters of the metamodel. There are several metamodel forms such as spline models, radial basis functions, kernel
methods, and spatial correlation models (Barton 1994). In particular, kriging is a type of spatial correlation models. It has been



EFFICIENT GREEK CALCULATION OF VARIABLE ANNUITY PORTFOLIOS 163

reported that Latin hypercube sampling works well for kriging (Viana 2013). In this article, we shall use Latin hypercube sampling
and kriging as our experimental design method and metamodel form, respectively.

3. LATIN HYPERCUBE SAMPLING
To accurately and efficiently estimate the partial dollar Deltas of a VA portfolio, it is crucial to have a small number of well-

chosen market levels of the tradable indices and representative VA policies (e.g., Gan and Lin 2015). In this section, we introduce
two Latin hypercube sampling methods: an unconditional Latin hypercube sampling method and a conditional Latin hypercube
sampling method. The first method is used for selecting market levels, and the second method is used for selecting representative
VA policies. The difference between these two methods is that the former involves selecting sample points (i.e., possible market
returns of tradable equity indices) from a space, while the later involves selecting sample points (i.e., the representative VA policies
in the portfolio) from a large set of points.

3.1. Unconditional Latin Hypercube Sampling
Let H be the number of tradable equity indices of the hedge portfolio to which the investment funds are mapped. We use an

unconditional Latin hypercube sampling method (Viana, 2013) to select m market levels on these H indices. Here, a market level
r is a vector of H returns (r1, r2, . . . , rH ) with rh being the intraday return (i.e., the return calculated from the current price and
the close of the last business day) of the hth index. Regarding the number of sample points, we may choose m = 10H in practice
(Loeppky et al. 2009).

A Latin hypercube design with m sample points in a H-dimensional space is created as follows. We first decide the ranges of
movements of the indices. For example, we can use Rh = [−σh, σh] as the range of the hth index for h = 1, 2, . . . ,H, where σh is
the annualized volatility of the hth index. This range is wide enough to capture most of the daily movements of the index because
the daily volatility is approximately σh/

√
252, which is much smaller than σh.

Second, for each h = 1, 2, . . . ,H, we divide the range Rh into m− 1 intervals of equal length. This generates mH dividing
points, including the points in corners. Then we obtain a Lain hypercube design by choosing m points from these dividing points
such that no two points have the same coordinates. There are many such Latin hypercube designs (Liefvendahl and Stocki 2006).
To obtain an optimal Latin hypercube design, we may use the maximin criterion (Carnell 2012; Moon et al. 2011), that is, choosing
m points r1, r2, . . . , rm from the dividing points such that the minimum distance

M = min{‖ri − r j‖ : 1 ≤ i < j ≤ m} (1)

is maximized, where ‖ · ‖ is the usual L2 norm or the Euclidean distance.

3.2. Conditional Latin Hypercube Sampling
The unconditional Latin hypercube sampling method presented in the previous subsection provides a full coverage of the range

of each variable. A conditional Latin hypercube sampling method is a little bit different in that it selects a subsample of size k from
a set of n points with d ancillary variablesV = (v1, v2, . . . , vd ) in such a way that the subsample forms a Latin hypercube (Minasny
and McBratney 2006; Roudier 2011). Minasny and McBratney (2006) proposed a search algorithm based on heuristics rules to
find conditional Latin hypercubes. The algorithm is also available in the R package clhs (Roudier 2011). In this subsection we
apply the conditional Latin hypercube sampling method to select a set of representative policies from a VA portfolio.

Let X = {x1, x2, . . . , xn} be a portfolio of n VA policies. Suppose that each policy is characterized by d attributes/variables
V such as gender, age, guarantee type, on time to maturity. The search algorithm used to select k representative VA policies is
described as follows. First, the quantile distribution of each continuous variable in V is divided into k strata. Let the quantile
distribution of a continuous variable be qij for j ∈ I1 and i = 1, 2, . . . , k + 1, where I1 is the index set of continuous variables in
V . Second, k policies Z = {z1, z2, . . . , zk} are selected from X , and the following objective function is calculated:

O = w1O1 + w2O2 + w3O3.

In the above, w1,w2, and w3 are the weights of the three components O1,O2, and O3, respectively. The first component, O1, is the
objective function for continuous variables (e.g., age, time to maturity):

O1 =
∑
j∈I1

n∑
i=1

|ηij − 1|,
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where I1 is the index set of continuous variables and ηij is the number of zi j, the value of the jth variable of zi, that fall in between
quantiles qij and q

i+1
j . The second component,O2, is the objective function for categorical variables (e.g., gender, guarantee type):

O2 =
∑
j∈I2

c j∑
i=1

∣∣∣∣∣
ηij

k
− κ ij

∣∣∣∣∣ ,
where I2 is the index set of categorical variables and c j is the number of categories of the jth variable, ηij is the number of zi j
that belongs to the ith category of the jth variable, and κ ij is the proportion of X in the ith category of the jth variable. The third
component, O3, is used to ensure the correlation of the sampled continuous variables will replicate the original data and is defined
as

O3 =
|I1|∑
j=1

|I1|∑
l=1

|c jl − t jl |,

where c jl and t jl are the elements of the sample correlation matrix of the continuous data of X and the sample correlation matrix of
the continuous data of Z, respectively. An annealing schedule (i.e., the simulated annealing algorithm) is performed to obtain the
final sample. As a result, the final sample obtained from the search algorithm preserves the distribution and multivariate correlation
of the original data.

4. THE TWO-LEVEL METAMODELING APPROACH FOR PARTIAL DOLLAR DELTA CALCULATION
In this section we introduce the two-level metamodeling approach for calculating partial dollar Deltas used in dynamical hedg-

ing. This approach consists of twometamodels: the level-one metamodel is used to estimate the partial dollar Deltas of the portfolio
at the prechosen market levels; the level-two metamodel is used to estimate the partial dollar Deltas of the portfolio at an arbitrary
market level based on the precalculated dollar Deltas at the prechosen market levels. Figure 1 shows the hierarchical structure of
the two-level metamodeling approach.

