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ABSTRACT

A variable annuity (VA) is equity-linked annuity product that has rapidly grown in popularity around the
world in recent years. Research up to date on VA largely focuses on the valuation of guarantees embedded
in a single VA contract. However, methods developed for individual VA contracts based on option pricing
theory cannot be extended to large VA portfolios. Insurance companies currently use nested simulation
to valuate guarantees for VA portfolios but efficient valuation under nested simulation for a large VA
portfolio has been a real challenge. The computation in nested simulation is highly intensive and often
prohibitive. In this paper, we propose a novel approach that combines a clustering technique with a
functional data analysis technique to address the issue. We create a highly non-homogeneous synthetic
VA portfolio of 100,000 contracts and use it to estimate the dollar Delta of the portfolio at each time step
of outer loop scenarios under the nested simulation framework over a period of 25 years. Our test results
show that the proposed approach performs well in terms of accuracy and efficiency.

Stochastic-on-stochastic
Clustering
Functional data analysis
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1. Introduction

A variable annuity (VA) is a deferred annuity that allows an
annuitant to invest his/her contributions into one mutual fund
or a basket of mutual funds. A separate account termed as sub-
account is set up for the investment. Unlike mutual funds, a
VA provides a downside protection from the fluctuation of the
financial markets in the form of minimum guarantee. When
an annuitant enters a VA contract with an insurance company,
the annuitant agrees to make one lump-sum or a series of
purchase payments to the insurance company (Chi and Lin, 2012).
The insurance company in return offers a guaranteed minimum
death benefit (GMDB) and often offers the guaranteed minimum
maturity benefit (GMAB) or the guaranteed minimum income
benefit (GMIB) as a rider. GMDB guarantees that the beneficiary
of a VA holder receives the greater of (a) the sub-account value
or (b) the total purchase payments, upon the death of the
VA holder. GMAB and GMIB provide accumulation and income
protection for a fixed number of years contingent on survival of the
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policyholder, respectively. Recently many insurance companies
offer the guaranteed minimum withdrawal benefit (GMWB) that
allows an annuitant to withdraw a maximum percentage of
his/her total purchase payments each year until the total purchase
payments have been recouped.

Due to the innovative guarantee features, VAs have rapidly
grown in popularity around the world in recent years. In the
US, 2012 new sales were 147 billion (IRI, 2013). In the UK, the
sales increased from 539 million pounds in 2007 to 1.42 billion
pounds in 2012. Canada, Japan, and South Korea also experienced
a similar rapid growth in VA sales. As a result, almost all the
major insurance companies in these countries are managing very
large VA portfolios, each of which might have well over 100,000
VA contracts. Furthermore, a typical VA portfolio is highly non-
homogeneous in that every VA contract is unique in terms of
gender, age, time to maturity, guarantee type, and fund type. How
to hedge and manage the risks of a large VA portfolio and how
to determine required capitals are a real challenge to insurance
companies (Bauer et al., 2012).

Research up to date on valuation, hedging, and risk manage-
ment of VA guarantees largely focuses on individual VA contracts.
Milevsky and Posner (2001) used risk-neutral option pricing theory
to price GMDB in a VA contract. Gerber and Shiu (2003) used the
idea of European lookback options to derive closed-form formu-
las to price complex guarantees embedded in some equity-linked
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annuities. Coleman et al. (2006) used local risk minimization to
study the discrete hedging of the guarantees embedded in a VA
contract with both equity risk and interest rate risk and concluded
that hedging with standard options is superior to hedging with the
underlying. Milevsky and Salisbury (2006) studied the impact of
policyholder behavior on the cost and value of the GMWB rider
and argued that the current pricing is not sustainable. Boyle and
Tian (2008) analyzed the design of general equity-indexed annu-
ities from the investor’s perspective and proposed a generalization
of the conventional design. Lin et al. (2009) used Esscher transform
to determine an equivalent martingale measure for the fair valu-
ation of a VA contract under a regime-switching model in the in-
complete market setting. Bélanger et al. (2009) proposed a method
to compute the fair insurance fee of the GMDB rider under par-
tial withdrawals. Jiang and Chang (2010) used the Black-Scholes
model to derive an analytical solution of the cost of the GMAB rider.
Bacinello et al. (2011) proposed a unifying framework to price var-
ious types of guarantees. Gao and Ulm (2012) used a utility-based
approach to study the valuation of the GMDB rider. Kolkiewicz and
Liu (2012) proposed a method to hedge the GMWB rider by con-
structing a portfolio of traded European options that approximates
the closest path-independent option to the guarantee. Gerber et al.
(2013) proposed a method based on discounted joint density func-
tion to price the GMDB rider. Deelstra and Rayée (2013) studied the
pricing of GMIB under a local volatility framework and argued that
an appropriate volatility modeling is important to the long-dated
guarantees. Yang and Dai (2013) proposed a tree model to price the
GMWB rider embedded in deferred life annuity contracts.

Unfortunately, the aforementioned studies for individual VA
contracts cannot be extended to large VA portfolios for (i) the
complexity of the payoff function of the guarantees results in
no closed-form formulas for the liability value of the guarantees
and (ii) valuation and sensitivity calculation must be done for
each contract individually and the calculation becomes extremely
challenging when the number of contracts is very large. In practice,
insurance companies follow a market-to-model approach and rely
heavily on Monte Carlo simulation. In particular, they use nested
simulations to determine the probability distribution of losses
from mismatching in order to calculate required capitals (Bauer
et al., 2012; Reynolds and Man, 2008).

As we will demonstrate in the next section, nested simulation
of a large VA portfolio is extremely time consuming. The main
contribution of this paper is to present a novel approach to speed
up the nested simulation by reducing the number of VA contracts
that go through the nested simulation. This approach combines
a clustering technique with a functional data analysis technique.
First, we use a clustering technique to select a small set of
representative VA contracts from a large VA portfolio and calculate
quantities of interest of the representative contracts under nested
simulation. Then we apply a functional data analysis technique
called universal kriging to calculate those quantities of interest for
the remaining VA contracts in the portfolio. The efficiency of the
universal kriging method allows the remaining VA contracts to be
calculated very quickly.

