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a b s t r a c t

This paper proposes a subspace clustering algorithm by introducing attribute weights in the affinity
propagation algorithm. A new step is introduced to the affinity propagation process to iteratively update
the attribute weights based on the current partition of the data. The relative magnitude of the attribute
weights can be used to identify the subspaces in which clusters are embedded. Experiments on both
synthetic data and real data show that the new algorithm outperforms the affinity propagation
algorithm in recovering clusters from data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Data clustering is a fundamental tool for data analysis that aims
to identify some inherent structure present in a set of objects [1,2].
Data clustering is also a key task in data mining and knowledge
discovery, which focus on extracting non-trivial or hidden patterns
from a set of objects [3,4]. In data clustering, we use clustering
algorithms to automatically divide a set of objects or data points is
into groups such that objects in the same group are similar to each
other, while objects from different groups are distinct [5].

The k-means algorithm is a popular clustering algorithm that
was developed about 60 years ago [6,7]. The number of clusters is
a required input for the k-means algorithm. Given a dataset and a
number k of clusters, the k-means algorithm starts by choosing k
data points from the dataset as initial cluster centers and then
repeats updating the cluster memberships and the cluster centers
until some stop criterion is met [8,9]. It is highly possible that
different initial cluster centers lead to different clustering results.
Cluster center initialization may also affect the speed of conver-
gence. As a result, several methods [10–18] have been developed
to initialize cluster centers for the k-means algorithm.

A key challenge to most conventional clustering algorithms,
including the k-means algorithm, is that they are not efficient to
deal with high-dimensional data because clusters are embedded
in subspaces of the high-dimensional data space and different

clusters are associated with different subsets of the attributes. To
address this problem, subspace clustering algorithms have been
developed to identify clusters embedded in subspaces of the
original data space. Examples of subspace clustering algorithms
include [19–33], to just name a few. In particular, Favaro et al. [26]
treated subspace clustering as a rank minimization problem and
proposed an efficient way to solve the problem. Soltanolkotabi
et al. [31] proposed a subspace clustering algorithm based Sparse
Subspace Clustering [29] to cluster noisy data.

Soft or fuzzy subspace clustering algorithms are a type of
subspace clustering algorithms that use weights to determine
the importance of an attribute to a particular cluster. For example,
the clustering algorithms proposed in [21–23,34,25,35] are soft
subspace clustering algorithms. The subspace clustering algo-
rithms proposed in [21,22] are similar to the k-means algorithm
except that weights are used in the distance calculations. As a
result, those subspace clustering algorithms also suffer from the
cluster center initialization problem mentioned above.

In this paper, we develop a subspace clustering algorithm based
on affinity propagation [36] to address the cluster center initiali-
zation problem. We call the new algorithm SAP (Subspace Affinity
Propagation). The idea behind the SAP algorithm is to combine the
power of attribute weighting and the affinity propagation method.
Similar to the affinity propagation method, the SAP algorithm
simultaneously considers all data points as initial cluster centers
and thus does not have the cluster center initialization problem.

The remaining of this paper is organized as follows. Section 2 gives
a brief review of the affinity propagation algorithm. Section 3
introduces the SAP algorithm. Section 4 presents numerical results
based on synthetic data and real data to demonstrate the performance
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of the SAP algorithm. Section 5 concludes the paper and points out
some areas for future research.

2. Affinity propagation

Affinity propagation is an efficient clustering method devel-
oped by Frey and Dueck [36]. This method starts with the
similarity measures between pairs of data points and keeps
passing real-valued messages between data points until a high-
quality set of representative points (i.e., exemplars) and corre-
sponding clusters are found. Unlike the k-means algorithm [8],
which chooses an initial subset of data points as cluster centers,
the affinity propagation method considers simultaneously all data
points as cluster centers and thus is independent of the quality of
the initial set of cluster centers.

In affinity propagation, two types of messages are exchanged
between data points: responsibility and availability. The responsi-
bility rði; kÞ is sent from data point i to candidate exemplar point k
and reflects how well-suited it would be for point k to be the
exemplar of point i. Here an exemplar [36,37] means a cluster center.
The availability aði; kÞ is sent from data point candidate exemplar
point k to data point i and reflects how appropriate it would be for
data point i to choose candidate exemplar k as its exemplar.