The level-one metamodel can be used to estimate the dollar Deltas of the VA portfolio at any market level. However, the level-
one metamodel is still slow because it involves running the Monte Carlo simulation model on a set of representative VA contracts.
This is the reason why we build the level-two metamodel on top of the level-one method model.

FIGURE 1. Two-Level Metamodeling Approach to Estimate the Partial Dollar Deltas at Arbitrary Market Level r. Note: The symbols r1, r2, . . . , rm denote the
prechosen market levels. The symbols z1, z2, . . . , zk denote the representative VA contracts.
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4.1. The Level-One Metamodel
The level-one metamodel is used to estimate the dollar Deltas of a VA portfolio from the dollar Deltas of a set of representative

VA contracts z1, z2, . . . , zk, which are selected by the so-called conditional Latin hypercube sampling method. The reason why we
use the conditional Latin hypercube sampling method to select representative VA contracts is that we know all the VA contracts in
the portfolio. The conditional Latin hypercube sampling method can be used to select a subset of VA contracts from the portfolio.

The dollar Deltas of a VA contract are usually proportional to some variables of the VA contract. For example, if a VA contract
has large account values or large guarantee values, we expect the dollar Deltas of the VA contract are also large. Since the universal
kriging method contains a regression part that can be used to capture such trend, we choose the universal kriging method to build
the level-one metamodel.

Recall that X = {x1, x2, . . . , xn} represents a portfolio of n VA policies and z1, z2, . . . , zk are k representative VA policies
selected from X by the conditional Latin hypercube sampling method. Further, r1, r2, . . . , rm are m market levels selected by the
unconditional Latin hypercube method (see Section 3). Let f (zi, rl, h) be the partial dollar Delta of the representative policy zi
with respect to hth tradable index at market level rl , for i = 1, 2, . . . , k, and l = 1, 2, . . . ,m. These quantities are obtained through
Monte Carlo simulation. We now use a universal kriging model to estimate the dollar Deltas of an arbitrary policy from those of
the k representative policies at the selected market levels r1, r2, . . . , rm. One of the advantages of the use of a universal kriging
model is that it can capture the trends in the VA portfolio.

We assume that the partial dollar Delta of a VA policy xi on the hth tradable index when the market level on the next day is rl
to be (Cressie 1993)

f (xi, rl, h) =
d∑
j=0

b j(xi)β j + δ(xi, rl, h), (2)

where β0, . . . , βd are unknown parameters, δ(·, ·, ·) is a zero-mean intrinsically stationary spatial random process, and
b0(·), . . . , bd (·) are known functions of xi. In our implementation, we convert all categorical variables to binary dummy vari-
ables and choose b0(x) = 1 and b j(xi) to be the jth component of xi for j = 1, 2, . . . , d. Under the universal kriging model (2),
f (xi, rl, h) can be predicted as (Cressie 1993)

f̂ (xi, rl, h) = λTi f (Z, rl, h) =
k∑
p=1

λip f (zp, rl, h), (3)

where f (Z, rl, h) denotes a k-dimensional column vector given by

f (Z, rl, h) = ( f (z1, rl, h), f (z2, rl, h), . . . , f (zk, rl, h))T ,

and λi = (λi1, λi2, . . . , λik )T is a column vector of kriging weights. The kriging weights are determined by the following linear
equation system:

(
A(Z) B(Z)

B(Z)T 0

)
·
(

λi

vi

)
=
(
A(Z, xi)

B(xi)T

)
. (4)

In Equation (4), A(Z) is a k × k matrix defined as

A(Z) =

⎛
⎜⎜⎜⎜⎝

γ (z1, z1) γ (z1, z2) · · · γ (z1, zk )

γ (z2, z1) γ (z2, z2) · · · γ (z2, zk )
...

...
. . .

...

γ (zk, z1) γ (zk, z2) · · · γ (zk, zk )

⎞
⎟⎟⎟⎟⎠ , (5)
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where γ (·, ·) is a semivariogram function. Among several semivariogram functions, we found that the exponential semivariogram
function works well in practice. It is defined as

γ (x, y) = 1 − exp

(
−3

‖x − y‖
β

)
,

where ‖ · ‖ is the L2 norm or Euclidean distance:

‖x − y‖ =
√√√√ d∑

s=1

(xs − ys)2. (6)

In practice, we can set β to be the 95th percentile of all the distances between pairs of the k representative VA polices (Isaaks and
Srivastava 1990). Again, in distance calculation we also assume that the categorical variables (e.g., gender and guarantee type) are
converted to binary dummy variables, and the numerical variables are normalized to have a standard deviation of 1.

The column vector A(Z, xi) and the row vector B(xi) are defined as

A(Z, xi) =

⎛
⎜⎜⎜⎜⎝

γ (z1, xi)

γ (z2, xi)
...

γ (zk, xi)

⎞
⎟⎟⎟⎟⎠ (7)

and

B(xi) = (
1 xi1 · · · xid

)
, (8)

respectively.
The additive property of the dollar Delta ensures that the partial dollar Deltas of the VA portfolio on the hth tradable index,

when the market level is rl , is the aggregated partial dollar Deltas of the individual policies:

f̂ (X, rl, h) =
n∑
i=1

λTi f (Z, rl, h) =
k∑
j=1

n∑
i=1

λip f (zp, rl, h). (9)

4.2. The Level-Two Metamodel
The level-two metamodel is used to estimate the dollar Deltas of a VA portfolio at an arbitrary market level r from the precal-

culated dollar Deltas at market levels r1, r2, . . . , rm, which are selected by the unconditional Latin hypercube sampling method.
The reason why the unconditional Latin hypercube sampling method is used to select the market levels is that we do not know the
future levels of the market.