The remaining of the paper is structured as follows. Section 2
gives a brief introduction to the nested simulation of VA contracts
and several existing approaches that address computational issues
arising from the valuation of large VA portfolios. Section 3 gives
a brief description of functional data analysis and the universal
kriging method for spatial functional data. Section 4 presents
some test results of applying the universal kriging method to VA
dollar Delta calculation under the nested simulation framework.
Section 5 discusses several aspects of the proposed approach.
Section 6 concludes the paper with some discussion on future
work.

Fig. 1. Nested simulation has two loops: an outer loop and an inner loop.
2. Nested simulation and VA portfolio valuation

As mentioned earlier, nested simulation is used to determine
the probability distribution of losses from mismatching in order
to calculate required capitals or other quantities of interest (Bauer
et al,, 2012; Reynolds and Man, 2008). Nested simulation is a
two-level procedure. At the first level, the so-called outer loop
is simulated and at the second level, the inner loop is simulated
(Bauer et al., 2012; Reynolds and Man, 2008; Fox, 2013). Fig. 1
shows the basic structure of nested simulation. The outer loop
involves projecting the VA liabilities along real world scenarios. At
each node of an outer loop scenario, the liabilities are projected
using a large number of simulated risk-neutral paths.

The computation of nested simulation of a large VA portfolio
is highly intensive and often prohibitive. For example, if we use
1000 real world scenarios in the outer loop and 1000 risk-neutral
paths in the inner loop, and project the liabilities at yearly steps for
25 years, then the total number of projections for each contract is

1000 x 1000 x 25 x 26/2 = 3.25 x 10%,

which is a very big number. For a portfolio of 100,000 contracts,
the number of projections would be 3.25 x 10'3,

To reduce the computation time of a nested simulation for a
large VA portfolio, one may reduce the number of VA contracts
that go thorough the nested simulation, reduce the number of
outer loop scenarios, or reduce the number of inner loop paths.
Here both scenarios and paths represent the economic scenarios
simulated from an asset model such as the Black-Scholes model
or more generally a regime-switching model under the real world
measure and risk-neutral probability measure, respectively. The
words “scenario” and “path” are used to differentiate the levels of
the nested simulation. The time saved from reducing outer loop
scenarios or inner loop paths is limited because the accuracy of
Monte Carlo heavily depends on the number of simulation runs.
As aresult, too few outer loop scenarios or inner loop paths would
affect the accuracy of the assessment. For example, using too few
inner loop paths may lead to volatile fair market value estimation
of the guarantees embedded in a VA portfolio, and using too few
outer loop paths may result in a biased loss distribution.

Several approaches have been developed to deal with large
portfolios of VA contracts. One approach involves replicating port-
folios, which consist of standard financial instruments such as fu-
tures, European options, and swaps. Daul and Vidal (2009) studied
the quadratic programming method to replicate cash flows of life
insurance liabilities in general. Oechslin et al. (2007) applied the
quadratic programming method to replicate embedded options in
insurance contracts. Liability cash flows depend on actuarial fac-
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tors (e.g. mortality) as well as financial factors. In this approach,
that actuarial factors are assumed to simply follow their expecta-
tions given a large pool of policyholders. The replication method
requires economic scenarios and cash flows projected by an actu-
arial projection system in order to construct a replicating portfolio.
Dembo and Rosen (1999) presented a portfolio replication frame-
work that minimizes the sum of absolute differences instead of the
sum of squared differences. Dembo and Rosen (1999) formed the
cash flow replication problem as a linear programming problem.
Compared to the quadratic programming method, the linear pro-
gramming approach can incorporate linear constraints easily. The
replicating portfolio method allows to calculate the Greeks of the
liability portfolio by closed-form formulas. However, constructing
a replicating portfolio of a large VA portfolio of is time consuming
because the cash flow of the portfolio at each time step and each
scenario must be projected by an actuarial projection system.

Another approach involves a statistical model that regresses the
liability value on some key economic factors (Cathcart and Mor-
rison, 2009) and the least-square Monte Carlo method (Carriere,
1996; Longstaff and Schwartz, 2001) is used to approximate the
future liabilities at each time step. The approximation is achieved
by a linear combination of basis functions, such as powers of the
state variables. The approach can significantly reduce the number
of inner paths used in nested simulation.

Other approaches involve reducing the number of VA contracts
that go through Monte Carlo simulation. Vadiveloo (2012)
proposed a method based on replicated stratified sampling and
only these sample policies are valuated. Gan (2013) proposed
a method based on data clustering and machine learning that
selects a small set of representative VA policies and prices the
representative policies. The clustering technique and the machine
learning technique used by Gan (2013) are k-prototypes and
ordinary kriging, respectively.

The replicating portfolio approach cannot be used to speed
up nested simulation of large VA portfolios because replicating
portfolios are constructed from a one-level simulation. The least-
square Monte Carlo method works only for nested simulation
with outer loops of one time step. The policy reduction methods
proposed by Vadiveloo (2012) and Gan (2013) were developed for
one-level simulation rather than nested simulation. In this paper,
we propose a policy reduction method for speeding up nested
simulation of large VA portfolios.

Other relevant works on portfolio valuation include Chen et al.
(2012), Broadie et al. (2011a), and Broadie et al. (2011b). Chen
et al. (2012) proposed a stochastic kriging metamodel to compute
the VaR of a portfolio of options. Broadie et al. (2011a) proposed
a nonuniform nested simulation algorithm for estimating the
probability of a loss. Broadie et al. (2011b) proposed a weighted
regression method to estimate risk measures in nested Monte
Carlo simulation. For stochastic kriging for simulation meta-
modeling, readers are referred to Ankenman et al. (2010).

3. A spatial functional data analysis method

Functional data analysis as a branch of statistics focuses on
analyzing functional data, which includes curves and surfaces
(Ramsay and Silverman, 2002, 2005). In many cases, underlying
functional data involve a time argument t. In such cases, the
data are organized in terms of time. In other cases, underlying
functional data involve a spatial argument such as locations. Spatial
functional data analysis, as its name indicates, aims to analyze data
organized by space, time, or both.