Mathematically, the responsibility rði; kÞ and the availability
aði; kÞ are updated as follows [36]:

rnewði; kÞ ¼ λroldði; kÞþð1�λÞ sði; kÞ�max
j;jak

faði; jÞþsði; jÞg
� �

; ð1Þ

anewði; kÞ ¼ λaoldði; kÞ

þð1�λÞ min 0; rðk; kÞþ ∑
j;j=2fi;kg

maxf0; rðj; kÞg
( ) !

; iak;

ð2Þ

anewðk; kÞ ¼ λaoldðk; kÞþð1�λÞ ∑
j;jak

maxf0; rðj; kÞg
 !

; ð3Þ

where λ is the damping factor between 0 and 1, and sði; jÞ is the
similarity between points i and j for ia j. For example, sði; jÞ can be
the negative squared Euclidean distance between points i and j, i.e.,

sði; jÞ ¼ � ∑
d

l ¼ 1
ðxil�xjlÞ2;

where xil and xjl are the lth attribute of point xi and point xj,
respectively. Note that sðk; kÞ is an input value called “preference.”
The larger the value of sðk; kÞ, the more likely the point k is to be
chosen as an exemplar.

The responsibilities and the availabilities are updated repeat-
edly until some stop criterion is met. For example, the iterative
process can be terminated after a fixed number of iterations. At
any step of the iterative process, responsibilities and availabilities
can be combined to identify clusters and their members. For data
point i, let k be the value that maximizes aði; kÞþrði; kÞ, i.e.,
k¼ arg max

j
faði; jÞþrði; jÞg:

If k¼ i, then point i is an exemplar or cluster center. If ka i, then
point k is an exemplar for point i.

Algorithm 1. The basic affinity propagation algorithm.

Require: Similarity matrix, preference, λ, conviter, maxiter
numiter’1
changes’0
while true do
Calculate responsibilities according to Eq. (1)

Calculate availabilities according to Eqs. (2) and (3)
if Exemplars changed then
changes’0

else
changes’changesþ1

end if
if numiter4 ¼maxiter or changes4 ¼ conviter then
break

end if
numiter’numiterþ1

end while
Find the exemplars and form clusters by assigning every data
point to its nearest exemplar

Algorithm 1 shows the pseudo-code of the affinity propagation
algorithm. The affinity propagation algorithm requires several inputs:
a similarity matrix, the preference value, λ, conviter, and maxiter. The
preference value controls the number of clusters. Usually a higher
preference value leads to more number of exemplars. The parameter
λ is the damping factor that controls the robustness of the iterative
process. A default value for λ is 0.9 as suggested by [36]. The
parameters conviter and maxiter control when the iterative process
will be terminated. In particular, the iterative process terminates if
the exemplars do not change for conviter consecutive iterations. The
iterative process also terminates if the number of iterations reaches
maxiter. The default values for conviter and maxiter are 10 and 1000,
respectively.

Since the publication of the affinity propagation algorithm in
2007, many improvements to the algorithm have been proposed.
For example, Yu et al. [38] introduced a space vector model to
calculate similarities.

3. Subspace affinity propagation

Antony [39] utilized affinity propagation to improve the Den-
sity Conscious Subspace clustering algorithm (DENCOS) [40]. In
the approach proposed in [39], affinity propagation is used to
detect the local densities for a dataset in order to select a small
number of final representative exemplars, which will be parti-
tioned by the DENCOS algorithm.

In this paper, we use affinity propagation to find subspace
clusters in a different way by utilizing variable weights [21] or
fuzzy subspace clustering [22,34]. The SAP (Subspace Affinity
Propagation) algorithm is similar to the original affinity propaga-
tion algorithm except that we add a component to determine the
importance of each dimension or attribute to the exemplar.