The dollar Deltas of an individual VA contract are proportional to some variables used to build the level-one metamodel. How-
ever, the dollar Deltas of the VA portfolio are not proportional to market levels, which are used to build the level-two metamodel.
As a result, we choose the ordinary kriging method to build the level-two metamodel.

Under an ordinary kriging model, the partial dollar Delta of the portfolio on the hth tradable index when the market level is r is
assumed to be (Cressie 1993):

g(r, h) = μ + δ(r, h),

where μ is an unknown constant and again δ(·, ·) is a zero-mean intrinsically stationary spatial process. In this model, g(r, h) can
be predicted as (Cressie, 1993):

ĝ(r, h) =
m∑
l=1

wl · f̂ (X, rl, h), (10)
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where f̂ (X, rl, h) is the partial dollar Delta of the portfolio X obtained in Equation (9) and w1,w2, . . . ,wm are the kriging weights.
The optimal weights are obtained by solving the following linear equation system:

⎛
⎜⎜⎜⎜⎝
V11 · · · V1m 1
...

. . .
...

...

Vm1 · · · Vmm 1

1 · · · 1 0

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

w1

...

wm

θ

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
D1

...

Dm

1

⎞
⎟⎟⎟⎟⎠ , (11)

where θ is the Lagrange multiplier to ensure the sum of the kriging weights equal to one:

Vls = 1 − exp

(
− 3

β
‖rl − rs‖

)
, l, s = 1, 2, . . . ,m,

and

Dl = 1 − exp

(
− 3

β
‖r − rl‖

)
, j = 1, 2, . . . ,m.

Here β > 0 is a parameter and ‖ · ‖ is the L2 norm (i.e., the Euclidean distance). In practice, we can set β to be the 95th percentile
of all the distances between pairs of the m selected market levels (Isaaks and Srivastava 1990).

4.3. Procedure and Algorithm
In this subsection, we present the procedure and algorithm of the two-level metamodeling approach to calculate the partial dollar

Deltas of a VA portfolio.
We first select a small set of possible market levels r1, r2, . . . , rm in order to precalculate the partial dollar Deltas of the portfolio

at these market levels. We select these possible market levels using the maximin Latin hypercube sampling method (Section 3).
We then use the precalculated partial dollar Deltas to estimate the partial dollar Deltas of the portfolio at an arbitrary market level.

A level-one metamodel is used to estimate the partial dollar Deltas of a VA portfolio at the selected m market levels. They are
obtained using the universal kriging method as described in Section 4.1. Since estimating these partial dollar Deltas using a Monte
Carlo simulation model at a market level can be done only on an individual policy basis and is time consuming, computation would
be prohibitive if the simulation was applied to all possible market levels and to each of the policies in the portfolio.

A level-two metamodel is used to estimate the dollar Deltas of the VA portfolio at an arbitrary market level based on the
precalculated dollar Deltas at the mmarket levels. Since there are no trends in the mmarket levels selected by the Latin hypercube
sampling method, we can use the ordinary kriging method (see Section 4.2) to estimate the partial dollar Deltas of the portfolio at
an arbitrary market level r. From Equation (10) we see that the kriging weights are independent of h. In other word, we can use
the same kriging weights to estimate the partial dollar Deltas of different tradable indices. As a result, the level-two metamodel is
extremely fast and can even be used to estimate partial dollar Deltas in real time.

The major steps of building metamodels for efficiently calculating Greeks of the portfolio are as follows:

1. Use a conditional Latin hypercube sampling method to select a small set S1 = {z1, z2, . . . , zk} of VA policies from the portfolio
X .

2. Use a (unconditional) Latin hypercube sampling method to create a small set S2 = {r1, r2, . . . , rm} of possible market levels.
3. Use a Monte Carlo valuation system to calculate the partial dollar Delta f (zi, r j, h) on the hth tradable index when the market

level is r j, for i = 1, 2, . . . , k, j = 1, 2, . . . ,m, and h = 1, 2, . . . ,H.
4. Build a metamodel M1 to calculate partial dollar Deltas of the portfolio at the select market levels.

a. For each r j and h, j = 1, 2, . . . ,m; h = 1, 2, . . . ,H, use the universal Kriging model to estimate the partial dollar Deltas
f̂ (xi, r j, h) for all the VA policies xi, i = 1, 2, . . . , n.

b. Aggregate the partial dollar Deltas of individual policies to obtain the partial dollar Deltas of the portfolio:

f̂ (X, r j, h) =
n∑
i=1

f̂ (xi, r j, h).
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TABLE 1
Some Parameters Used to Generate Synthetic Variable Annuities

Attribute Values

Guarantee type {DBRP, DBRU, WB, WBSU, MB}
Gender {Male, Female}
Birth date range [Jan. 1 1950, Jan. 1 1980]
Issue date range Jan. 1 2000, Jan. 1 2014]
Valuation date Jan. 1 2014
Maturity range [15, 30]
Account value range [500,00, 500,000]
Maturity {10, 11, 12 , . . . , 25}
Number of investment funds 10

Note: DBRP denotes a GMDB rider with return-of-principal guarantee. DBRU denotes a GMDB rider with an annual roll-up rate of 5%. WB
denotes a GMWB rider with an annual withdrawal rate of 6% and a waiting period of 0 years. WBSU denotes a GMWB rider with an annual
withdrawal rate of 7% and a waiting period of 10 years. MB denotes a GMMB rider with return-of-principal guarantee.

5. Build another metamodel M2 from S2 and the partial dollar Deltas of the portfolio using the ordinary kriging to estimate the
partial dollar Deltas of the VA portfolio at an arbitrary market level.