In spatial functional data analysis, we study functional random
processes {X; : s € D € R%}, where R is the set of real numbers.

Each functional random process X, is assumed to be a function in
[2([a, b]) defined as:

b
1([a, b]) = {f [a,b] — R, / FOde < oo}.

In addition, the functional random processes {X; : s € D € RY}
are assumed to have the following stationary properties (Caballero
etal., 2013):

E[Xs(t)] = m(t), te€]a,b], seD. (1a)

Var[X(t)] = o2(t), t € [a,b], seD. (1b)
Cov(X; (1), xsj(u)) =C(h;t,u), t,uelabl, si,sieD, (lc)

where h = ||s; —s;]| is the Euclidean distance between s; and s;. The
function
%Var[Xsi(t) — xsj(u)] =y(h;t,u), t,uelabls,s;eD(1d)
is called semivariogram and plays an important role in the
subsequent universal kriging analysis.

As discussed earlier, the purpose of nested simulation is to
calculate the quantities of interest such as Greeks (e.g., dollar Delta,
dollar Rho) of a liability portfolio along outer loop scenarios in
order to construct a hedging portfolio and in turn to determine
required capitals (regulatory capital and economic capital for
example) for the future mismatches between the liability portfolio
and the hedging portfolio. In this section, we propose a method that
combines a clustering technique (Gan et al., 2007) and a universal
kriging method for spatial functional data (Caballero et al., 2013)
to calculate dollar Deltas along the outer loop scenarios. Note that
with minor adjustments, the method is applicable to calculate
other quantities of interest. We now describe the proposed method
in the following subsections.

3.1. Selection of representative VA contracts

The k-prototypes algorithm (Huang, 1998; Gan et al., 2007) is
a clustering algorithm that was developed to cluster mixed-type
data. We use the k-prototypes algorithm to select representative
VA contracts for several reasons: first, a VA contract is character-
ized by both numerical and categorical attributes; second, the k-
prototypes algorithm was developed from the popular k-means
algorithm and thus is faster than other clustering methods (e.g.,
Ji et al.,, 2012) for mixed-type data; third, the k-prototypes algo-
rithm is a center-based clustering algorithm and produces sphere-
shaped clusters, each of which has a center that can be selected as a
representative point. In this subsection, we give a brief description
of the k-prototypes algorithm.

Let X = {Xq,Xa, ..., X,} denote the portfolio of VA contracts,
where n is the number of VA contracts and Xx; represents the ith
VA contract. Without loss of generality, we assume that every VA
contract is characterized by d attributes (e.g., gender, age, account
value, etc.) and that the first d; attributes are numeric and the
remaining d, = d — d; attributes are categorical. The distance
between two contracts xand y in X can be defined as (Huang, 1998;
Huang et al., 2005):

d] d
DY) = | D walxn —yn)*+ Y wid®n,yn), (2)
h=1

h=d; +1

where x;, and y;, are the hth component of x and y, respectively,
wy > 0is a weight assigned to the hth component, and (-, -) is
the simple matching distance defined as

_]0, if Xp = yn,
5(Xh,J/h) = {1, ith 7éYh
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In the above distance calculation, there are many ways to
assign the weights. For the numeric attributes, we may assume the
weights to take the form

1

Wh = —
2
Rh

(3)

where Rﬁ measures the degree of variability of the data of the

h-th attribute. The most sensible choice for R would be the
corresponding sample variance:

1 & _
R: = Z(Xih —Xn)%,
=1

n—1

where X;, is the sample mean. We conduct our numerical experi-
ment in Section 4 based on this approach. We note that the dis-
tance calculated in this way is equivalent to that one first converts
each x;, to its z-score and then calculate an unweighted distance,
ieewp,=1forh=1,...,d;.

Another choice is to use the range of the data set. In this case,
we may define
Rp, = max x;; — min Xi.

1<i<n 1<i<n
However, this choice would give a small weight to a numeric
variable with a large extreme value. In other words, the approach
is more sensitive to outliers. In Section 5, a comparison study is
conducted to see whether or not this choice of weights would
outperform the sample variance approach.

Since there is not apparent reason that the categorical attributes
need to be treated differently from each other, we may assign a
common weight, say «, to all the categorical attributes. By varying
the value of o (e.g.« = 0.5, 1, or 2), we can examine the impact of
categorical variables on cluster selection.

The k-prototypes algorithm aims to minimize the following
objective function:

k

P=Y "> DX n. (4)

j=1 xeG

where D(-, -) is defined in Eq. (2), k is the number of clusters, C; is
the jth cluster, and g; is the center or prototype of cluster C;. To
do that, the k-prototypes algorithm proceeds iteratively. In other
words, the k-prototypes algorithm repeats updating the cluster
memberships given the cluster centers and updating the cluster
centers given the cluster memberships until some stop condition
is satisfied.

Mathematically, the k-prototypes algorithm can be described as
follows:

1. Initialize cluster center. At this step, the algorithm initializes
the k cluster centers by selecting k distinct contracts from
portfolio X randomly. Suppose /Lﬁo), [L;O), ...,;L,EO) are the k
initial cluster centers.

2. Update cluster memberships. At this step, the algorithm
updates the cluster memberships y1, ¥4, . .., ¥x as follows:
yi(o) = argmin D(x;, [L;O)), (5)

1<j<k
where D(-, -) is defined in Eq. (2).

3. Update cluster centers. At this step, the algorithm updates the

cluster centers as follows:

1
Wi =1 Do h=1.2,....dy, (6a)
IGl &
]
iy =modey(G), h=dy+1,....d, (6b)
where G = {x,-eX:yi(o) :j} forj = 1,2,...,k and

modey, () is the most frequent categorical value of the h-th

attribute in cluster G. Let Apq, A, ..., Anm, be the distinct
values the h-th attribute can take, where my is the number of
distinct values the h-th attribute can take. Let f:(Cj) be the
number of records in cluster Cj, whose h-th attribute takes value
Ap fort = 1,2, ..., my. Thatis,

fue(G) = {X € G : X4 = Apc}l,
Then

modey (G) = argmax fi (),
1<t<mp

t=1,2,...,my.

h=d;+1,...,d

4. Repeat Step 2 and Step 3 until the cluster memberships do not
change between two iterations or the maximum number of
iterations is reached.