Suppose that the underlying dataset consists of n data points:
x1; x2;…; xn, each of which is described by d numerical attributes.
For each point i, we introduce a vector of weights, wi ¼ ðwi1;wi2;

…;widÞT , such that

∑
d

l ¼ 1
wil ¼ 1 ð4Þ

and

wilZ0; l¼ 1;2;…; d:

For iak, the similarity between points i and k with the attribute
weights is calculated as

sði; kÞ ¼ � ∑
d

l ¼ 1
wα

klðxil�xklÞ2; ð5Þ

where α41 is a constant, and xil and xkl are the lth component of
points xi and xk, respectively. Note that the similarity is not
symmetric because we use the weights associated with point k
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to calculate the similarity between points i and k. The reason for
calculating similarity in this way is that the responsibility rði; kÞ
(see Eq. (1)) that reflects how well-suited for point k to serve as an
exemplar for point i is dependent on sði; kÞ.

At the beginning of the SAP algorithm, we initialize all the
weights to be equal, i.e., wil ¼ 1=d for i¼ 1;2;…;n and l¼ 1;2;…; d.
Once responsibilities and availabilities are updated according to
Eqs. (1), (2), and (3), we will find all the exemplar points and
update the weights of every exemplar point and then update the
attribute weights as follows:

wkl ¼
1

∑d
h ¼ 1

Vklþϵ
Vkhþϵ

� �1=ðα�1Þ; k¼ 1;2;…;n; l¼ 1;2;…; d; ð6Þ

where α41 is a constant and ϵ is a small positive constant used to
prevent dividing by zero. The derivation of Eq. (6) can be found in
the appendix of this paper.

As we can see from the above description of the SAP algorithm,
the only difference between the SAP algorithm and the original
affinity propagation method is the attribute weight update. During
the iterative process, we update the attribute weights for all
exemplars identified at that time and recalculate the similarities
between every exemplar and other points. We do not need to
recalculate the similarities between non-exemplars and other
points because the weights of non-exemplars are not updated.
We can use the similarities between non-exemplars and other
points calculated before. This can save the computation time
significantly if there are only a few exemplars.

To save the computation time further and make the iterative
process more stable, we can update the attribute weights and the
similarities between exemplars and other points less frequently.
That is, we do not need to update the attribute weights and
recalculate the similarities at every iterative step. We can do so
every freq iterative steps.

Algorithm 2. The SAP algorithm.

Require: Dataset, preference, λ, conviter, maxiter, freq, α, ϵ
numiter’1
changes’0
Calculate the similarity matrix based on equal weights
while true do
Calculate responsibilities according to Eq. (1)
Calculate availabilities according to Eqs. (2) and (3)

if numiter mod freq¼ 0 then
Update attribute weights according to Eq. (6)
Update the similarities between every exemplar and other

data points
end if
if Exemplars changed then
changes’0

else
changes’changesþ1

end if
if numiter4 ¼maxiter or changes4 ¼ conviter then
break

end if
numiter’numiterþ1

end while
Find the exemplars and their corresponding attribute weights
Form clusters by assigning every data point to its nearest

exemplar

The pseudo-code of the SAP algorithm is shown in Algorithm 2.
The SAP algorithm requires several parameters. Since the SAP

algorithm will calculate the similarities with attribute weights, we
need to input a dataset to the algorithm. The preference parameter
and the damping factor are inherited from the original affinity
propagation method. These two parameters control the number of
clusters and the stability of the iterative process, respectively. The
parameters conviter and maxiter tell when to terminate the
iterative process. The parameter freq controls the frequency of
weight and similarity update. The other two parameters α and ϵ
are used in distance calculation. The default values for these
parameters are given in Table 1.

As we can see from Eqs. (5) and (6), the parameter α affects the
similarity and the attribute weight. If we choose a larger α, the
similarity will be smaller and the attribute weights will be more
homogeneous. Suppose that the number of attribute is 10, for
example. Changing α from 2 to 3 will change the similarities to
one 10th of their values. As a result, α will impact the choice of a
preference value.

There is a tradeoff to choose a value for the attribute weight
update frequency. Since it takes several iterations for the affinity
propagation process to produce stable partitions, updating the
attribute weight too frequently makes the iterative process unstable.
Also updating the attribute weight too frequently increases the run-
time. On the other hand, updating the attribute weight infrequently
will not capture the subspace information. In practice, we found that
updating the attribute weight every 10 iterations works well. Note
that when we set freq to a number that is larger than maxiter, the
attribute weight will not get updated during the iterative process. In
such cases, the SAP algorithm becomes the ordinary affinity propaga-
tion algorithm we introduced before.