5. NUMERICAL EXPERIMENTS
In this section, we demonstrate the performance of the two-level metamodeling approach using a portfolio of synthetic variable

annuity policies. Unlike those used in our previous studies (Gan 2013; Gan and Lin 2015), the synthetic variable annuity policies
in this study have multiple investment funds. In addition, the policies in this study have different issue dates.

5.1. A Synthetic Portfolio of Variable Annuities
To test the two-level metamodeling approach, we generate a portfolio of 10,000 synthetic variable annuity policies. Some

features and attributes used to generate these policies are given in Table 1. The five guarantee types described in the table are
generated uniformly. The gender of a policyholder is generated from a population of 40% females and 60%males. For convenience,
all birth dates and issue dates are generated to be the first day of the years. The account values of the 10 investment funds are
generated as follows. First an account value is generated uniformly from the given range. Then a subset of the 10 investment funds
is selected and the total account value is uniformly divided to these selected funds.

The 10 investment funds are mapped to five tradable indices as shown in Table 2. For example, the sixth investment fund is
mapped to 60% U.S. large cap and 40% U.S. small cap. That is, about 60% of the 6th investment fund is invested in U.S. large cap
stocks, and the remainder is invested in U.S. small cap stocks.

TABLE 2
Fund Mappings of the 10 Investment Funds

Fund U.S. Large U.S. Small Intl. Equity Fixed Income Money Market

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
6 0.6 0.4 0 0 0
7 0.5 0 0.5 0 0
8 0.5 0 0 0.5 0
9 0 0.3 0.7 0 0
10 0.2 0.2 0.2 0.2 0.2

Note: Each row is a mapping from a fund to a combination of five indices.
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We implemented the risk-neutral scenario generator, the synthetic VA contract generator, and theMonte Carlo simulation model
in Java as open-source software. Interested readers can download the code from a link in Gan (2015) to conduct the experiments.

5.2. Validation Measures
To validate the level-one metamodel, the level-two metamodel, and the combination, we use the following six measures: the

(square) root mean squared error (RMSE), relative average absolute error (RAAE), R2, relative maximum absolute error (RMAE),
average percentage error (APE), and average absolute percentage error (AAPE). These validation measures are defined as follows:

RMSE(h) =
√√√√1

J

J∑
l=1

(ŷlh − ylh)2, (12a)

RAAE(h) =
∑J

l=1 |ŷlh − ylh|
J × σh

, (12b)

R2
h = 1 −

∑J
l=1(ŷlh − ylh)2∑J
l=1(μh − ylh)2

(12c)

RMAE(h) = max1≤l≤J |ŷlh − ylh|
σh

, (12d)

APE(h) = 1

J

J∑
l=1

ŷlh − ylh
ylh

, (12e)

AAPE(h) = 1

J

J∑
l=1

∣∣∣∣ ŷlh − ylh
ylh

∣∣∣∣ , (12f)

for h = 1, 2, . . . ,H, where μh and σh are the sample mean and sample standard deviation of y1h, y2h, . . . , yJh, respectively.
The first four validation measures are commonly used to validate metamodels (Zhu et al. 2012). Since the partial dollar Deltas

on different tradable indices may be different in magnitude, we calculate the validation measures separately for different tradable
indices.

To validate the level-one metamodel, we set

ŷlh = f̂ (X, rl, h), ylh = f (X, rl, h), J = k,

where f̂ (X, rl, h) is the partial dollar Delta estimated by the level-one metamodel, and f (X, rl, h) is the partial dollar Delta calcu-
lated by the Monte Carlo simulation model. How partial dollar Deltas are calculated is shown in the Appendix.

To validate the level-two metamodel alone, we set

ŷlh = g(sl, h), ylh = f (X, sl, h), J = m,

TABLE 3
Monthly Volatilities and Correlation Coefficients between the Five Tradable Indices

Volatility Correlation

U.S. Large (Index 1) 0.033 1 0.7619 0.5571 0.2369 − 0.0383
U.S. Small (Index 2) 0.0448 0.7619 1 0.4433 0.1303 − 0.0334
Intl. Equity (Index 3) 0.0372 0.5571 0.4433 1 0.1505 − 0.0347
Fixed Income (Index 4) 0.0094 0.2369 0.1303 0.1505 1 0.036
Money Market (Index 5) 0.0011 − 0.0383 − 0.0334 − 0.0347 0.36 1
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where s1, s2, . . . , sm arem possible market levels for testing, g(sl, h) is the partial dollar Delta estimated by the level-twometamodel
with the partial dollar Deltas calculated by the Monte Carlo simulation model, and f (X, sl, h) is the partial dollar Delta calculated
by the Monte Carlo simulation model. In particular, g(sl, h) is defined as

g(sl, h) =
m∑
j=1

w j · f (X, rl, h),

where w1,w2, . . . ,wm are the kriging weights from the level-two metamodel and f (X, rl, h) is the partial dollar Deltas calculated
by the Monte Carlo simulation model. We define the validation measures for the level-two metamodel in this way so that the errors
caused by the level-one metamodel are excluded.

To validate the two-level metamodeling approach with the level-one and level-two metamodels together, we set

ŷlh = ĝ(sl, h), ylh = f (X, sl, h), J = m,

where ĝ(sl, h) is the partial dollar Delta estimated by the level-two metamodel with the partial dollar Deltas estimated by the
level-one metamodel (see Eq. [10]).