Suppose that the cluster centers obtained from the k-prototypes
algorithm are denoted by mq, i,, ..., i,. Then we select the
representative VA contracts zq, z,, . . ., Z as follows:

z; = argmin D(x, u;).

xeX
That is, the representative VA contract z; is the VA contract in X
that is closest to the cluster center u;. We assume that these k
representative VA contracts are mutually distinct, that is,

D(z;,z;) > 0

foralll1 <r <s<k

3.2, Universal kriging for functional data

In this subsection, we show how to use universal kriging to ac-
curately estimate the dollar Deltas of any contract in the VA port-
folio using the representative VA contracts. This idea is similar to
that in Fourier analysis in which the representative contracts may
be viewed as basis functions and any other contract is projected
onto the subspace spanned by the representative contracts. The
approach described below is a slight modification of the universal
kriging proposed in Caballero et al. (2013). The distance between
two VA contracts is not the Euclidean distance used in the univer-
sal kriging method proposed by Caballero et al. (2013) because VA
contracts contain categorical attributes. Other than the distance,
the universal kriging method used in this paper is the same as the
one proposed by Caballero et al. (2013). As a result, the derivation
of the formulas is similar and hence omitted here.

LetZ = {z1, 75, .. ., z;} now be the k distinct representative VA
contracts selected in Section 3.1. Further let X(t) be the dollar
Delta at time ¢ of the representative contract z; along an outer loop
scenario that is calculated in a nested simulation model. Denote

Xz2(t) = (X2, (1), Xigy (0), - .., X (),

a k-dimensional column vector, where T is the transpose operator.
The dollar Delta at time t of an arbitrary contract x; in the VA
portfolio is expressed linearly as

k
Ko (£) = A X62(6) = Y 25 (D), (7)
j=1

where A; = (Ai1, Aiz, - - ., Aix)T is a vector of weights determined
by the following system of linear equations:

A(Z) B(2) L\ (AZ,x) 8
B2z o ) \vi) " \Bx) ) (®)

Here, A(Z) is a k x k matrix defined as

y(z1,21) y(21,Z2) v(21, %)
v(z2,21) vy (22, 22) v (22, Z)

A@) = : : - : ’ ®)
v (@, 21) v (Zi, Z) v (Z, Zk)
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where y (-, -) is a kriging kernel function to be determined. The
column vector A(Z, X;) is defined as

J/(Zl, xi)
v (22, X;)
A(Z, x;) = . (10)

Y (Zk, X;)
Note that in Eqgs. (9) and (10), the kriging kernel function y (-, -)

can be isotropic or anisotropic. In our implementation, we use an
isotropic kriging kernel defined as

y(x,y) =y (DX,Yy),

where y (-) is a semivariogram to be defined later and D(-, -) is the

distance function defined in Eq. (2). The use of the isotropic kriging

kernel leads to a linear system that can be solved easily.
Furthermore, the k x q matrix B(Z) is defined as

fo(z1)  fi(z1) fa(z1)
fo(z2)  fi(z2) fa(z2)

B(Z) = : : : , (11)
220 fi(zo fo@)

where fi(-), ---, fq(-) are d attribute functions, each of which
quantifies an attribute of a VA contract, and fy (-) may be a constant
or an additional attribute function. See Section 4 for a detailed
description. The row vector B(x;) is defined as

B(x) = (fo(x) fi(x:) fa(x))) . (12)

There are several choices for the semivariogram function
y (h). In a typical application of a universal kriging method, the
locations (i.e., the representative contracts in our context) are
predetermined and h is often the Euclidean distance between
two locations. Other choices include the exponential function, the
Gaussian function, and spherical function. We tested all three
semivariogram functions and found that the spherical function
works well for VA portfolios. The spherical function has the
following form:

0, ifh=0;
3h 1 /h\°
y(h;a,b,c) = a+b|i—<)i|, ifo<h<c;, (13)
2c 2 \c
a-+b, ifh > c.

To estimate the parameters in the spherical function, we
minimize the objective function

L

P(a.b.c)=Y [y(hzab.c)— ()], (1)
=1
where the empirical semivariogram function is defined as
1 XS: 2
)A’(h) = (xx(ts) - xy(ts)) s (15)
2|N(h)| (x,y)eN(h) s=1

where S is the number of time steps,
N(h) ={(x,y) : D(x,y) =h,:x € Z,y € Z},

and |N (h)| is the number of elements in N (h).

With the estimated semivariogram function y (h), the system
of linear equations (i.e., Eq. (8)) is completely identified and ready
to be solved. As a result, the weights A, j = 1, ..., k, of contract
X;, i = 1,...,n, are obtained. The dollar Delta of the portfolio at
time t can be calculated as

n k

Xx(6) = D M Xz(0) = DY Ay (0). (16)
i=1 1

i=1 j=

From the above equation it is clear that the weights A; are
independent of t, a key advantage that makes the estimation
efficient. However, we would like to emphasize that from Eq.
(15) the weights A; depend on the dollar Deltas of the selected
representative VA contracts at all times t.

If we are interested in only the aggregated dollar Delta, then we
can calculate D%x(t) in Eq. (16) efficiently by observing that

i )»1' i A(Z, Xi)
i=1

<A(Z) B(Z)>, U I : (17)

T n n
R A S
i=1 i=1

In this way, we only need to solve the linear equation system once.

We remark that one assumption of the universal kriging for
functional data (UKFD) method is that the random variable X (t)
is weakly stationary (Caballero et al., 2013). The guarantees
embedded in VAs are not stationary because the value of the
guarantee embedded in a VA contract is linearly dependent on
the account value of the contract. To use the UKFD method
for VA valuation, we scale all the VA contracts such that they
have approximately the same account value. In other words,
we determine the scaling factor 6; for contract x; such that the
following objective function

Z(eixij - )’

JjEA

is minimized, where A is the set of dollar-valued attributes (e.g., ac-
count values) and ¢; is the average of the jth attribute values of all
contracts in the portfolio. Thus, each scaled contract has approxi-
mately the same account value. In particular, if the contracts have
only one dollar-valued attribute, then all scaled contracts have the
same account value. After the quantity of a scaled contract is esti-
mated by the UKFD method, we scale the quantity back to be the
estimation of the original contract.