Choosing a preference value for the SAP algorithm is similar to
choosing a preference value for the original affinity propagation
algorithm. That is, we use the median of the similarities as a
starting point. However, we need to consider the subspace
dimensions when calculating the median of the similarities. At
the beginning of the SAP algorithm, all the weights are set to 1/d
and the similarity between two points is calculated as

sði; kÞ ¼ � 1
dα

∑
d

l ¼ 1
ðxil�xklÞ2:

Suppose that the average subspace dimensions of the clusters is d0.
Then d0 weights will be significantly larger than the remaining
d�d0 weights, which are close to zero. The similarity between two
points will approximately be

sði; kÞ ¼ � 1
ðd0Þα ∑

d0

j ¼ 1
ðxilj �xklj Þ2:

Since we do not know the d0 subspace dimensions at the begin-
ning, we can use the average of the full distance to estimate the
similarity between two points as

sði; kÞ ¼ � 1
ðd0Þα

d0

d
∑
d

l ¼ 1
ðxil�xklÞ2: ð7Þ

For the SAP algorithm, we can choose the median of the nðn�1Þ=2
distinct similarities calculated by Eq. (7) as a starting point.

Table 1
Default values for some parameters required by the SAP algorithm.

Parameter Default value Parameter Default value

conviter 10 α 2
maxiter 1000 ϵ 10�6

freq 10

G. Gan, M.K.-P. Ng / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3

Please cite this article as: G. Gan, M.K.-P. Ng, Subspace clustering using affinity propagation, Pattern Recognition (2014), http://dx.doi.
org/10.1016/j.patcog.2014.11.003i

http://dx.doi.org/10.1016/j.patcog.2014.11.003
http://dx.doi.org/10.1016/j.patcog.2014.11.003
http://dx.doi.org/10.1016/j.patcog.2014.11.003
http://dx.doi.org/10.1016/j.patcog.2014.11.003


4. Experiments

In this section, we present experimental results to demonstrate
the performance of the SAP algorithm in terms of discovering
subspace clusters and identifying the significant attributes asso-
ciated with them. We use both synthetic data and real data in
these experiments.

4.1. Evaluation method

Since the labels of the synthetic data and the real data are
known, we use the corrected Rand index [41] to evaluate the
performance of the clustering algorithms. The corrected Rand
index takes values between �1 and 1. A corrected Rand index of
1 indicates a perfect agreement between the known partition and
the found partition; while a negative corrected Rand index
indicates agreement by chance.

To define the corrected Rand index, we let U ¼ fU1;U2;…;Uk1 g
be the known partition and let V ¼ fV1;V2;…;Vk2 g be the partition
found by a clustering algorithm. Then the corrected Rand index is
calculated as

R¼

n

2

� �
∑k1

i ¼ 1∑
k2
j ¼ 1

nij

2

� �
�∑k1

i ¼ 1

ni�
2

� �
∑
k2

j ¼ 1

n�j
2

� �

1
2

n

2

� �
∑k1

i ¼ 1

ni�
2

� �
þ∑k2

j ¼ 1

n�j
2

� �� �
� ∑

k1

i ¼ 1

ni�
2

� �
∑k2

j ¼ 1

n�j
2

� �;

ð8Þ
where nij ¼ jUi \ Vjj, ni� ¼ jUij, n�j ¼ jVjj, and n is the total number
of data points.

4.2. Experiments on synthetic data

Our purpose of developing the SAP algorithm is twofold: first,
we want to apply the affinity propagation method to high-

Fig. 1. A 3-dimensional data set and its partitions. (a) The 3-dimensional dataset. (b) Partition obtained by SAP with preference �500, freq¼10. (c) Partition obtained by SAP
with preference �500, freq¼1001. (d) Partition obtained by SAP with preference �8000, freq¼1001.
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dimensional data; second, we want to address the problem of
cluster center initialization suffered by some subspace clustering
algorithms such as the FSC algorithm [34]. In this subsection, we
shall use synthetic data to show that the SAP algorithm can
perform as expected.

4.2.1. Synthetic data generation
We follow the method introduced in [42] to generate synthetic

data with subspace clusters. Here we give a brief description of the
data generation method we used to create our synthetic data.