FIGURE 2. The Scatter Plots of Partial Dollar Deltas. Note: The x axis (i.e., the horizontal axis) shows the partial dollar Deltas calculated by the Monte Carlo
simulation model. The y axis (i.e., the vertical axis) shows the partial dollar Deltas estimated by the two-level metamodeling approach. The straight lines are the
lines y = x. In this test, k = 220 and m = 50.
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TABLE 4
Accuracy of Two-Level Metamodeling Approach with k = 220 and m = 50

RMSE RAAE R2 RMAE APE AAPE

Index 1 4,698,664 0.5811 0.6316 0.8675 − 0.0419 0.0419
Index 2 2,302,026 0.4021 0.8188 0.7146 − 0.0317 0.0317
Index 3 4,988,233 0.9079 0.1395 1.2809 − 0.0609 0.0609
Index 4 3,746,782 0.7114 0.4688 0.9593 − 0.047 0.047
Index 5 4,496,789 1.2115 − 0.5247 1.6475 0.0717 0.0717

5.3. Results
To test the accuracy and speed of the two-level metamodeling approach, we randomly generate 60 market levels from a multi-

variate normal distribution with zero mean and a covariance matrix obtained from the volatilities and correlations given in Table 3.
Note that these testing market levels are different from the prechosen market levels selected by the Latin hypercube sampling
method. The testing market levels simulate how the market moves in future, while the prechosen market levels are created to fill
the space of possible future market levels for metamodeling purposes.

We want to compare the partial dollar Deltas estimated from the two-level metamodeling approach and those calculated by a
Monte Carlo simulation. In the Monte Carlo simulation model, we used 1000 risk-neutral scenarios and 30 annual time steps for
cash flow projection.

We test the two-level metamodeling approach with different values of k and m. As suggested in Loeppky et al. (2009), the
number of Latin hypercube designs should be 10 times the number of dimensions. After converting categorical variables (e.g.,
gender and guarantee type) to binary dummy variables, a policy has 22 variables, which include 10 investment funds, age, time to
maturity, etc. For the level-two metamodel, a market level has five dimensions because we consider only five indices. In our first
test, we use k = 220 (0.22% of the total number of VA policies) and m = 50; that is, we select 220 policies from the portfolio to
build the level-one metamodel and select 50 possible market levels to build the level-two metamodel. To select the sample policies
and the market levels, we use the clhs function and the lhs function in R (Roudier 2011; Carnell 2012), respectively. The R
code for selecting the sample policies and the market levels is given in the Appendix.

For the first test, the scatter plots of the partial dollar Deltas estimated by the two-level metamodeling approach and those
calculated by the Monte Carlo simulation model are shown in Figure 2. We see that there are biases in the estimated partial dollar
Deltas. The accuracy of the two-level metamodeling approach is shown in Table 4. We see that the average absolute percentage
errors calculated from the 60 test market levels range from 3.17% to 7.17%. We also see that the R2 calculated from the predicted
partial dollar Deltas on the 5th index is negative. The negative R2 is caused by the fact that the sum of squared deviations between
the partial dollar Deltas estimated by the two-level approach and those calculated by the Monte Carlo simulation model is larger
than the variance of the partial dollar Deltas calculated by the Monte Carlo simulation model.

The values of the validation measures shown in Table 4 contains the errors from the level-one metamodel and the level-two
metamodel. Tables 5 and 6 give the values of the validation measures that contain only errors from the level-one metamodel and
the level-two metamodel, respectively. From these tables we see that the level-two metamodel is fairly accurate in that all the R2 are
larger than 99% and the average absolute percentage errors are less than 1%. However, Table 5 shows that the level-one metamodel
has relatively large prediction errors. We can conclude that most of the prediction error of the two-level metamodeling approach
comes from the level-one metamodel.

TABLE 5
Accuracy of Level-One Metamodel with k = 220 and m = 50

RMSE RAAE R2 RMAE APE AAPE

Index 1 4,901,431 0.3274 0.8703 0.6525 − 0.043 0.0431
Index 2 3,085,133 0.2763 0.8884 0.6799 − 0.0335 0.0378
Index 3 5,076,421 0.4822 0.7307 0.9234 − 0.0602 0.061
Index 4 3,814,150 0.3984 0.8175 0.6768 − 0.0466 0.0466
Index 5 4,579,153 0.7101 0.4679 1.0208 0.0729 0.0729
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TABLE 6
Accuracy of Level-Two Metamodel with k = 220 and m = 50

RMSE RAAE R2 RMAE APE AAPE

Index 1 632,799 0.066 0.9933 0.1923 − 0.0012 0.0047
Index 2 428,126 0.0655 0.9937 0.1836 − 0.0011 0.0051
Index 3 364,905 0.0515 0.9954 0.1664 − 0.0015 0.0035
Index 4 390,177 0.06 0.9942 0.1712 − 0.0014 0.004
Index 5 311,483 0.0694 0.9927 0.2025 − 9.00E-04 0.0042

FIGURE 3. Scatter Plots of Partial Dollar Deltas. Note: The x axis (i.e., the horizontal axis) shows the partial dollar Deltas calculated by the Monte Carlo
simulation model. The y axis (i.e., the vertical axis) shows the partial dollar Deltas estimated by the two-level metamodeling approach. The straight lines are the
lines y = x. In this test, k = 440 and m = 50.
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TABLE 7
Accuracy of Two-Level Metamodeling Approach when k = 440 and m = 50

RMSE RAAE R2 RMAE APE AAPE

Index 1 2,781,176 0.3327 0.8709 0.6853 0.0233 0.0233
Index 2 2,124,997 0.3718 0.8456 0.6566 − 0.0293 0.0293
Index 3 1,808,466 0.2776 0.8869 0.7427 − 0.0182 0.0193
Index 4 2,142,709 0.3766 0.8263 0.7322 0.024 0.024
Index 5 803,153 0.1776 0.9514 0.5359 0.004 0.0104

TABLE 8
Accuracy of Level-One Metamodel when k = 440 and m = 50

RMSE RAAE R2 RMAE APE AAPE

Index 1 3,733,350 0.226 0.9247 0.6062 0.0246 0.0283
Index 2 2,530,037 0.2294 0.925 0.5583 − 0.0302 0.0316
Index 3 1,953,643 0.164 0.9601 0.3728 − 0.0195 0.0218
Index 4 2,479,114 0.231 0.9229 0.6286 0.0246 0.0255
Index 5 803,141 0.1044 0.9836 0.3303 0.0036 0.0105

The first test shows that most of the prediction error of the two-level metamodeling approach comes from the level-one meta-
model. To increase the accuracy of the level-one metamodel, we increase the number of policies used to build the level-one meta-
model. In our second test, we use k = 440 (0.44% of the total number of VA policies) and m = 50; that is, we double the number
of policies to build the level-one metamodel. Figure 3 shows the scatter plots of the partial dollar Deltas estimated by the two-level
metamodeling approach and those calculated by the Monte Carlo simulation model. Comparing Figures 2 and 3 we see that the
biases reduced. The accuracy of the two-level metamodeling approach is shown in Table 7. In this case, all R2 are positive and
higher than 80%. Increasing the number of sample policies actually increased the accuracy of the approach. Table 7 also shows
that the average absolute percentage errors are less than 3% on all the indices.