4. Numerical experiments

To evaluate the effectiveness of the proposed method, we gen-
erate 100,000 synthetic VA contracts with GMDB and GMWB rid-
ers and use the method to calculate the dollar Deltas at each time
step along several real world scenarios. Note that the proposed
method can also be used for other quantities of interest such as
dollar Rhos (sensitivity to interest rates), economic capital (Zhuo
and Park, 2006; 1AA, 2010), etc.

Dynamic hedging (see Boyle and Hardy, 1997 for an example)
is a popular risk management approach for VA and is adopted by
many insurance companies. To reflect the hedging in quarterly
financial statements, insurance companies use nested simulation
models to calculated the net positions by offsetting the liabilities
with the hedge portfolio. In particular, insurance companies
calculate the dollar Delta of the VA liabilities at each time
step along many real world scenarios and then determine the
Futures position at each time step that can offset the dollar Delta
appropriately. In this section, we present some test results of
applying the UKFD method (cf. Section 3.2) to estimate the dollar
Deltas along real world scenarios for a synthetic VA portfolio of
100,000 contracts generated randomly.

The attributes of a VA and their ranges of values are given
in Table 1. We consider only two types of guarantees: GMDB
and GMWB. Every contract contains a GMDB rider. However, the
GMWSB rider is not included in all contracts. The total account value
of this portfolio is 25,552,267,607 dollars.
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Table 1

Distributions and ranges of VA attributes.
Attribute Values Distribution
Guarantee type {GMDB, GMDB + GMWB} 50%, 50%
Gender {Male, Female} 50%, 50%
Age {20, 21,22, ...,60} Uniform
Account value [10 000, 500 000] Uniform
GMWSB withdrawal rate {0.04, 0.05, 0.06, 0.07, 0.08} Uniform
Maturity {10,11,12,...,25} Uniform

x 10°

Dollar Delta

—O— NS3

—O— NS4
—A— NS5

Year

Fig. 2. The annual dollar Deltas of the portfolio along five outer loop scenarios
calculated by the nested simulation model.

Let X be a scaled VA contract. Then we use 6 attribute functions
(i.e., d = 5) defined as follows:

0, ifxismale;
fox) =1, fi(x) = {1, if x is female,

) = 0, ifxcontains GMDB only;
hx) = 1, ifx contains GMWB,

f3(X) = normalized age of x,
fa(X) = normalized guaranteed withdrawal rate of x,
fs(x) = normalized maturity of x.

Since all contracts are scaled to have the same account value, we
do not need to include the account value variable in the UKFD
method. But the scaling factors are used to scale the dollar Deltas
estimated by the UKFD method back to reflect the account value of
the original contracts.

Since the annual dollar Deltas along each outer loop scenario
can be estimated in the same way, we illustrate the UKFD method
for only five outer loop scenarios. To do that, we first use a nested
simulation model (cf. Appendix) to calculate the dollar Deltas at all
annual time steps of the five outer loop scenarios. The annual dollar
Deltas of the portfolio along five outer loop scenarios are plotted in
Fig. 2. Note that we used the regime-switching lognormal model
of Hardy (2001) to generate outer loop scenarios. The resulting
annual dollar Deltas of the portfolio are plotted in Fig. 2. It took a
single CPU core 32 520.68 s (or 9 h 2 min) to calculate these dollar
Deltas.

From Fig. 2 we see that the dollar Deltas along all outer loop
scenarios decrease to zero in magnitude. Since all the synthetic VA
contract have maturities between 10 and 25 years, the dollar Deltas
of the portfolio will be zero after 25 years. In addition, the dollar
Deltas decrease in magnitude along outer loop scenarios because
about half of the contracts in the portfolio have the GMWB feature.

x10°
0 —

Dollar Delta

—+— NS1
-4+ UKFD1
—O0— NS2
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_8 \ \ \ \ )
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Fig. 3. The annual dollar Delta along five outer loop scenarios estimated by the
UKFD method with 512 representative contracts.

We tested the UKFD method for different numbers of represen-
tative contracts. In particular, we tested the UKFD method with
the target number of representative contracts being 550, 1100 and
2200, respectively. These numbers represents roughly 0.5%, 1%,
and 2% of the total number of contracts in the VA portfolio. In our
first test case, we run the k-prototypes algorithm with 550 clus-
ters. Since all the 100,000 contracts are scaled to have the same ac-
count value, some scaled contracts are identical. As a result, some
of the 550 representative contracts are identical. After the dupli-
cate contracts from the 550 representative contracts are removed,
the number of mutually distinct representative contracts is 512.
We calculate the annual dollar Deltas along the five outer loop real
world scenarios for each of the 512 representative contracts us-
ing the nested simulation model. Then we estimate the annual dol-
lar Deltas of every scaled contract in the portfolio using the UKFD
method. Note that the tests in this section were conducted with all
the weights set to 1 in the distance calculation.

Fig. 3 plots the annual dollar Deltas along the five outer loop
scenarios estimated by the UKFD method with 512 representative
contracts. To compare the numbers, we also plotted the annual
dollar Deltas calculated by the nested simulation model in
Fig. 3.

From Fig. 3 we see that along the second and the third outer loop
scenarios, the annual dollar Deltas estimated by the UKFD method
do not match well those calculated by the nested simulation model.
Some of the differences along the second and the third outer loop
scenarios are large. However, the differences along the other three
outer loop scenarios are relatively small. Fig. 4(a) shows the mean
squared errors (MSE) at each point in time along the five outer loop
scenarios when 512 representative policies were selected. We see
that the MSE increases in time. Fig. 4(b) shows the histogram of the
differences of dollar Deltas at time 0 across all the 100,000 policies
in the portfolio under the first outer loop scenario. The histogram
exhibits a normal behavior. From Fig. 4(b) we see that most of the
differences of the dollar Deltas are close to zero. To see whether
the account value has an impact on the accuracy of the UKFD
method, we plotted the account values against the differences of
the dollar Deltas calculated from the simulation model and the
UKFD method. The resulting scatter plot is shown in Fig. 5(a).