Let d be the intended dimension and k be the intended number
clusters. Let ni be the intended size of cluster i for i¼ 1;2;…; k. Let
SiAf1;2;…; kg be the subset of attributes associated with cluster i
for i¼ 1;2;…; k. The data generation algorithm consists of two
steps. First, the algorithm generates k anchor points or cluster
centers. To simplify the data generation process, we generate the
cluster centers such that all the coordinates of a center have the
same value. In other words, we generate the cluster centers zi as
follows:

zij ¼
90i
k
; i¼ 1;2;…; k; j¼ 1;2;…; d:

Second, the algorithm generates the required data points for all
clusters. For a given i¼ 1;2;…; k, the algorithm generate a data
point x for cluster i as follows. If jASi, then the jth attribute value
is generated from a normal distribution with standard deviation of
rU½1; s�, where U½1; s� denotes a uniform random number gener-
ated from ½1; s�. Here s and r are fixed separate parameters. If j=2Si,
the jth attribute value is generated as U½0;100�. Mathematically,
the jth attribute value is generated as

xj ¼
zijþNð0; ðrU½1; s�Þ2Þ if jASi
U½0;100� if j=2Si;

(

where Nð0; ðrU½1; s�Þ2Þ denotes a random number generated from a
normal distribution with mean 0 and standard deviation rU½1; s�.
We used r¼ s¼ 2 to generate our synthetic datasets.

4.2.2. Results
We used the method described above to generate two datasets.

The first dataset contains 300 points, each of which is described by
3 attributes. The dataset is shown in Fig. 1(a), from which we see
that this dataset have 3 subspace clusters. Each cluster is emb-
edded in a 2-dimensional plane.

Fig. 2 shows the number of clusters obtained by applying the
SAP algorithm to this dataset with different preference values. If
we set the preference value to 10 percentile of the similarities
calculated from Eq. (7) with d0 ¼ 2, we obtained 9 clusters. In other
cases, the SAP algorithm produced 3 clusters. In general, a higher
preference value leads to more number of clusters.

We apply the SAP algorithm to the 3-dimensional dataset with
different preference and weight update frequency. The results are
shown in Fig. 1. In particular, Fig. 1(b) shows the 3 clusters found
by the SAP algorithm with a preference value of �500 and a
frequency value of 10. If we set the frequency of updating weights
and similarities to 1001, which is larger than the maximum
number of iterations, then the SAP algorithm becomes the ordin-
ary affinity propagation algorithm. Fig. 1(c) and (d) shows that the
ordinary affinity propagation algorithm is not able to recover
correctly the clusters embedded in subspaces.

Table 2 shows the number of iterations, the run-time, and the
accuracy of the SAP algorithm under various settings. From the
table we see that the SAP algorithm converges in less number of
iterations when attribute weights and similarities are updated
during the iterative process.

Table 3 shows the attribute weights of the 3 clusters found by
the SAP algorithm when the preference and frequency were set to
�500 and 10, respectively. The relative magnitude of weights in
the table tells us the subspace information of each cluster. For
example, the weight of the first attribute for Cluster 3 is 0.0041,
which is much smaller than the other two attribute weights. This
information tells us that Cluster 3 is embedded in the subspace
formed by the second and third attributes.

We also applied the FSC algorithm [34] to cluster this
3-dimensional dataset into 3 clusters 1000 times with random
cluster center initialization. Fig. 3 shows the corrected Rand
indices of the 1000 runs of the FSC algorithm. From the figure
we see that the FSC algorithm failed to recover the 3 clusters in
two out of the 1000 runs.

The second synthetic dataset contains 2000 100-dimensional
points, which are belong to four subspace clusters. Table 4 shows
sizes of the clusters and the subspace dimensions associated with
these clusters. The clusters are associated with subspaces of
different dimensions.

Table 2
Speed and accuracy of the SAP algorithm applied to the 3-dimensional dataset with
different preference and weight update frequency.

Preference freq Number of iterations Run-time (s) Corrected Rand index

�500 10 46 1.514 1
�500 1001 46 1.494 0.4022
�8000 1001 77 2.126 0.4144

Table 3
Attribute weights associated with 3 clusters of the 3-dimensional dataset.