The accuracy of the level-one metamodel and that of the level-two metamodel when considered separately are shown in Tables 8
and 9, respectively. The result shows that most of the error comes from the level-one metamodel.

Table 10 shows the run time used by the two-level metamodeling approach and the Monte Carlo simulation model. We
see that it took the Monte Carlo simulation model about 42,090 seconds or 11.69 hours to calculate all the partial dol-
lar Deltas at the 60 market levels. If we use the Monte Carlo simulation model to calculate the partial dollar Deltas of the
portfolio at a single market level, it will take about 11.69 minutes. This is the run time for calculating the partial dollar
Deltas of a portfolio of 10,000 policies. If a portfolio contains 300,000 policies, then it will take the Monte Carlo simula-
tion model about 350.7 minutes or 5.85 hours to just calculate the partial dollar Deltas of the portfolio at a single market
level.

If we use the two-level metamodeling approach, the run time of calculating the partial dollar Deltas at the 60 test market levels
reduces to 1,465.55 seconds or 24.2 minutes if we use 440 sample policies. In practice, we can build the level-one metamodel and
the level-two metamodel overnight and then use the level-two metamodel to estimate the partial dollar Deltas during the trading

TABLE 9
Accuracy of Level-Two Metamodel when k = 440 and m = 50

RMSE RAAE R2 RMAE APE AAPE

Index 1 632,799 0.066 0.9933 0.1923 − 0.0012 0.0047
Index 2 428,126 0.0655 0.9937 0.1836 − 0.0011 0.0051
Index 3 364,905 0.0515 0.9954 0.1664 − 0.0015 0.0035
Index 4 390,177 0.06 0.9942 0.1712 − 0.0014 0.004
Index 5 311,483 0.0694 0.9927 0.2025 − 9.00E-04 0.0042
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TABLE 10
Runtime of Using Two-Level Metamodeling Approach and Monte Carlo Simulation Model to Calculate all the Partial Dollar

Deltas at the 60 Test Market Levels

k = 220,m = 50 k = 440,m = 50 Full, m = 60

clhs 138.75 169.44 NA
Monte Carlo 639.55 1279.10 42,090.08
Level-one metamodel 8.12 16.66 NA
lhs 0.02 0.02 NA
Level-two metamodel 0.19 0.33 NA
Total 786.63 1465.55 42,090.08

Note: The numbers are in seconds.

TABLE 11
Parameter Values for Generating Jumps under Merton’s Jump-Diffusion Model

Index λ μ′ σ ′

U.S. Large 3 − 0.10 0.30
U.S. Small 3 − 0.20 0.40
Intl. Equity 3 − 0.15 0.35

Note: λ represents the rate of the Poisson process, μ′ is the mean of the jump, and σ ′ is the standard deviation of the jump.

TABLE 12
Accuracy of Two-Level Metamodeling Approach When Market Levels Have Jumps, k = 440, and m = 50

RMSE RAAE R2 RMAE APE AAPE

Index 1 4,495,497 0.3369 0.7842 1.6785 0.0206 0.0291
Index 2 4,356,134 0.3543 0.7023 2.7671 − 0.0333 0.0385
Index 3 2,520,201 0.2683 0.8719 1.1444 − 0.0166 0.0241
Index 4 3,249,667 0.3428 0.7909 1.8893 0.0206 0.03
Index 5 1,949,499 0.2089 0.8437 2.1182 9.00E-04 0.016

TABLE 13
Accuracy of Level-Two Metamodel When Market Levels Have Jumps, k = 440, and m = 50

RMSE RAAE R2 RMAE APE AAPE

Index 1 3,661,974 0.1416 0.8568 1.9013 − 3.50E-03 0.0117
Index 2 3,730,780 0.1682 0.7817 2.6319 − 0.0062 0.0173
Index 3 2,132,426 0.1303 0.9083 1.4386 4.00E-04 0.0117
Index 4 2,932,530 0.1559 0.8297 2.2952 − 4.40E-03 0.0132
Index 5 2,030,721 0.1587 0.8304 2.3169 − 3.80E-03 0.012

hours of the next day. From Table 10 we see that it took the level-two metamodel about 0.33 seconds to estimate the partial dollar
Deltas at the 60 test market levels. The result shows that the level-two metamodel is very fast.