From Fig. 5(a), we see that variance of the differences
increases with the account values. In addition, some differences
corresponding to contracts with large account values are close to
zero. If we normalize the differences by the corresponding account



144 G. Gan, X.S. Lin / Insurance: Mathematics and Economics 62 (2015) 138-150

MSE

Year

b x 10*

45 T T T T T T T T T

4t ]

35 J

3t 4

25+ J

2L 4

15 J

1t

05

-25

25
x 10*

Fig. 4. Figure (a) shows the mean squared errors (MSE) at each point in time along the five outer loop scenarios. Figure (b) shows the histogram of the differences of dollar

Deltas at time 0. These results were based on 512 representative policies.
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Fig. 5. Figure (a)is the scatter plot between the account values and the differences of the dollar Deltas calculated by the simulation model and those estimated by the UKDF
model. Figure (b) is the scatter plot between the account values and the normalized differences of the dollar Deltas. These results were based on 512 representative policies.

values, the variance of the normalized differences is almost the
same for different account values as shown in Fig. 5(b). The reason
is that we scaled the contracts by account values before applying
the UKFD method and re-scaled the estimated dollar Deltas back
afterwards.

In our second test case, we run the k-prototypes algorithm with
1100 clusters and obtained 1100 representative contracts. Some of
the 1100 representative contracts are identical. After the duplicate
contracts from the 1100 representative contracts are removed,
the number of mutually distinct representative contracts is 987.
We calculate the annual dollar Deltas along the five outer loop
real world scenarios for the 987 representative contracts using
the nested simulation model. Then we estimate the annual dollar
Deltas of every scaled contract in the portfolio using the UKFD
method. Fig. 6 shows the annual dollar Deltas along the five outer
loop real world scenarios estimated by the UKFD method with the
987 representative VA contracts.

From Fig. 6 we see that the annual dollar Deltas estimated
by the UKFD method approximate those calculated by the nested
simulation model well. Comparing Figs. 6 and 3, we further see that
the differences in this test case are smaller than those in the first
test case. Again, we compute the MSEs and plot the histogram of
the dollar Delta differences at time 0 across the entire portfolio
under the first outer loop scenario. The results are presented in
Fig. 7.
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Fig. 6. The annual dollar Delta along five outer loop scenarios estimated by the
UKFD method with 987 representative contracts.

Comparing Figs. 7(a) to 4(a), it is clear that the MSEs produced
by the 987 representative policies and by the 512 representative
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Fig. 7. Figure (a) shows the mean squared errors (MSE) at each point in time along the five outer loop scenarios. Figure (b) shows the histogram of the differences of dollar

Deltas at time 0. These results were based on 987 representative policies.
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Fig. 8. The annual dollar Delta along five outer loop scenarios estimated by the
UKFD method with 1845 representative contracts.

policies have similar patterns, but the MSEs produced by the
former are about 30% lower than those by the latter. Improving in
accuracy is further confirmed when comparing Figs. 7(b) to 4(b).

In our third test, we run the k-prototypes algorithm with
2200 clusters. The number of mutually distinct representative VA
contract is 1845. In this case, the annual dollar Deltas along the five
outer loop scenarios estimated by the UKFD method are shown in
Fig. 8. Comparing Figs. 6 and 8, we see that the differences of the
test with 1845 representative contracts are smaller than those of
the test with 987 representative contracts.

We again produce the MSEs and the histogram of the dollar
Delta differences at time 0 across the entire portfolio under the first
outer loop scenario.

Fig. 9(a) shows the further decrease in MSE by about 25%.
The histogram in Fig. 9(b) has a smaller standard deviation. From
Figs. 4,7, and 9, we see that the higher the number of representa-
tive policies is, the more accurate approximation we produce.

In order to further show the impact of the number of repre-
sentative contracts on the accuracy of the UKFD method, we also
calculate the mean absolute percentage error of the annual dollar
Deltas along the five outer loop scenarios from the three test cases.
The mean absolute percentage error is defined as the weighted av-
erage of the absolute percentage errors between the annual dollar

Table 2

The mean absolute percentage errors of annual dollar Deltas estimated by the UKFD
method and those calculated by the simulation model. RW1 to RW5 denote the five
outer loop real world scenarios.

Number of contracts Mean absolute percentage error
RW1 RW2 RW3 RW4 RW5
512 4.49% 8.75% 10.17% 5.42% 4.18%
987 2.82% 5.75% 6.67% 3.52% 2.62%
1845 1.72% 3.31% 3.90% 2.07% 1.59%
Table 3

Computing times used by the clustering algorithm, the nested simulation model,
and the UKFD method. The numbers are in seconds.

Number of contracts Entire portfolio

512 987 1845 100,000
k-prototypes 4,52 3.83 4.22 NA
Nested simulation 166.50 317.75 580.18 32520.68
UKFD 48.16 100.71 199.05 NA
Total 219.18 422.29 783.45 32520.68

Deltas estimated by the UKFD method and the corresponding ones
calculated by the simulation model at all the 30 time steps. Math-
ematically, it is given by:

T
. | Ay — Al
MAPE_XT: A |A[—A[|_§1 o
=i Al ’
=1y |Al 314
s=1 s=1

where A, and A, are the dollar Deltas at time t calculated from the
simulation model and the UKFD method, respectively. The numer-
ical results are presented in Table 2.

From Table 2 we see that the mean absolute percentage error
decreases when we increase the number of representative VA
contracts. For example, the mean absolute percentage error for
the first outer loop is 4.49% when we use 512 representative
contracts. If we use 987 representative contracts, the mean
absolute percentage error decreases to 2.82%.

In the next table we show the time used by the UKFD method
when different numbers of representative contracts are used.