Cluster v1 weight v2 weight v3 weight

Cluster 1 0.4206 0.0019 0.5775
Cluster 2 0.3774 0.6199 0.0027
Cluster 3 0.0041 0.7260 0.2699

Fig. 2. The number of clusters obtained by applying the SAP algorithm to the
3-dimensional dataset with 10, 20, …, 100 percentiles of the similarities calculated
from Eq. (7) with d0 ¼ 2. The point pointed by the arrow is the number of clusters
with the preference value set to the median.
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Fig. 4 shows the number of clusters obtained by applying the
SAP algorithm to the 100-dimensional dataset with different
preference values. If we set the preference value to 10 percentile
of the similarities calculated from Eq. (7) with d0 ¼ 5, we obtained
7 clusters. In other cases, the SAP algorithm produced 3 or
6 clusters. Unlike the similarities of the 3-dimensional dataset,

the similarities of the 100-dimensional dataset are uniform and
have a smaller range.

We applied the SAP algorithm to cluster the 100-dimensional
data with a preference of �500 and a weight update frequency of
10. The confusion matrix of this test case is shown in Table 5. From
the table we see that only one point was clustered incorrectly.

Fig. 5 shows the attribute weights associated with the four
clusters identified by the SAP algorithm with a preference value of
�500 and a freq of 10. The relative magnitudes of the attribute
weights show the subspace dimensions associated with these
clusters.

To test the original affinity propagation method on this
100-dimensional dataset, we applied the SAP algorithm with a
weight update frequency of 1001, which is larger than the
maximum number of iterations. Table 6(a) and (b) shows the
confusion matrices of the clusters identified by the SAP algorithm
without attribute weight update. From the confusion matrices we
see that the data points are almost uniformly distributed in the
clusters.

Table 7 shows the number of iterations, the number of itera-
tions, and the accuracy of the SAP algorithm under several settings
of preference and weight update frequency. With attribute weight
update every 10 iterations, the SAP algorithm terminated in 92
iterations and finished in about 5.5 min. Without attribute weight
update, the SAP algorithm becomes the ordinary affinity propaga-
tion algorithm. The run-times show that the SAP algorithm with
weight update is not faster than the ordinary affinity propagation
algorithm because the attribute weight update is slow for data in
high dimensional spaces.

To test the impact of cluster center initialization on the FSC
algorithm, we applied the FSC algorithm to cluster the
100-dimensional dataset 100 times with random cluster center
initialization. Fig. 6 shows the corrected Rand indices of the 100
runs. From the figure we see that in 12 out of the 100 runs, the
partition produced by the FSC algorithm is not close to the true
partition.

4.3. Experiments on real data

To test the SAP algorithm on real data, we obtain two gene
expression datasets from [41]1: the gene expression data from
human liver cancers and the gene expression data from breast
tumors and colon tumors. Both datasets have known labels.
Table 8 shows the information of the two real datasets. Since
different attributes of the real datasets have different ranges we
use the z-score method to normalize all the attributes to prevent
an individual attribute from dominating the distance.

We applied the SAP algorithm to the two real datasets with
different preferences and attribute weight update frequency. Given
a weight update frequency, we tuned the preference value so that
the SAP algorithm produces two clusters. Since the maximum
number of iterations is 1000, a weight update frequency of 1001

Fig. 4. The number of clusters obtained by applying the SAP algorithm to the
100-dimensional dataset with 10, 20, …, 100 percentiles of the similarities
calculated from Eq. (7) with d0 ¼ 5. The point pointed by the arrow is the number
of clusters with the preference value set to the median.

Table 4
A 100-dimensional dataset with 4 subspace clusters.

Cluster Number of points Subspace dimensions

A 500 10,15,70
B 300 20,30,80,85
C 500 30,40,70,90,95
D 700 40,45,50,55,60,80

Table 5
The confusion matrix produced by applying the SAP algorithm to the 100-dimensional
dataset with preference �500 and freq10.

A B C D

1 0 0 500 0
2 0 300 0 0
3 500 0 0 1
4 0 0 0 699

Fig. 3. The corrected Rand indices produced by running the FSC algorithm 1000
times on the 3-dimensional dataset.