The above numerical experiments show that the two-level metamodeling approach works well when the market levels follow a
multivariate normal distribution. To test the accuracy of the two-level metamodeling approach when market levels have jumps, we
generated 60 market levels by adding jumps to the three equity indices (i.e., U.S. Large Cap Equity, U.S. Small Cap Equity, and
International Equity). We followed Merton’s jump-diffusion model to generate the jumps. Under Merton’s jump diffusion model,
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FIGURE 4. Scatter Plots of Partial Dollar Deltas. Note: The x axis (i.e., the horizontal axis) shows the partial dollar Deltas calculated by the Monte Carlo
simulation model. The y axis (i.e., the vertical axis) shows the partial dollar Deltas estimated by the two-level metamodeling approach. The straight lines are the
lines y = x. In this test, the market levels have jumps, k = 440, and m = 50.

the stock price is modeled as (Merton 1976; Kou and Wang 2004):

ln
St
S0

= μt + σWt +
Nt∑
i=1

Yi, (13)

where {Wt : t ≥ 0} is a standard Brownianmotion, {Nt : t ≥ 0} is a Poisson processwith rate λ, {Yn : n = 1, 2, . . . , } are independent
and normally distributed variables with mean μ′ and standard deviation σ ′, μ is a drift parameter, and σ denotes the volatility of
the stock return. The parameters we used are given in Table 11. The parameter λ = 3 was obtained from (Kou and Wang 2004),
indicating that there are average three jumps per year. In this test, we use the same 440 representative VA contracts and the same
50 prechosen market levels used in the second test.

Table 12 shows the accuracy of the two-level metamodeling approach. Comparing Tables 7 and 12, we see that the accuracy of
the two-level metamodeling approach decreases when the market levels have jumps. R2 decreases and the RMSE increases. Since
we used the same prechosen market levels in this test as those used in the second test, the accuracy of the level-one metamodel
is the same as shown in Table 8. The accuracy of the level-two metamodel is shown Table 13. Comparing Tables 9 and 13, we
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see that the accuracy of the level-two metamodel is affected by the jumps. The RMSE increases significantly. Figure 4 shows the
scatter plots of the partial dollar Deltas calculated by the Monte Carlo simulation model and those estimated by the two-level
metamodeling approach. We see that the partial dollar Deltas estimated by the two-level metamodeling approach do not match
those calculated by the Monte Carlo simulation model at the market levels with jumps.

In summary, the test results show that the two-level metamodeling approach is much faster than the Monte Carlos simula-
tion model and produces acceptable estimates of the partial dollar Deltas used in dynamical hedging. In particular, the proposed
approach performs well in terms of accuracy when the market levels follow multivariate normal distribution. The accuracy of the
proposed approach decreases when the market levels have jumps. However, the results are still acceptable because the absolute
average percentage errors are less than 5%.

6. CONCLUDING REMARKS
Dynamic hedging is one of the most efficient risk management methods to mitigate the financial risk arising from VA. In

dynamic hedging, the dollar Deltas of the liability need to be calculated so that the hedge positions can be adjusted. To rebalance
the hedge portfolio against the liability of a VA portfolio in a timely manner, we need to estimate the dollar Deltas of the VA
portfolio within a short time period.

In this article, we proposed a two-level metamodeling approach to estimate the partial dollar Deltas of a large VA portfolio
under a multiasset framework. The idea behind the two-level metamodeling approach is to precalculate the partial dollar Deltas at
a small set of well-designedmarket levels and then estimate the partial dollar Deltas at a newmarket level based on the precalculated
partial dollar Deltas. In the proposed two-level metamodeling approach, we used universal kriging to estimate the partial dollar
Deltas at the selected market levels and used ordinary kriging to estimate the partial dollar Deltas at new market levels. The sample
policies and market level used to construct the metamodels were selected by a conditional Latin hypercube sampling method and
an unconditional Latin hypercube sampling method, respectively. Note that our approach is different from the least square Monte
Carlo method (Bauer and Ha 2013) in that the latter focuses on one contract.

To test the performance of the two-level metamodeling approach, we used a Monte Carlo simulation model with 1000 risk-
neutral scenarios and 30 annual time steps for cash flow projection. The partial dollar Deltas calculated by the Monte Carlo
simulation model are used as benchmarks to validate the proposed approach. The test results have shown that the proposed two-
level metamodeling approach performs well in terms of accuracy and speed. In our test, we assumed that the interest rate does not
change. However, the two-level metamodeling approach can be extended to handle nonconstant interest rates straightforwardly.

Our experiments have shown that most of the prediction error of the two-level metamodeling approach comes from the level-
one metamodel. In the future, we would like to improve the level-one metamodel by considering the errors of the Monte Carlo
simulation model.

FUNDING
Natural Sciences and Engineering Council of Canada (NSERC): 458146.

REFERENCES
Alam, F. M., K. R. McNaught, and T. J. Ringrose. 2004. A comparison of experimental designs in the development of a neural network simulation metamodel.

Simulation Modelling Practice and Theory 12(7): 559–578.
Ankenman, B., B. L. Nelson, and J. Staum. 2010. Stochastic kriging for simulation metamodeling. Operations Research 58(2): 371–382.
Bacinello, A. R., P. Millossovich, and A. Montealegre. 2014. The valuation of GMWB variable annuities under alternative fund distributions and policyholder

behaviours. Scandinavian Actuarial Journal 2014: 1–20.
Barton, R. 1994. Metamodeling: a state of the art review. InWinter Simulation Conference Proceedings, edited by J. D. Tew, S. Manivannan, D. A. Sadowski, and

A. F. Seila, pp. 237–244. Piscataway, NJ: IEEE.
Bauer, D., and H. Ha. 2013. A least-squares Monte Carlo approach to the calculation of capital requirements. Department of Risk Management and Insurance,

Georgia State University.
Bauer, D., A. Kling, and J. Russ. 2008. A universal pricing framework for guaranteed minimum benefits in variable annuities. ASTIN Bulletin 38(2): 621–651.
Bélanger, A., P. Forsyth, and G. Labahn. 2009. Valuing the guaranteed minimum death benefit clause with partial withdrawals. Applied Matehmatical Finance

16(6): 451–496.
Box, G. E. P., and N. R. Draper. 2007. Response Surfaces, Mixtures, and Ridge Analyses. 2nd ed. Hoboken, NJ: Wiley.
Caballero, W., R. Giraldo, and J. Mateu. 2013. A universal kriging approach for spatial functional data. Stochastic Environmental Research and Risk Assessment

27(7): 1553–1563.
Carnell, R. 2012. lhs: Latin Hypercube Samples. R package version 0.10. Vienna: R Foundation.
Cressie, N. 1993. Statistics for Spatial Data. Rev. ed. Hoboken, NJ: Wiley.
Das, R. N. 2014. Robust Response Surfaces, Regression, and Positive Data Analyses. Boca Raton, FL: CRC Press.
Friedman, L. W. 1996. The Simulation Metamodel. Norwell, MA: Kluwer.
Gan, G. 2011. Data Clustering in C++: An Object-Oriented Approach. Data Mining and Knowledge Discovery Series. Boca Raton, FL: Chapman & Hall/CRC

Press.
Gan, G. 2013. Application of data clustering and machine learning in variable annuity valuation. Insurance: Mathematics and Economics 53(3): 795–801.