From Table 3 we see that it took the k-prototypes algorithm
3.84 s to select 987 representative VA contracts. It took the nested
simulation model 317.75 s (or 5 min 17.75 s) to calculate the dollar
Deltas along five outer loop scenarios for the 987 representative
contracts. To estimate the dollar Deltas of the whole portfolio
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Fig. 9. Figure (a) shows the mean squared errors (MSE) at each point in time along the five outer loop scenarios. Figure (b) shows the histogram of the differences of dollar

Deltas at time 0.These results were based on 1845 representative policies.

of 100,000 contracts, the UKFD method used 100.71 s (or 1 min
40.71 s). The total time used by the process is 422.29 s, which is
1.3% of the time used by the nested simulation model to calculate
the dollar Deltas of the whole portfolio. When 1845 representative
contracts are used, the total time used by the process is 783.45 s,
which is 2.4% of the time used by the nested simulation model to
calculate the dollar Deltas of the whole portfolio.

Our test results above show that the UKFD method is able
to efficiently approximate the annual dollar Deltas along the
outer loop scenarios under nested simulation. When the number
of representative contracts increases, the absolute differences
between the annual dollar Deltas estimated by the UKFD method
and those calculated by the simulation model decrease.

5. Further numerical experiments and discussion

Our numerical results in Section 4 show that using higher num-
ber of clusters produces more accurate approximation. However,
it also requires longer running time. There is a tradeoff between
how many clusters to use and how much running time to spend.
One practical approach may be to try different numbers of clusters
to reach a desirable approximation accuracy at time 0 of the outer
loop. For examples, insurance companies may try 100, 200, 400,
800, 1600, 3200 clusters and choose the number of clusters that can
produce the acceptable approximations at time 0 of the outer loop.

The kriging method in this paper requires calculating the
distance not only between all representative policies but also the
distance between the representation policies and other policies in
the portfolio. If we use 1000 representative policies for a portfolio
of 100,000 policies, then we need to calculate 108 distances. In our
models, we used a weighted distance and hence the computing
time is linear to the number of variables. The weighted distance
allows insurance companies to assign a weight to a variable to
indicate the importance of the variable. As discussed in Section 3.1,
two approaches are proposed to choose weights automatically. In
the first approach, we choose the weight of each numerical variable
to be the reciprocal of the sample variance and the weights of all
categorical variables to be a constant «. To examine the impact
of the weight on the categorical variables, we rerun the test in
Section 4 with 2200 initial representative policies and let « = 0.5
or 2.

Figs. 10 and 11 show the MSEs and histograms from these
two test cases. When we change the weight of the categorical
variables to be smaller or larger, the number of representative

policies remains almost the same. Comparing the three Figs. 9-11,
we see that the estimation accuracy does not change either. We
may conclude that the UKFD method is insensitive to the weights
of the categorical variables.

In the second approach, we assign weights based on their
ranges. We tested the approach and found that if we assign weights
to numerical variables based on their ranges, the clustering
algorithm produces a smaller number of distinct representative
policies because such a weighting method gives more weights
to categorical variables. For example, if we specify 2200 clusters
in the clustering algorithm with this weighting method, the
clustering algorithm produces only 1410 distinct representative
policies. Fig. 12(a) shows the MSEs along the five outer loop
scenarios produced by the 1410 representative policies. Comparing
Figs. 7(a) and 12(a), we see that the MSEs produced by the 1410
representative policies with this weighting method are similar to
those produced by the 987 representative policies with the equal
weights. As a result, the range-based approach seems to be not as
efficient as the sample variance based approach.

We may further extend the sample variance based distance
by incorporating co-variances and use the so-called Mahalanobis
distance:

-y Z-lx—y),

where X' is the covariance matrix. In this situation, the computing
time is quadratic to the number of variables. As a result, the number
of operations required to calculate the Mahalanobis distance is
quadratic to the dimension of the data points. Such a distance
might not be efficient in practice because real variable annuities
have 50 to 150 variables.

6. Concluding remarks

When the underlying portfolio of VA contracts is large,
calculating the dollar Deltas (or other quantities of interest) at all
the time steps along outer loop scenarios under nested simulation
is very time consuming (Reynolds and Man, 2008; Fox, 2013). In
this paper, we proposed a method based on functional data analysis
to estimate the annual dollar Deltas along outer loop scenarios
under the nested simulation framework. The proposed method
consists of three components:

1. Using a clustering technique to select a small set of representa-
tive VA contracts from a large VA portfolio;
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Fig. 10. Figure (a) shows the mean squared errors (MSE) at each point in time along the five outer loop scenarios. Figure (b) shows the histogram of the differences of dollar
Deltas at time 0. These results were based on 1842 representative policies, the sample variance based distance and a weight of 0.5 to all categorical variables.
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Fig. 11. Figure (a) shows the mean squared errors (MSE) at each point in time along the five outer loop scenarios. Figure (b) shows the histogram of the differences of dollar
Deltas at time 0. These results were based on 1802 representative policies, the sample variance based distance and a weight of 2 to all categorical variables.
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Fig. 12. Figure (a) shows the mean squared errors (MSE) at each point in time along the five outer loop scenarios. Figure (b) shows the histogram of the differences of dollar
Deltas at time 0. These results were based on 1410 representative policies and the range-based distance.
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2. Calculating the Greeks along outer loop scenarios for every
representative VA contract under a nested simulation model;

3. Estimating the Greeks along outer loop scenarios for every VA
contract in the large VA portfolio.

We used the k-prototypes algorithm to select representative VA
contracts from a large VA portfolio and used the universal kriging
for functional data (UKFD) to estimate the Greeks along outer loop
scenarios for all contracts in the VA portfolio. Since the time-
consuming nested simulation is only applied to a small number
of representative VA contracts and the UKFD method is fast, the
proposed method can reduce the computation time significantly.

Our test results show that the proposed method works well
in terms of accuracy and speed. In particular, they show that we
may use a very small subset, such as 1%, of VA contracts in a VA
portfolio as representative contracts to achieve a fairly satisfactory
accuracy. As we increase the number of representative contracts,
the accuracy can be drastically improved but at the expense of
computation time.

In our test cases, we used annual time steps in the nested
simulation model. The method can be also applied to cases when
monthly steps or variable-time steps are used. When the method is
applied to monthly data, the gain in computation time will be even
more significant because the UKFD method’s performance does
not depend on the number of time steps. Although we used dollar
Deltas to illustrate the effectiveness of the proposed method, we
can apply the same method to estimate other quantities of interest
such as dollar Rho, cash flows, and risk measures.