1 The two datasets are available at http://bioinformatics.rutgers.edu/Static/
Supplements/CompCancer/datasets.html.

G. Gan, M.K.-P. Ng / Pattern Recognition ∎ (∎∎∎∎) ∎∎∎–∎∎∎6

Please cite this article as: G. Gan, M.K.-P. Ng, Subspace clustering using affinity propagation, Pattern Recognition (2014), http://dx.doi.
org/10.1016/j.patcog.2014.11.003i

http://www.bioinformatics.rutgers.edu/Static/Supplements/CompCancer/datasets.htm
http://www.bioinformatics.rutgers.edu/Static/Supplements/CompCancer/datasets.htm
http://dx.doi.org/10.1016/j.patcog.2014.11.003
http://dx.doi.org/10.1016/j.patcog.2014.11.003
http://dx.doi.org/10.1016/j.patcog.2014.11.003
http://dx.doi.org/10.1016/j.patcog.2014.11.003


means that there are no attribute weight updates during the
iterative process. Table 9 shows the accuracy of the SAP algorithm
under four runs. Since the SAP algorithm without attribute weight
update becomes the ordinary affinity propagation algorithm, the
corrected Rand indices in Table 9 show that the SAP algorithm
with weight update produces more accurate results.

Table 10 shows the confusion matrices corresponding to the
four runs in Table 9. Table 10(a) and (b) shows the confusion
matrices produced by the SAP algorithm on the human liver
cancer dataset with attribute weight update and without attribute
weight update, respectively. From the two tables we can see that
the ordinary affinity propagation algorithm produces one large
cluster and one small cluster. The SAP algorithm with attribute

weight update produces two clusters that are similar to the known
clusters. For the human liver cancer dataset, the first six significant
attributes or genes associated with the first cluster are 3548, 7826,
18395, 6284, 4055, and 21 404; whereas the first six significant

Table 8
Two real gene expression datasets, each of which has two known clusters.

Dataset Samples Attributes Cluster sizes

Human liver cancer 179 85 104,76
Breast and colon tumor 104 182 62,42

Fig. 6. The corrected Rand indices produced by running the FSC algorithm 100
times on the 100-dimensional dataset.

Table 7
Speed of the SAP algorithm applied to the 100-dimensional dataset with different
preference and weight update frequency.

Preference freq Number of iterations Run-time (s) Corrected Rand index

�500 10 92 332.666 0.99848
�500 1001 83 262.947 0.0133
�400 1001 121 344.854 0.0459

Table 6
The confusion matrix produced by applying the SAP algorithm to the 100-dimensional
dataset when freq was set to 1001.

Fig. 5. Attribute weights of the clusters produced by the SAP algorithm on the 100-dimensional dataset.
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genes associated with the second cluster are 10646, 16 745, 5613,
16 685, 18 961, and 21 999.

Table 10(c) and (d) also shows that the SAP algorithm with
attribute weight update produces more accurate results than the
ordinary affinity propagation algorithm. For the breast and colon
tumor dataset, the first cluster is associated with nine important
genes: 205043_at, 205506_at, 206000_at, 206286_s_at,
206312_at, 206418_at, 206430_at, 207814_at, and 214142_at. The
second cluster has five significant genes: 206799_at, 209351_at,
206378_at, 209602_s_at, and 205509_at.

For comparison, we also applied the LRR (Low Rank Representa-
tion) based method [43] and the GCEPD (Graph based Clustering
technique with Embedded Pattern Detection) [44] to the two real
datasets. Table 11 shows the results produced by the LRR based
method with two clusters and different noise levels. From the table
we see that the LRR based method tends to cluster all genes into one
cluster with a high noise level and cluster genes evenly with a low
noise level. Table 12 shows the results produced by the GCEPD
algorithm with a matching factor of 0.5. Since the GCEPD algorithm
does not take the number of clusters as input, it produced 23
clusters for the human liver dataset and 14 clusters for the breast
and colon tumor dataset, respectively. The results show that the
GCEPD algorithm tends to produce many small clusters.