EFFICIENT GREEK CALCULATION OF VARIABLE ANNUITY PORTFOLIOS 177

Gan, G. 2015. A multi-asset Monte Carlo simulation model for the valuation of variable annuities. In Proceedings of the Winter Simulation Conference, edited by
L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, pp. 3162–3163. Piscataway, NJ: IEEE.

Gan, G., and X. S. Lin. 2015. Valuation of large variable annuity portfolios under nested simulation: A functional data approach. Insurance: Mathematics and
Economics 62(1): 138–150.

Gerber, H., and E. Shiu. 2003. Pricing lookback options and dynamic guarantees. North American Actuarial Journal 7(1): 48–67.
Huang, H.,M.Milevsky, and T. Salisbury. 2014. Optimal initiation of aGLWB in a variable annuity: No arbitrage approach. Insurance:Mathematics and Economics

56: 102–111.
Isaaks, E., and R. Srivastava. 1990. An Introduction to Applied Geostatistics. Oxford: Oxford University Press.
Kleijnen, J. P. 2009. Kriging metamodeling in simulation: A review. European Journal of Operational Research 192(3): 707–716.
Kleijnen, J. P. C. 1975. A comment on Blanning’s “metamodel for sensitivity analysis: The regression metamodel in simulation.” Interfaces 5(3): 21–23.
Kou, S. G., and H. Wang. 2004. Option pricing under a double exponential jump diffusion model.Management Science 50(9): 1178–1192.
Liefvendahl, M., and R. Stocki. 2006. A study on algorithms for optimization of Latin hypercubes. Journal of Statistical Planning and Inference 136(9): 3231–3247.
Lin, X. S., K. S. Tan, and H. L. Yang. 2009. Pricing annuity guarantees under a regime-switching model. North American Actuarial Journal 13: 316–338.
Loeppky, J. L., J. Sacks, and W. J. Welch. 2009. Choosing the sample size of a computer experiment: A practical guide. Technometrics 51(4): 366–376.
Merton, R. C. 1976. Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3(1): 125–144.
Milevsky, M., and S. Posner. 2001. The titanic option: Valuation of the guaranteed minimum death benefit in variable annuities and mutual funds. Journal of Risk

and Insurance 68(1): 93–128.
Minasny, B., and A. B. McBratney. 2006. A conditioned latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences

32(9): 1378–1388.
Moon, H., A. Dean, and T. Santner. 2011. Algorithms for generating maximin latin hypercube and orthogonal designs. Journal of Statistical Theory and Practice

5(1): 81–98.
Ng, A. C.-Y., and J. S.-H. Li. 2013. Pricing and hedging variable annuity guarantees with multiasset stochastic investment models. North American Actuarial

Journal 17(1): 41–62.
Reynolds, C., and S. Man. 2008. Nested stochastic pricing: The time has come. Product Matters! – Society of Actuaries 71: 16–20.
Roudier, P. 2011. clhs: a R Package for Conditioned Latin Hypercube Sampling. Vienna: R Foundation.
Viana, F. 2013. Things you wanted to know about the Latin hypercube design and were afraid to ask. In 10th World Congress on Structural and Multidisciplinary

Optimization, pp. 1–9. Orlando, FL.
Zhu, H., L. Liu, T. Long, and L. Peng. 2012. A novel algorithm of maximin latin hypercube design using successive local enumeration. Engineering Optimization

44(5): 551–564.

Discussions on this article can be submitted until January 1, 2018. The authors reserve the right to reply to any discussion. Please
see the Instructions for Authors found online at http://www.tandfonline.com/uaaj for submission instructions.

APPENDIX

A.1. Calculation of Partial Dollar Deltas
In Monte Carlo simulation, we calculate the partial dollar Deltas of a variable annuity policy on the hth tradable index as

follows:

Dollar Delta(r, h) = FMV (AV ∗
1 , . . . ,AV ∗

h−1, 1.01AV
∗
h ,AV ∗

h+1, . . . ,AV
∗
H )

0.02

− FMV (AV ∗
1 , . . . ,AV ∗

h−1, 0.99AV
∗
h ,AV ∗

h+1, . . . ,AV
∗
H )

0.02
,

where r = (r1, r2, . . . , rH ) is the market level of the H tradable indices, AV ∗
h = (1 + rh)AVh is the adjusted partial account value

based on the market level, and AVh is the base partial account value calculated from the investment funds based on the fund
mappings. Here we used 1% shock to calculate the dollar Deltas. The Monte Carlo simulation model for calculating the partial
dollar Deltas is implemented in Java as open-source software (Gan 2015).

A.2. R Code for Experimental Designs
The R code used to select sample policies and market levels is given below:

set.seed(1)
S <- clhs(inforce, size=220)
set.seed(1)
X <- maximinLHS(n, k)
for(i in c(1:n)) {
X[i,] <- round(X[i,] * 2 * sigma - sigma, 4)
}

The sample policies are selected by the clhs function from the clhs R package. The market levels are created by the max-
iminLHS function from the lhs R package. We fixed the seed so that we can repeat the same experiment.
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