All components of the proposed method can be changed or
modified. As a result, there may be several directions for future
research. One would be to explore other methods for selecting
representative VA contracts. For example, we can use a different
clustering method with a different distance (e.g., Ji et al., 2012)
to select representative VA policies. Under the current clustering
method, the set of representative contracts does not include
the boundary contracts that have extreme attribute values. The
boundary contracts might be critical to the accuracy of the kriging
method (Kleijnen and van Beers, 2004).

Another direction may be to test the proposed method under
a realistic nested simulation model. In the nested simulation
model used in this paper, we considered only one investment
fund and simple guarantee features. Real VA contracts have several
investment funds and contain complex guarantee features.
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Appendix. A nested simulation model

In this appendix, we briefly describe a nested simulation
used to test the effectiveness of the proposed method. In the
nested simulation model, we use two loops: an outer loop and
an inner loop. The outer loop uses real world scenarios, which
are generated by the regime switching lognormal model (Hardy,
2001, 2003; Hardy et al., 2006; Cheung and Yang, 2005; Lin
et al., 2009; Augustyniak and Boudreault, 2012; Hartman and
Groendyke, 2013). The inner loop uses risk neutral scenarios,

Table A4
A list of symbols used to describe the nested simulation model.
Symbol Description
S The underlying mutual fund at time t of the VA
A¢ The account value at time t
W, The withdrawal benefit at time t
Dy The death benefit at time t
GV The remaining total amount that can be withdrawn after time t
GE The maximum amount that can be withdrawn annually
GP The guaranteed minimum death benefit at time ¢
Xw The proportion of the premium that can be withdrawn annually
T The maturity of the contract

which are generated by the lognormal model (Black and Scholes,
1973). To determine the value of guarantees at a time step along
an outer scenario, we follow the Monte Carlo method proposed by
Bauer et al. (2008). To simplify our discussion, we consider only the
GMDB rider and the GMWB rider.

For VA contracts with the GMDB rider and GMWB rider, there
are two possible types of events (Bauer et al., 2008):

e the policyholder withdraws money as a guaranteed withdrawal
of the GMWSB rider;
e the policyholder dies.

We use (-); and (-); to denote the value of a state variable
(e.g., A;) immediately before and after the occurrence of such
events, respectively. Table A.4 shows a list of symbols used to
describe the nested simulation model.

In our Monte Carlo valuation of the VA contracts, we assume the
following:

e a real world scenario is simulated by a two-regime switching
lognormal model (w1, (2, 01, 02, P12, P21) (Hardy, 2001). We
used the parameters from (Hardy, 2001):

(p1, 12, 01, 02, P12, P21)
= (0.0126, —0.0185, 0.0350, 0.0748, 0.0398, 0.3798).

Mathematically, a real world scenario is simulated as

1
Ro =1, Rt:RtleXp<[H_202]+UZ>a

where the values of 1 and o are determined according to the
transition probabilities p1, and p;;. Since the parameter values
were estimated from monthly data, we generate monthly real
world scenarios and then convert them to annual scenarios;

e arisk-neutral path is simulated as

1
So =1, S; = S;_1 exp ([r — 202] + (IZ)

fort = 1,2,...,40, where r is the interest rate, o is the
volatility of the underlying mutual fund, and Z is a standard
normal random variable. In our tests, we use r = 3% and
o = 20% and simulate 1000 paths;

e for a contract with the GMWB rider, the policyholder takes

maximum annual withdrawals;

all the events happen only at anniversary date;

there are no fees;

there are no lapses;

the mortality follows the 1996 IAM mortality tables provided

by the Society of Actuaries.

At time step s along an outer loop, we have
GY =As, GE=xwhA, G =A,

where A; is the account value at time s that is projected based on
the real world scenario from time O to time s. The projection is done
recursively as follows. At the beginning, Ay is the money deposited
by a policyholder. At the end of year 1, the account value after
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withdrawal is A4
account value after withdrawal is A, = max(A;*Ry /R,
Repeating this procedure, we can obtain As.

At time step s along the outer loop, we need to calculate the
value of the guarantee using risk-neutral paths. In our nested
simulation model, we use truncated risk-neutral scenarios. That is,
at time step s along the outer loop, we use the risk-neutral paths
fromtimes+1toT.Fort =s+1,s+2, ..., T—1,the evolution of
the state variables between t* and (t + 1)~ is described as follows.
The account value evolves as

= max(AgR; — xwAop, 0). At the end of year 2, the
— AoXW , 0)

The guaranteed minimum death benefit, the maximum amount
that can be withdrawn annually, and the remaining total amount
that can be withdrawn do not change, i.e.,

G, =GP, Gy, =G,

W— __ W+
t+1 — t+1 — G G

t+1 —
The evolution of the state variables between (t 4+ 1)~
(t + 1)* is described as follows. The death benefit at time t + 1
is calculated as
A

Dt+1 = max (0 G t+l) .

t+1

Since we assume the policyholder takes maximally available
withdrawal annually, the withdrawal amount at year t + 1 is given
by

E=min (G 1. Gy) .

and the maximum amount that can be withdrawn annually does
not change, i.e., G- L= Gf;] The withdrawal benefit at time t 4- 1
is given by

Werr =max (0,E—A,,).
The account value becomes
Al =max(0,A ; —E).

The remaining total amount that can be withdrawn after time t + 1
becomes

Gt+1 = max (0 Gt+1 - )

The guaranteed minimum death benefit will be adjusted pro rata
as follows
A+
Gt+1 = Gr
At+l

t+1°

Then the present value of the GMDB and the GMWB benefits at
time s is given by

T+1
V(S1,52, ..., 50) = Z t-1Pxg (1 = Grgye—1)Wee™"
t=s+1
T+1
+ Z t-1PxoQxo+e—1Dre™", (A1)
t=s+1

where xg is the age of the policyholder. The value of the GMDB
rider and the GMWB rider is the average of V (S1, S,, . . ., S40) along
all risk-neutral paths. If a contract does not have the GMWB rider,
the above formula still applies by letting the withdrawal rate to be
zero.
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