5. Concluding remarks

In this paper, we proposed a subspace clustering algorithm,
called the SAP algorithm, based on affinity propagation developed
by [36]. Unlike the k-means algorithm, the affinity propagation
algorithm uses exemplars, which are data points from the under-
lying dataset, to represent cluster centers. By introducing attribute
weights in the distance calculation, we extended the original
affinity propagation algorithm for identifying clusters embedded
in subspaces of the data space. The relative magnitude of the
attribute weights can be used to identify dimensions of the
subspace clusters.

The experiments on both synthetic data and real data have
shown that the SAP algorithm outperformed the original affinity

propagation algorithm in recovering clusters from data. The
experiments on synthetic data have shown that the SAP algorithm
is effective in recovering clusters embedded in subspaces and
identifying the important attributes. The experiments on real gene
expression data have shown that the SAP algorithm produces
more accurate clustering results than the original affinity propaga-
tion algorithm.

One drawback of the SAP algorithm is that the similarity matrix
of the dataset has to be recalculated during the iterative process
because the changes of attribute weights affect the similarities
between data points. In the original affinity propagation algo-
rithm, the similarity matrix or part of it needs to be calculated
once. In future, we would like to investigate ways to improve the
SAP algorithm to handle large datasets.

Conflict of interest

None.

Table 12
The confusion matrices produced by applying the GCEPD algorithm to the real
datasets. (a) Human liver cancer with a matching factor 0.5. (b) Breast and colon
tumor with a matching factor of 0.5.

Table 11
The confusion matrices produced by applying the LRR based algorithm to the real
datasets. (a), (b), (c) Human liver cancer with noise parameter λ¼0.01, 0.05, and 0.1,
respectively. (d), (e), (f) Breast and Colon tumor with noise parameter λ¼0.01, 0.05,
and 0.1, respectively.

Table 10
The confusion matrices produced by applying the SAP algorithm to the real
datasets. (a) Human liver cancer with preference �0.5 and freq10. (b) Human liver
cancer with preference �0.3 and freq001. (c) Breast and colon tumor with
preference �0.05 and freq10. (d) Breast and colon tumor with preference �0.11
and freq1001. The symbols “HCC” and “Liver” denote the known class labels of the
human liver cancer dataset. The symbols “B” and “C” denote the known class labels
of the breast and colon tumor dataset.

Table 9
Accuracy of the SAP algorithm applied to the real datasets with different preference
and weight update frequency. Other parameters not shown in the table use default
values from Table 1.

Dataset Preference freq Corrected Rand index

Human liver cancer �0.5 10 0.5664
Human liver cancer �0.3 1001 �0.0043
Breast and colon tumor �0.05 10 0.8151
Breast and colon tumor �0.11 1001 0.0296
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Appendix A. Attribute weight determination

To update the weight for an exemplar point k, we minimize

∑
yACk

∑
d

l ¼ 1
wα

klðyl�xklÞ2þϵ ∑
d

l ¼ 1
wα

kl ðA:1Þ

subject to the constraint given in Eq. (4), where Ck is the set of
points that choose point k as their exemplar, α41 is a constant,
and ϵ40 is a small constant. This optimization problem is a
typical quadratic programming problem and has an analytic
solution. To get the weights, we consider

∑
yACk

∑
d

l ¼ 1
wα

klðyl�xklÞ2þϵ ∑
d

l ¼ 1
wα

kl�β ∑
d

l ¼ 1
wil�1

 !

and take derivatives of this equation with respect to wk1, wk2, …,
wkd, and β, where β is the Lagrange multiplier. Equating those
derivatives to zero leads to a linear equation system with dþ1
unknowns:

αwα�1
kl ðVklþϵÞ ¼ β; l¼ 1;2;…; d;

∑
d

l ¼ 1
wil ¼ 1;

where

Vkl ¼ ∑
xACk

ðxl�xklÞ2: ðA:2Þ

Solving the above linear equation system gives

wkl ¼
1

∑d
h ¼ 1

Vklþϵ
Vkhþϵ

� �1=ðα�1Þ; k¼ 1;2;…;n; l¼ 1;2;…; d; ðA:3Þ

where Vkl is defined in Eq. (A.2). The small positive ϵ can prevent
dividing by zero in the weight calculation when all points in Ck
have the same value in the lth attribute.
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